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Abstract This article addresses the problem of contact-
state (CS) monitoring for peg-in-hole force-controlled
robotic assembly tasks. In order to perform such a mon-
itoring target, the wrench (Cartesian forces and torques)
and pose (Cartesian position and orientation) signals of the
manipulated object are firstly captured for different CS’s
of the object (peg) with respect to the environment includ-
ing the hole. The captured signals are employed in building
a model (a recognizer) for each CS, and in the frame-
work of pattern classification, the CS monitoring would be
addressed. It will be shown that the captured signals are
nonstationary, i.e., they have non-normal distribution that
would result in performance degradation if using the avail-
able monitoring approaches. In this article, the concept of
the Gaussian mixtures models (GMM) is used in building
the likelihood of each signal and the expectation maxi-
mization (EM) algorithm is employed in finding the GMM
parameters. The use of the GMM would accommodate the
signals nonstationary behavior and the EM algorithm would
guarantee the estimation of the optimal parameters set of
the GMM for each signal, and hence the modeling accuracy
would be significantly enhanced. In order to see the perfor-
mance of the suggested CS monitoring scheme, we installed
a test stand that is composed of a KUKA lightweight robot
(LWR) doing peg-in-hole tasks. Two experiments are con-
sidered; in the first experiment, we use the EM-GMM
in monitoring a typical peg-in-hole robotic assembly pro-
cess, and in the second experiment, we consider the robotic
assembly of camshaft caps assembly of an automotive pow-
ertrain and use the EM-GMM in monitoring its CS’s. For
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both experiments, the excellent monitoring performance
will be shown. Furthermore, we compare the performance
of the EM-GMM with that obtained when using avail-
able CS monitoring approaches. Classification success rate
(CSR) and computational time will be considered as com-
parison indices, and the EM-GMM will be shown to have
a superior CSR performance with reduced a computational
time.

Keywords Assembly monitoring · Expectation
maximization · Gaussian mixtures · Peg-in-hole ·
Robotic assembly

1 Introduction

Assembly is considered one of the vital topics for both
industry and research institutions, and automating the
assembly for different products drew the attention of many
practitioners from both academia and production sectors.
Robots are considered the most important tools in automat-
ing productions and hence robotic assembly appeared to
be one of the hottest research topics. An important aspect
of the robotic assembly tasks is the monitoring of the pro-
cess itself, that is adding the necessary skills to the robot
that makes it aware of its surrounding environment using
the available signals like wrench (Cartesian forces and
torques) and pose (Cartesian position and orientation) of the
manipulated object.

Monitoring of the assembly tasks was addressed in the
framework of contact state (CS) modeling (recognition),
and CS modeling of force-controlled robotic tasks was
solved by different approaches. Vision-based systems can
be used in building the suitable CS models for a robotic peg-
in-hole assembly process. However, vision-based systems
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would fail for occluded parts and time-varying illumina-
tions environment that urged the researchers in this field
to consider developing the CS models using the wrench
and pose signals that are measured by suitable sensors.
Hirai and Iwata proposed a CS recognition scheme for such
robotic systems using the geometric model of the mated
parts along with the sensed forces [1]. Petri net was success-
fully employed in modeling and planning robotic assembly
tasks and promising results were obtained [2, 3]. Uncertain-
ties were accommodated for such modeling tasks through
developing a CS recognition system that relies on incor-
porating the sensed forces, the sensed error signals, and
contact compliance [4]. The concept of discrete event sys-
tems was efficiently used in producing efficient models for
robotic assembly tasks [5, 16]. In [6–8], neural networks
were used in building CS classifiers for recognizing dif-
ferent CS’s of compliant motion robots. Relying on the
assembly sequence, local depart space (LDS) was success-
fully used in building classifiers for different CS’s with
accommodating possible uncertainties [9]. In [7, 8, 11, 13–
15], fuzzy classifiers were used in recognizing different
CS’s for different objects without needing the geometrical
features of the those mated parts.

Modeling of robotic peg-in-hole assembly process was
successfully performed in the framework of finding analyt-
ical solutions of the contact forces for different situations
between the manipulated object and the environment [17].
Cartesão et al. used a neural network and Kalman filter in
building a signal diffusion system that captures human skills
in robotic assembly tasks [19]. Hidden Markov models
was successfully used in developing models for compliant
motion robots and hence opening the door to the probabilis-
tic modeling approaches [10, 18, 20]. In [12, 25], the authors
were successful in linking the CS modeling to the geo-
metrical parameters estimation and efficient models were
obtained for each CS. Iwata et al. were successful in adding
neural network reinforced tactile-based recognition skills
to robots interacting with different environments [21]. In
[23], force/torque mapping for each model was developed
using CAD data and particle filters and enhanced CS mod-
eling was obtained. Disturbance observer-based approach
was suggested to monitor the contact of the robots with-
out the need for using force sensors [24]. ARX modeling
approach was successfully employed in adding the recog-
nition skills to the peg-in-hole robotic assembly tasks and
promising results were obtained [26].

Cabras et al. were capable of using the stochastic gradi-
ent boosting (SGB) classifier in recognizing different CS’s
without the need for knowing the task sequence or task
graph. In [30], the authors used only the force and torque
vectors in recognizing different CS’s for a compliant motion
robotic system. The approach computes the wrench space
automatically based on the CS’s graph, which describes the

sequence of different CS’s in a certain task. Then, a similar-
ity index is augmented which shows the amount of overlap
between wrenches that belong to different CS’s. Finally, a
particle filter is used to compute the likeness that a certain
wrench vector belongs to a CS. The results shown in [30]
are excellent for the computation time wise; however, the
sequence of the CS’s is still needed to be known. In [31], the
authors were successful in using fuzzy clustering technique
in building efficient fuzzy models. The fuzzy clusters are
tuned by gravitational search algorithm (GSA) and excel-
lent mapping capability was obtained for each model. A
common feature to all of the approaches above is the lack
of considering the signals nonstationary behavior, i.e., the
non-normal signals distribution, which is frequently the case
to many robotic assembly as will be seen throughout this
article. Such signals nonstationary behavior would cause
recognition performance degradation if not well-considered
in developing the models.

In order to accommodate such nonstationary behavior
of signals, one can consider using multiple Gaussian com-
ponents instead of one and use the Gaussian mixtures
models (GMM) in building the likelihood for each sig-
nal [22]. The well-known expectation maximization (EM)
algorithm can be used in finding the parameters of the
GMM components that maximizes the log-likelihood and
hence an optimal modeling for those nonstationary sig-
nals could be resulted. Originating from such a crucial
motivation, this article uses the expectation maximization-
based Gaussian mixtures models (EM-GMM) in modeling
the force-controlled robotic peg-in-hole assembly tasks and
hence an enhanced assembly monitoring would be resulted.
The captured wrench and pose signals, for the peg-in-hole
assembly process, are segmented into five phases. EM-
GMM is used in building models that efficiently maps the
CS’s to their corresponding signals. Experimental results are
carried out on a KUKA lightweight robot (LWR) doing peg-
in-hole assembly tasks. Two experiments are performed; in
the first one, a typical peg-in-hole assembly process is stud-
ied, and in the second one, the camshaft caps assembly
of an automotive powertrain, which is a multiple peg-in-
hole assembly process, is considered. We considered the
camshaft caps assembly so that we can show the effi-
ciency of the suggested CS recognition scheme for distinct
peg-in-hole assembly tasks with different number of pegs
and geometry. Furthermore, the industrial relevance of the
camshaft caps assembly is another good reason that moti-
vated us in considering such interesting task. For both
experiments, excellent CS monitoring performance will be
shown. Furthermore, for comparison purpose, we develop
the corresponding CS models for both experiments using
the available CS recognition schemes, like the conven-
tional fuzzy classifier (CFC) [14], SGB classifier [28], and
gravitational search-fuzzy clustering algorithm (GS-FCA)
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classifier [31] and the superiority of the EM-GMM CS
monitoring scheme, with a reduced computational time, is
shown.

The rest of the paper is organized as follows: Section 2
explains the robotic peg-in-hole assembly tasks and
Section 3 details the EM-GMM modeling process. Experi-
mental validation is presented in Section 4, and Section 5
gives the concluding remarks and recommendation for
future works.

2 Peg-in-hole robotic assembly

Consider the robotic peg-in-hole assembly task shown in
Fig. 1. Such a task is composed of a robot inserting an
object into a certain hole and such a task is considered the
backbone to many assembly tasks. In order to model the
peg-in-hole task, the overall motion is segmented into differ-
ent phases according to the status of the manipulated object
with respect to the environment. For each segment, different
signals are collected and models are developed. Consider
the peg-in-hole process shown in Fig. 1. The wrench signals,
of the manipulated object, are described as follows:

w = [fx, fy, fz, τx, τy, τz] (1)

Where fx , fy , and fz are the Cartesian forces and τx , τy ,
and τz are the torques around the Cartesian axes both mea-
sured for the manipulated object. Likewise, to the pose of
the manipulated object, it can be written as follows:

p = [x, y, z, �x,�y,�z] (2)

Where x, y, and z are the Cartesian position and �x , �y ,
and �z are the orientation around the Cartesian axes of the
manipulated object. Hence, one would have 12 input sig-
nals for the classifier, say xk = [x1,k, x2,k, ..., x12,k] with k

as the sample index. The CS classification problem can be
formulated as follows:

yk =
{

1 if (xk ∈ current CS)

0 Otherwise
(3)

yk is the output of the CS classifier. It can be seen that (3)
represents a nonlinear mapping between xk and yk and the
goal of almost all modeling and classification researches is

to approximate or realize this mapping as accurate as possi-
ble. The next section explains the methodology that will be
used throughout this paper in realizing (3).

3 Expectation maximization-based Gaussian mixtures
models

Before explaining the EM-based GMM process, the prin-
ciples of the Bayesian modeling (or classification) will be
clarified.

3.1 Bayesian classification

Suppose that one is given a vector set xk =
[xk,1, xk,2, ..., xk,D]T where D is the width of the vector
(in the CS recognition addressed in this paper, it is clear
that D = 12 as each model has 12 inputs). Suppose that we
have the classes yk = {c1, c2, ..., cC} that one of them the
vector xk corresponds to. Then the vector xk belongs to a
class ci , implying that [22]:

p(ci |xk) ≥ p(cj |xk) (4)

for i �= j . p(ck |xk) is called as the posterior probability of
class ck given the vector xk and can be computed using:

p(ci |xk) = p(xk|ci)p(ci )
p(xk)

(5)

where p(xk|ci) is the probability density function (pdf) of
class ci in the vector space of xk , p(ci ) is the a priori proba-
bility that represents the probability of class ci , and p(xk) is
the probability of the vector space xk that can be computed
as follows:

p(xk) =
C∑
i=1

p(xk|ci)p(ci) (6)

From Eq. 6, one can notice that for equal class a priori
p(ci ), the term p(xk) of Eq. 5 would be merely a scal-
ing factor. Therefore, it can be deduced that the vector xk
belongs to a class ci , implying that:

p(xk|ci)p(ci ) ≥ p(xk|cj )p(cj ) (7)

for i �= j . According to Eq. 7, the best approximation of the
term p(xk |cj ) results in the best classification for the pat-
tern xk . In the conventional Bayesian classifier, a Gaussian

Fig. 1 Experiment 1: robotic peg-in-hole assembly phases: a phase 1 (free space), b phase 2, c phase 3, d phase 4, and e phase 5



626 Int J Adv Manuf Technol (2014) 73:623–633

distribution is used in approximating the term p(xk|cj ), that
is:

p(xk|ci) = 1

|2π |D/2|�| 1
2

exp

(
−1

2
(xk − μ)T �−1(xk − μ)

)
(8)

where μ ∈ RD is the mean, � ∈ RD×D is the covariance
matrix, and |�| is the determinant of �. It was shown that
the approximation (8) performs well in the case of normal
distribution. However, in many cases, one may face situa-
tions in which the vector space signals, or the several signals
of the vector space, have non-normal distribution and conse-
quently the use of Eq. 5 would result in increased modeling
errors.

3.2 Gaussian mixtures models

In order to accommodate the possible non-normal distri-
bution of the signals, Gaussian mixtures is employed in
modeling the features (input signals), i.e., assigning more
than a Gaussian component for each feature. Suppose that a
single Gaussian distribution is represented as follows:

N(xk, μ, �)= 1

|2π |D/2|�| 1
2

exp

(
−1

2
(xk−μ)T �−1(xk−μ)

)
(9)

Then a Gaussian mixtures model (GMM) can be described
as follows:

p(xk|ci) =
M∑
q=1

ωqNq(xk, μq, �q) (10)

M is the total number of the Gaussian mixtures, ωq , μq , and
�q are the weight, mean, and covariance of the q th Gaussian
component. Suppose that θq = (ωq, μq, �q) and consider
the parameter vector θ = [θ1, θ2, ..., θM]T . It is clear that
finding the values of the parameters is very important in
having a precise modeling of the given features. Therefore,
one can write the model (10) in terms of the parameters θ as
follows:

p(xk|ci; θ) =
M∑
q=1

ωqNq(xk, μq, �q) (11)

Finding the parameter vector θ that optimizes the mod-
els from the available measurements would optimize the
performance of the classification process.

3.3 Expectation maximization

One of the most efficient approaches in finding those
parameters is the expectation maximization (EM) algo-
rithm. The EM algorithm is considered one of the simplest
and computationally effective iterative scheme in finding

the GMM parameters. It is composed of two steps; the
E-step in which the log-likelihood is estimated for the cur-
rent parameters, and the M-step in which the parameter θ
is updated such that a maximized log-likelihood would be
resulted. In order to explain the EM algorithm, let’s consider
the overall data X = [x1, x2, ..., xN ]T . Then the likeli-
hood function for the data X given the parameters θ can be
defined as follows [27]:

�(X; θ) =
N∏
n=1

p(xn; θ) (12)

Define the logarithm of �(X; θ) to be L(X; θ) which is
called log-likelihood. Taking the logarithm for both sides of
Eq. 12, then the log-likelihood can be expressed as follows:

L(X; θ) =
N∑
n=1

ln(p(xn; θ)) (13)

The parameter θ that maximizes (13) can be described as
follows:

θ(t) = arg maxθL(X; θ(t)) (14)

subject to:

M∑
q=1

ωq = 1

Equation 13 is a constrained optimization problem and the
analytical solutions can be intractable. Therefore, iterative
solutions like the EM algorithm were suggested to solve
such a problem. An important quantity that plays a vital role
in the EM algorithm is the conditional probability of y given
x and let’s denote p(ci = 1|xk) as γ (cik). The value of
γ (cik) can be computed using Bayes rule as follows:

γ (cik) = p(ci = 1)p(xk|ci = 1)∑M
j=1 p(cj = 1)p(xk |zj = 1)

(15)

which leads to:

γ (cik) = wiNi(xk, μi , �i)∑M
j=1 wjNj (xk, μj , �j )

(16)

γ (cik) is called the responsibility that the ith component
takes for explaining xk [22]. The following steps summa-
rizes the EM algorithm:

Step 1: Initialize the parameter vector θi = (ωi, μi , �i)

randomly. Initialize the convergence parameters ε
and ε.

Step 2: (E-Step) For the current parameter vector θi com-
pute the responsibilities using (16).
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Step 3: (M-Step) Re-estimate the parameters using the
current responsibilities:

μnew
i = 1

Ni

N∑
n=1

γ (cin)xn (17)

�new
i = 1

Ni

N∑
n=1

γ (cin)(xn − μnew
i )(xn − μnew

i )T

(18)

ωnew
i = Ni

N
(19)

with:

Ni =
N∑
n=1

γ (cin) (20)

Step 4: Compute the log-likelihood:

lnp(X; θ) =
N∑
n=1

ln

{
M∑
i=1

ωiN(xn, θ)

}
(21)

Step 5: Check for the convergence: If |θnew − θ | ≤ ε

or | lnp(X; θnew) − lnp(X; θ)| ≤ ε then stop.
Otherwise, go to Step 2.

See ([22]: chapter 9) for more details on the EM-GMM
algorithm and the derivations of the equations above. In
the next section, experimental results will be shown when
using the EM-GMM based modeling in monitoring the CS
of robotic peg-in-hole assembly processes.

4 Experimental results

In order to see the performance of the EM-GMM CS mon-
itoring process, a test stand was built that is composed of
a KUKA lightweight robot (LWR) 4+ doing peg-in-hole
assembly tasks. The key features of the KUKA LWR 4+
is detailed in [29]. The KUKA LWR 4+ is equipped with
appropriate sensors that enable researchers in capturing the
wrench and pose signals of the manipulated object through
a fast research interface (FRI) port which is installed within
the robot. The FRI port is connected to a remote PC that per-
forms the computational aspects of the modeling process.
The features of the PC that we used in our experiments are
as follows: Intel (R) Core (TM) i5-2540 CPU with 2.6 GHz
speed and 4 GB RAM running under a Linux environ-
ment. The rate of the communication between the remote
PC and the robot, through the FRI, is 100 Hz. The program-
ming is done through a C++ platform. Two experiments
will be considered; in the first one, monitoring a typical
robotic peg-in-hole assembly process is targeted. In the
second experiment, a camshaft caps assembly of an automo-
tive powertrain (which is multiple pegs-in-holes assembly
process) is considered. For both of the experiments, the
EM-GMM scheme is used in monitoring the processes.

4.1 Experiment 1: Typical peg-in-hole assembly

In this experiment, the EM-GMM is used in recognizing dif-
ferent phases of the peg-in-hole process shown in Fig. 1. The
overall task is divided into five segments and the goal is to
use the sensed wrench and pose signals in building a model
for each phase. Figure 2 shows the captured wrench and

Fig. 2 Experiment 1: manipulated object wrench and pose measurements: a Cartesian forces (in N), b Torques around the Cartesian axes (in
N m), c Cartesian position (in cm), and d orientation around the Cartesian axes (in degree)
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Fig. 3 Experiment 1: EM-GMM models outputs: a phase 1 (free space), b phase 2, c phase 3, d phase 4, and e phase 5

pose signals for each phase of this task. The signals of Fig. 2
were segmented into five segments according to the phases
shown in Fig. 1. We can notice that as the task is being
executed, different signals are varied within a phase and
between different phases. For instance, if we examine the
captured signals for phase 1 and phase 3 shown in Fig. 2, we
can see the significant variations in those signals that would
lead to the possibility of building efficient models for phase
1 and phase 3 through those signals. Similar fact could be
deduced to the other phases of the assembly. Such inter-
model signals variation is the key factor that enables us of
developing a model for each phase. Two hundred fifty sam-
ples from each phase were taken out as test samples, so that
one can check the performance of the developed models. For
each signal, three mixtures were used and the models were
developed using the EM-GMM scheme. Figure 3 shows the
EM-GMM models outputs for each phase (for both train-
ing and test samples). The models outputs shown in Fig. 3
were generated on the basis that for the ith model output

Table 1 Experiment 1: classification success rate (CSR) for EM-
GMM, GS-FCA, SGB, and CFC modeling approaches

Modeling type CSR (%)

EM-GMM 95.1

GS-FCA 71.4

SGB 67.5

CFC 30.8

is considered as 1 if its EM-GMM likelihood (11) is more
than the rest, otherwise it is 0. That is to say, the firing of the
model is 1 or 0 depending on the value of the model output
for a certain sample. If a model is having a maximum output
value in a sample, then the firing is 1 (which means this sam-
ple belongs to the class of that model); otherwise, the firing
would be 0 (which means the sample does not belong to
the class of that model). From the segments intervals shown
in Fig. 2 and models outputs shown in Fig. 3, the excel-
lent monitoring accuracy for the EM-GMM based approach
can be readily noticed. Hence, as a comparison between
Figs. 2 and 3, the excellent recognition performance of the
suggested EM-GMM CS recognition scheme can be clearly
seen from those two figures. For instance, if we examine the
periods that belong to phase 1 in Fig. 2, we can see that the
samples of this phase were exhilaratingly detected through
the suggested scheme and as shown in Fig. 3a. The same can
be inferred for the other phases. We have five phases and

Table 2 Experiment 1: computational time for EM-GMM, GS-FCA,
SGB, and CFC modeling approaches

Modeling type Computational time

(in s)

CFC 0.001

EM-GMM 15.823

SGB 77.168

GS-FCA 197.931
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Fig. 4 Experiment 1: histograms of phase 4: a fx , b fy , c fz, d τx , e τy , f τz, g x, h y, i z, j �x , k �y , and l �z

as mentioned above for each phase, we have 250 test sam-
ples. So totally, we have 5 × 250 = 1, 250 test samples.
Using the EM-GMM scheme, 1,189 samples were cor-
rectly classified and 61 samples were misclassified. Hence,
the classification success rate (CSR) was computed to be
95.1 % when using the EM-GMM CS recognition scheme.
In order to have a comparison study, the available CS mod-
eling approaches were considered in modeling the same

task above so that a comparison can be performed with the
suggested approach. The approaches that were considered
in the comparison are conventional fuzzy classifier (CFC)
[14], the stochastic gradient boosting (SGB) classifier [28],
and the gravitational search-fuzzy clustering algorithm (GS-
FCA) [31] schemes in modeling the same task. For the
GS-FCA, 893 samples were correctly classified and 357
samples were misclassified. For the SGB CS recognition

Fig. 5 Experiment 2: camshaft caps assembly phases: a camshaft caps assembly as double pegs-in-holes, b phase 1 (free space), c phase 2, d
phase 3, e phase 4, and f phase 5
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Fig. 6 Experiment 2: the manipulated object wrench and pose measurements: a Cartesian forces (in N), b torques around the Cartesian axes (in
N m), c Cartesian position (in cm), and d orientation around the Cartesian axes (in degree)

scheme, we got 844 samples correctly classified with 406
samples misclassified. The CFC approach had 385 sam-
ples correctly classified with 865 misclassified. Hence, the
CSRs were computed to be 71.4, 67.5, and 30.8 % for
the GS-FCA, SGB, and CFC, respectively. Table 1 summa-
rizes the success rate for the approaches above including the
EM-GMM.

We also measured the computational time for building
the models of each approach. The CFC modeling scheme

was shown to have the least computational time of 0.001 s.
The CFC computation time is very small since it involves
only the computations of the mean and standard deviation of
the captured signals. For the EM-GMM modeling scheme,
the computational time was measured to be 15.823 s and
that of the SGB and GS-FCA were computed to be 77.168
and 197.931 s, respectively. Table 2 summarizes the com-
putational cost for all of the approaches considered in the
experiment.

Fig. 7 Experiment 2: EM-GMM based models outputs: a phase 1 (free space), b phase 2, c phase 3, d phase 4, and e phase 5
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Table 3 Experiment 2: classification success rate (CSR) for EM-
GMM, GS-FCA, SGB, and CFC modeling approaches

Modeling type CSR (%)

EM-GMM 97.4

GS-FCA 73.6

SGB 68.7

CFC 32.5

Despite the efficient computational time obtained with
the CFC modeling scheme, the degraded CSR of 30.8 %
makes it to be undesirable in modeling such signals. From
the other hand, the EM-GMM is having a moderate com-
putational time (better than that of the SGB and GS-FCA
schemes) with excellent CSR of 95.1 % that make it more
suitable for capturing such signals with reduced computa-
tional cost. One can notice that compared with the available
CS recognition approaches, the EM-GMM is outperforming
the rest. The main reason of such superiority comes from
the fact that the EM-GMM can accommodate the nonsta-
tionary distribution of the signals and hence improve the
CS recognition performance. As a sample, phase 4 was
considered and the histograms of its signals were sketched
and as shown in Fig. 4. It can be seen that all signals are
nonstationary that gives the privilege to the EM-GMM in
monitoring such a phase. All other phases are also nonsta-
tionary and they were not sketched to save space. Further-
more, using the EM algorithm in computing the parameters

of the mixtures enhanced the performance of the CS mon-
itoring process since it already results in maximizing the
log-likelihood.

4.2 Experiment 2: Powertrain camshaft caps assembly

In this experiment, the EM-GMM is used in monitoring the
KUKA LWR doing the assembly of powertrain camshaft
caps. We considered such interesting task so that we can
show the applicability and superiority of the suggested
CS recognition scheme in a real-world assembly task of
industrial relevance. A camshaft cap assembly is a multi-
ple peg-in-hole assembly process as shown in Fig. 5a. We
can see that the shape and dimensions of the camshaft caps
assembly is different from the typical peg-in-hole assembly
process shown in Fig. 1. Different phases of this assembly
process are shown in Fig. 5b through Fig. 5f. Figure 6 shows
the captured wrench and pose signals for this process. Like-
wise to experiment 1, the task signals are segmented into
five segments and according to the phases shown in Fig. 5.
Two hundred fifty samples were selected out as test samples
for each phase, and we used the rest for training. Using the
EM-GMM CS recognition system with three mixtures for
each signal, a model is developed for each phase. Figure 7
shows the output of each model for all (training + test) sig-
nals of this process. By examining Figs. 6 and 7, one can
notice the excellent monitoring capability of the EM-GMM
for all phases of the given assembly task. We have 5 ×
250 = 1, 250 test samples and when using the EM-GMM

Fig. 8 Experiment 2: histogram of phase 5: a fx , b fy , c fz, d τx , e τy , f τz, g x, h y, i z, j �x , k �y , and l �z
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Table 4 Experiment 2: computational time for EM-GMM, GS-FCA,
SGB, and CFC modeling approaches

Modeling type Computational time (in s)

CFC 0.0014

EM-GMM 26.635

SGB 129.899

GS-FCA 333.184

CS modeling scheme, 1,218 samples were correctly classi-
fied and 32 were misclassified. This would result in a CSR
of 97.4 % when using the EM-GMM CS modeling scheme.
For the GS-FCA approach, 920 samples were correctly clas-
sified and 330 samples were misclassified. When using the
SGB classifier, we had 859 samples successfully classi-
fied and 391 samples were misclassified. The CFC resulted
with 406 correctly classified samples and 844 misclassi-
fied samples. Hence, the CSR for the EM-GMM, SGB, and
CFC schemes were computed to be 73.6, 68.7, and 32.5 %,
respectively. Table 3 summarizes the CSR for approaches,
and it can be seen that the EM-GMM is outperforming the
rest. In order to see the cause of such superiority, the his-
tograms of all signals of phase 5 were sketched and as
shown in Fig. 8. It can be noticed that almost all signals are
nonstationary (see Fig. 8). The other phases are also non-
stationary; however, they were not sketched to save space.
Since the EM-GMM can accommodates such nonstationary
distribution, then it would result in a more accurate mon-
itoring scheme. Furthermore, the use of the EM algorithm
in computing the parameters of the mixtures components
would enhance the EM-GMM in the modeling process.

Likewise to experiment 1, we measured the computa-
tional time for the modeling schemes considered in exper-
iment 2. The computational time for the CFC, EM-GMM,
SGB, and GS-FCA modeling schemes were found to be
0.0014, 26.635, 129.899, and 333.184 s, respectively. The
computational time for the mentioned approaches is sum-
marized in Table 4. Compared with the GS-FCA and SGB
modeling scheme, the EM-GMM is of superior performance
and reduced computational cost. The degraded performance
of the CFC modeling scheme makes it undesirable even
though it has the least computational time.

5 Conclusion

Expectation maximization-based Gaussian mixtures models
(EM-GMM) was successfully employed in monitoring the
force-controlled robotic assembly tasks. The wrench (Carte-
sian forces and torques) and pose (Cartesian position and
orientation) were captured for peg-in-hole robotic assembly
tasks. The captured signals were segmented into different

phases and using the EM-GMM, a model was developed
for each phase. The developed models were used in mon-
itoring the contact state (CS) of those assembly tasks. In
order to see the performance of the suggested CS mon-
itoring scheme, a KUKA lightweight robot (LWR) was
installed and used in doing two assembly experiments. In
the first experiment, a typical peg-in-hole assembly process
was considered, and the EM-GMM was efficiently used in
monitoring the process. In the second experiment, the task
of camshaft caps assembly was studied, and the EM-GMM
was successfully used in monitoring this process also. For
both experiments, comparisons with the results of the avail-
able CS monitoring approaches like conventional fuzzy
classifier (CFC), stochastic gradient boosting (SGB) classi-
fier, and the gravitational search-fuzzy clustering (GS-FCA)
classifier were considered. Through considering the classi-
fication success rate (CSR) and the computational time as
comparison indices, the superiority of the EM-GMM mod-
eling scheme was shown with a reduced computational time.
Such excellent performance resulted from accommodating
the nonstationary behavior for the captured signals and the
use of the EM algorithm in computing the parameters of
the Gaussian components. Despite the excellent recognition
ability of the EM-GMM, it requires the number of the mix-
tures of the Gaussian components for each signal that would
add more burden to the realization of this approach. There-
fore, future researches should focus on relaxing the need
of knowing the number of the components for each sig-
nal. A possible approach of realizing that is through the use
of variational Bayesian inference for computing the Gaus-
sian mixtures. Another possible improvement is to make
the models developed more parsimonious through select-
ing only important features when developing the models.
However, this is left to future research efforts.
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