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Abstract Thermal error, especially the one caused by the
thermal expansion of spindle in axial direction, seriously im-
pacts the accuracy of the precision machine tool. Thermal error
compensation based on the thermal error model with high
accuracy and robustness is an effective and economic way to
reduce the impact and enhance the accuracy. Generally, ther-
mal error models are built only on temperatures at some points
in the spindle system. However, the thermal error is also
closely related to other working parameters. Through the the-
oretical analysis, the simulation, and the experimental testing
in this paper, it is found out that thermal error is determined by
multiple variables, such as the temperature, the spindle rotation
speed, the historical spindle temperature, the historical thermal
error, and the time lag between the present and previous times.
In order to examine the performance of thermal error models
based onmultiple variables, two commonmethods are used for
modeling—the multiple regression method and the back prop-
agation network. The data for modeling are collected from
experiments conducted on the spindle of a precision machine
tool under various working conditions. The modeling results
demonstrate that models established based on the multiple
variables have better accuracy and robustness. It also turns

out that data filtering before modeling can further improve
the performance of the models. Therefore, models based on
multiple variables with good accuracy and robustness can be
very useful for the further thermal error compensation. In
addition, by taking relative importance analysis of multiple
variables based on standardized regression coefficients, the
influence of each variable to the thermal error is revealed.
The ranking of coefficients can also be used as a new criterion
for the optimal temperature variable selection in the future
research.

Keywords Spindle thermal error modeling .Multiple
variables . Multiple regressionmodel . Back propagation
networkmodel . Standardized regression coefficients

1 Introduction

Among the errors detrimental to the precision of the machine
tool, thermal error contributes significantly [1–3]. According to
the research conducted by Professor Peklenik, the thermal error
caused by the thermal deformation of machine tool counts for
40 to 70 % of the total manufacturing inaccuracy [4]. Com-
pared with the ball screw, guide ways, and external thermal
influences, such as the solar radiation and the ambient temper-
ature, the spindle is the main thermal source of the machine
tool. The spindle thermal error, especially the axial thermal
error, has a great impact to the final machining accuracy [5–8].

In order to reduce the spindle thermal error, many methods
have been developed. For example, some proposed design
approaches, such as employing cooling system, heat pipes,
thermally insensitive materials, and heat symmetrical struc-
ture, are used to minimize the thermal deformation [9, 10].
They either improve the heat dispelling or equalize the tem-
perature field. However, these methods are uneconomic and
have limited effectiveness in reducing the thermal error.
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Because on the one hand, thermally insensitive materials,
advanced cooling system, and heat pipes are expensive. On
the other hand, the thermal error depends on the working
conditions which are not usually under the designer’s control
[11, 12]. By contrast, another method called the thermal error
compensation is more economical and efficient, as its princi-
ple is simple and can be easily realized in the factory with
minimal cost. Thermal error compensation could be im-
plemented by using the CNC controller to adjust and
control the position of the tool. The position of the tool
is dependent both on the demand of processing require-
ments and the thermal deformation of the spindle which
can be predicted by the thermal error model. Therefore,
establishing a thermal error model with high accuracy
and robustness is the core of the thermal error compen-
sation and the accuracy improvement. In general, the
modeling methods include conventional linear regression
[13], multiple regression[14], support vector machine
[15], gray theory [16], Neural Network [17–19], etc.
Most of existing models are built only on the temperatures
of some points on the machine tool. In fact, the thermal
deformation of the spindle depends on multiple variables
(e.g., spindle rotation speed) and varies dramatically when
the working condition changes [20].

In Section 2, factors related to the axial thermal deforma-
tion of the spindle are discussed based on the theoretical
analysis, the finite element analysis (FEA), and experimental
experiments. The results demonstrate that the thermal error of
the spindle is determined by multiple variables. In Section 3, a
series of tests conducted on a precision horizontal machining
center are presented. The temperature sensors and Renishaw
non-contact tool setting system NC 4 are used for measuring
the temperature and the axial thermal deformation of the
spindle under different working conditions, respectively. In
Section 4, two common methods called multiple regres-
sion (MR) and back propagation (BP) network are ap-
plied to develop thermal error models. In these models,
not only the temperature but also the speed, the historical
temperature, the historical thermal error of the spindle,
and the time lag between the present and previous times
obtained from tests are used as the input data. The
output data is the axial spindle thermal error which is
more severe than the radial one [21]. The curve-fitting
and predicted performances of the models demonstrate
that models based on multiple variables have better ac-
curacy and robustness. In addition, it was found that the
data filtering can further improve the modeling perfor-
mance. Finally, the relative importance of different vari-
ables is analyzed according to the standardized regression
coefficients. The ranking of coefficients reveals that the
historical temperature is critical to the thermal error model-
ing. It can also be used as a new criterion for the optimal
temperature variable selection in the future research.

2 Analysis of the factors related to the spindle thermal
error

2.1 Heat source and dissipation, temperature field,
and thermal deformation

2.1.1 Heat source

In the spindle system, bearings are the main heat sources. The
heat generation rate is Φ (W/m2) which can be computed as
follows [22, 23]:

Φ ¼ 4iH f

Lsumπ d1
2 − d2

2
� � ð1Þ

where Hf is the heat output of bearings (W); i is the number of
bearings; d1 and d2 are the diameters of bearing outer ring and
inner ring (m), respectively; Lsum is the sum of width of all the
bearings and sleeve (m); n is the speed of the spindle (rpm).

H f ¼ 1:047� 10−4nM ð2Þ

where M is the friction torque of bearings (N•mm) which can
be computed according to functions 3 and 4 as follows:

M ¼ M 1 þM 2 ð3Þ

M 1 ¼ f 1˙Fβ˙dm ð4Þ

M 2 ¼ 10−7 f 0 vnð Þ23dm3 vn≥2; 000
160� 10−7 f 0dm

3 vn < 2; 000

�
ð5Þ

where f0 and f1 are the parameters related to the type, the
structure, the force, and the lubrication of bearings; Fβ (N) is
the load determined by the magnitude and the direction of the
force working on the bearings; v (cSt) is the kinematic viscos-
ity of lubricant; dm (m) is the diameter of the pitch circle.

From above Equations 1 to 5, it can be seen that the heat
generation in spindle system is directly affected by the spindle
rotation speed. For a certain spindle system under certain
preload, the type, the structure, the size, and the lubrication
of the bearings are known and regarded as unchanged. Then, it
is obvious that the heat generation is increased with the
increase of the spindle speed.

2.1.2 Heat dissipation

The convection of the cooling system is the major way of heat
dissipation here because the precision machine tool is usually
placed at a constant temperature workshop where the radiation
and environmental variations are too small to be considered. The
heat flow by convection Hv (W) can be calculated as follows:

Hv ¼ hvS T 1−T2ð Þ ð6Þ
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where hv is the coefficient of convective heat transfer
(W/(m2•K)); S is the area perpendicular to the direction of
the heat flux (m2); T1 and T2 are the temperatures at two
different moments (°C).

hv ¼ Nu˙λ
le

ð7Þ

Nu ¼ 0:133Re
2
3Pr

1
3

Re ¼ vele
v

le ¼

X
i

n

di˙lið Þ
X
i

n

li

ve ¼ πle
60 ˙

n

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð8Þ

where Nu, Re, and Pr are the Nusselt number, the
Reynolds number, and the Planck number, respectively.
λ is the thermal conductivity (W/(m•K)); di and li are
the diameter and the length of the ith part of the shaft (m),
respectively.

From Equations 6 and 8 [22], it is known that to-
gether with temperatures, the rotation speed has a direct
influence on hv and further on the heat dissipation.
Besides, in the transient state, the heat dissipation is
unstable although under a certain running spindle speed
as the temperatures are changing with the time. There-
fore, the heat dissipation is also affected by the histor-
ical temperature data.

2.1.3 Temperature field

The temperature field of the spindle is dependent on the heat
generation, the heat conduction, and the heat dissipation be-
tween different parts. The heat transfer in the spindle system is
showed in Fig. 1.

To keep it simple, the spindle is regarded as one-
dimensional rod with one end fixed. Based on the energy
conservation law, the temperature can be computed as [24]

X
H ¼ H f þ Hv þ Hc ¼ ct˙

dT

dt
ð9Þ

where ct is the heat capacitance (1/K).
The conduction heat (Hc) through a cross section of con-

tinuous material is [22]

H c ¼ λS
dT

dx
ð10Þ

According to Equation 9 and the discussion above, the
temperature at one certain moment (Ti) is related to the Φ,
Hv, Hc, and Ti−1(dT=Ti−Ti−1), which means that it varies with
the spindle speed and historical data (the historical spindle
temperature, the previous rotation speed, and the time lag
between the present and previous times).

2.1.4 Thermal deformation

As the spindle is fixed at one end, the thermal defor-
mation ΔL is

ΔL ¼ αL Ti − Ti−1ð Þ þ σL
E

ΔL ¼ − P

j
P ¼ Aσ

8>>><
>>>:

ð11Þ

ΔL ¼ αLA Ti − Ti−1ð Þ
L

Ej
þ A

j2

ð12Þ

where L and △L are the original length (m) and thermal
deformation (m), respectively; Ti and Ti−1 are the temperatures
at timoment and ti−1moment (°C); α is the thermal expansion

1#, 2#, 3# bearing

spindle
cooling
jacket

spindle
box

encoder
(Ten)

axial thermal error
( L)

Fig. 2 Simplified geometrical model of the spindle system

TT1 T2

Convection

Heat Generation Φ

Conduction

Fig. 1 Heat transfer in the spindle system
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coefficient (K−1); σ, P, E, j, and A are the stress (MPa), the
axial force (N), modulus of elasticity, the axial stiffness (N/m),
and the area of the cross section (m2), respectively.

From Equation 12, it can be seen that the thermal defor-
mation of the spindle is dependent on Ti and Ti−1 (α, P, E, j,
and A are considered as constant) which are related to the
spindle speed and historical running conditions.

In a word, according to the theoretical discussion above,
thermal error is determined by multiple variables.

2.2 Finite element simulation

The structure of the spindle is showed in Fig. 2. Assuming that
the spindle rotates at speed of 4,000 rpm for 3 h and then stops
for 2 h, the heat loads and the convective heat transfer coef-
ficient of different parts in the spindle system are computed
and are then sent to the ANSYS/WORKBENCH for the finite
element simulation.

Table 1 shows the simulated temperature of the encoder
(Ten) and the axial thermal error of the spindle (△L). After
rotating for a while, the temperature of the encoder rises
dramatically. This is because that the encoder is close to the

heat source (3# bearing) and there is no cooling system at the
end of the spindle system. It can be seen from Table 1 that
when the temperature rises to 30 °C after spindle runs at
4,000 rpm for a moment, the thermal error reaches to
55 μm. When the temperature falls back to the same temper-
ature (30 °C) after the spindle stops, however, the thermal
error is 27 μm. It demonstrates that although the temperatures
at a certain place are the same, the axial thermal error is
different if the working conditions changed. It can also be
concluded from finite element simulation results that the
thermal error of the spindle is not only determined by
temperature.

2.3 Experimental example

In order to verify that the thermal error depends on multiple
variables in practical, three simple experiments are conducted
on the spindle of a high-precision horizontal machining center.
In tests 1 and 2, the spindle is rotating continuously at 3,000
and 4,000 rpm, respectively, until it reaches the thermal equi-
librium. In test 3, the spindle speeds up from 0 to 5,000 rpm
and then speeds down to 0 rpm. Figure 3 shows the relation-
ship between temperature rise of the encoder and the axial
thermal error of the spindle obtained from these three exper-
iments. The setup of the experiments is introduced in
Section 3.

From Fig. 3a, it can be seen that when the temperature is
about 35 °C, the thermal error is 31.5 and 16 μm at the spindle
speeds of 3,000 and 4,000 rpm, respectively. According to
Fig. 3b, at the period of accelerating, the axial thermal error is
42 μm when the temperature rises to 40 °C. While, when the
temperature falls back to 40 °C again at the period of speeding
down, the thermal error changes to 63 μm. The reason why
the thermal errors are different when the temperatures are the

Table 1 Simulation results of the temperature and thermal error of the
spindle

Ten (°C) △L (μm) Spindle speed (rpm) Historical running condition

26 40 4,000 Rotating, temperature is rising

12 0 Resting, temperature is falling

30 55 4,000 Rotating , temperature is rising

27 0 Resting, temperature is falling

35 72 4,000 Rotating , temperature is rising

54 0 Resting, temperature is falling

Fig. 3 The axial thermal error of spindle under different working conditions. a Tests 1 and 2, b test 3
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same is that the spindle speed has changed and the historical
working conditions are different.

Based on the theoretical analysis, the simulation, and ex-
perimental results, it turns out that temperature is not the only

factor impacting the thermal error. Therefore, it is necessary to
consider multiple variables such as the working speed as well
as the historical running conditions when trying to determine
the thermal error of the spindle. Whether taking multiple

Fig. 4 Different working conditions. a Tests 4–6, b test 7, c test 8, d test 9

7#

1#

3#
11#

13#

14#

15#

4#
12#

8#

6#

5#

Fig. 5 Spindle temperature tests
setup
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variables as inputs for thermal error modeling can improve the
accuracy and the robustness of modeling is discussed in
Section 4.

3 Experimental tests

3.1 Test setup

Besides the three experiments in Section 2.3, other six different
kinds of tests have been conducted. The nine experiments are
renamed as tests 1–9. In these experiments, working conditions
are considered as much as possible (Fig. 4). These working
conditions include rotating in a constant speed, speeding up,
speeding down, and running discontinuously, and so on.

In tests 1–3, the spindle is rotating at 2,000, 3,000,
and 4,000 rpm continuously until the measured temper-
atures reach to a steady state. In tests 4–6, the spindle
operates at a certain speed for 3 h, then stops for 2 h,
and finally spins at the same speed for another 3 h. In
test 7, the spindle is speeding up (0–5,000 rpm) in the
first 2.5 h. After stopping for 2 h, the spindle runs from
0 to 5,000 rpm for another 2.5 h. In test 8, the spindle
is required to speed down from 5,000 to 0 rpm and rest
for 2 h in the middle. For security reasons, it takes
about 0.8 h to speed up from 0 to 5,000 rpm rather
than working at 5,000 rpm from the very beginning. In
test 9, the spindle undergoes the acceleration stage first
and then the deceleration stage. These tests with a pause
in the middle simulate the daily working process in the
factory, as operators always have a break at noon.

In these experiments, temperature sensors and Renishaw
non-contact tool setting system NC 4 are used to test temper-
atures and axial thermal errors of the spindle [25]. Tempera-
ture sensors are placed at those places which are close to the
heat source (bearings), and the sensors are distributed uni-
formly on the whole spindle system (Fig. 5 and Table 2). 2#
temperature sensor is used to measure the ambient tempera-
ture in the working shop. 9# and 10# are placed at the nozzles

of two oil outlet pipes to test the oil temperature. Considering
the temperature differences around the circumference at the
spindle nose and spindle end, the angles between 8# and 12#,
5# and 6# are set as 90°. NC 4 (Fig. 6) is a tool providing high-
speed/high-precision measurement of cutting tools on a ma-
chining center. It could be applied for testing the spindle axial
thermal error.

3.2 Results of experiments

Figure 7 shows the experimental results of tests 1–3. The
temperature and the thermal error rise with the increasing of
the spindle speed. This is because that there is more heat
generation at higher speed. When the spindle rotates at
4,000 rpm and reaches to the thermal equilibrium, the temper-
ature is about 46 °C and the thermal error is 95 μm. By
comparison, the temperature is only 32.5 and 38 °C, and the
thermal error is 35.6 and 62.4 μm when the spindle runs at
2,000 and 3,000 rpm, respectively.

Table 2 Locations of the temperature sensors

Number Location

3# Top of the spindle box

4#, 7# Two sides of the spindle box

1#, 13# Back of the spindle box

14#, 15# Encoder

8#, 12# Spindle nose

5#, 6# Spindle end

11# Motor

9#, 10# The nozzles of oil outlet pipes

Renishaw’s non-contact
tool setting system

Fig. 6 Spindle axial thermal error tests setup

Fig. 7 Results of tests 1–3
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According to the results of tests 4–6 (Fig. 8), the test
process can be divided into three different stages. In the first
stage, the spindle is rotating at 2,000, 3,000, and 4,000 rpm for
3 h, and the temperature and thermal error are increasing
quickly. The temperature of the encoder reaches to 30.9,
35.3, and 41 °C while the thermal error is 38, 50.4, and
84.8 μm. In the second stage, the spindle stops for 2 h. The
temperature and thermal error begin decreasing quickly, as
there is only heat dissipation but no heat generation. Within
2 h, the temperatures drop about 4.4, 7, and 10.3 °C in tests 4,
5, and 6, while the thermal errors drop 27, 30.8, and 37.2 μm,
respectively. The reason that the temperature and the
thermal error change more considerably in test 6 than

tests 4 and 5 is that the temperature is the highest in
test 6 at the end of the first stage which leads to the
most intense heat convection between spindle system
and surroundings. In the third stage, the spindle rotates
at the same speed as the one in the first stage for
another 3 h. However, at the end of 3-h operating, the
temperature of the encoder changes to 31.6, 36.4, and
42.3 °C, and the thermal error is 38, 62, and 95 μm at
2,000, 3,000, and 4,000 rpm. The temperatures and the
thermal error obtained at the end of the first stage and
the third stage are totally different although the spindle
is running at the same speed for the same period of
time. This is because that the initial condition of

Temperature  Thermal error

a b

Fig. 8 Results of tests 4–6. a Temperature, b thermal error

Fig. 9 Results of test 7 Fig. 10 Results of test 8
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working has been changed. At the beginning of the first
stage, there is no temperature rising and no thermal error.
However, the initial temperatures in the third stage are 26.5,
32.1, and 40.7 °C at 2,000, 3,000, and 4,000 rpm and the axial
thermal expansions are 18, 35, and 80.2 μm, respectively.

In test 7 (Fig. 9), the spindle speeds up from 0 to 5,000 rpm.
The temperature of the encoder and the axial thermal error
reaches to 39.4 °C and 48.8μm after the first 2.5 h of working.

Also, the temperatures and the thermal error are
higher than the ones in test 4 (30.9 °C, 38 μm) but
lower than the ones in test 6 (41 °C, 83.2 μm). It may
because that the heat generations are more but less in
test 7 when accelerating than running at 2,000 and
4,000 rpm all the time. It means that the spindle speed
plays a very important role in temperature and thermal
error analysis. After 2 h of resting and another 2.5 h of
running, the temperature and the thermal error changes
to 40.3 °C and 67 μm, respectively. It is clear that from
0 to 2.5 h and from 4.5 to 7 h, the working conditions

of the spindle are the same. However, the temperatures
and thermal error at the end of these two processes are
different. It is because that the historical conditions of
them are different.

In test 8 (Fig. 10), the spindle experiences two deceleration
stages (from 5,000 to 0 rpm) and stops for 2 h between these
two stages. The temperature and the thermal error rise dramat-
ically at first (0.5 to 1 h) as the high spindle speed (5,000 rpm)
brings about large amount of heat. From 1.5 to 2 h, the spindle
runs at 4,000 rpm, and the temperature and thermal error rise
continuously when they first reach to the first peak at about
1.7 h—the temperature is 38.8 °C and thermal error is
60.6 μm. Then, the temperature and thermal errors fall
down due to less heat generations at lower speed. At
5 h, the temperature and thermal error drop to 28 °C
and 25.4 μm, respectively. The working condition from
5 to 7.5 h is the same with the one from 0 to 2.5 h.
The encoder’s temperature and the thermal error reach
39.7 °C and 76.8 μm, respectively, at the second peak
(6.5 h). The temperature and the thermal error at 1 and
6 h are different although the spindle goes through the
same acceleration process. This is because the historical
data are not the same.

Figure 11 shows the results of test 9. It can be seen
that the temperature and the thermal error reach to the
peaks (45.6 °C and 68 μm) after 5 h of acceleration.
Then, the values of temperature and the thermal error
fall to 32.7 °C and 35.4 μm as the speed drops from
5,000 to 0 rpm. The curves of the temperature and the
thermal error are asymmetric. When the temperature is
40 °C in the acceleration part, the thermal error is
42.4 μm. By comparison, when the temperature is
40 °C in the deceleration part, the thermal error turns
to 63 μm. The difference is caused by the change of
spindle speed and historical data.

All the tests results are used to verify that the thermal error
is determined bymultiple variables rather than the temperature

Fig. 11 Results of test 9
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only. The results also provide enough data for optimal thermal
error modeling in Section 4.

4 Thermal error modeling and optimization

In this section, two commonmethods,MR and BP, are applied
to build thermal error models (see Sections 4.1 and 4.2). The
modeling results are used to verify the correctness and the
effectiveness of modeling based on multiple variables. Tem-
peratures, the rotating speed, the thermal error at the present
and the previous moments, and the time differences are taken
as the input variables. The axial thermal error of the spindle is
the output. Data obtained from tests 1 to 3 and tests 5 to 9 in
Section 3 are used to develop the MR model and train BP
network. Data collected at test 4 are employed to verify the
prediction performance.

4.1 MR modeling

4.1.1 Data filtering for MR model

Generally, the abnormal data caused by noise, operational
error, or other factors are mixed in the measured data. They
are detrimental to the accuracy of modeling. For MR model-
ing, the confidence intervals on the residuals are taken as the
criterion of data filtering. The results of the computation are
shown in Fig. 12. Residuals larger than expected in 95 % are
shown in red with triangular shape. These data are regarded as
outliers and should be eliminated.

4.1.2 Results of MR modeling

After data filtering, MR model is established based on multi-
ple variables. The function of the MR model is shown in
Equation 13.

Y ¼ 36:2169þ −3:7112ð ÞTi
1 þ 5:2859Ti

2 þ 3:2123Ti
3 þ 3:8014T4

i þ 1:1819Ti
5 þ 2:8628Ti

6
þ −7:0036ð ÞTi

7 þ −0:7733ð ÞTi
8 þ −1:4223ð ÞTi

9 þ 0:8816Ti
10 þ 1:1399Ti

11 þ 3:1834Ti
12

þ2:0085Ti
13 þ −0:016ð ÞTi

14 þ 0:5982Ti
15 þ −0:0002ð Þvi þ 3:5514Ti−1

1 þ −8:1634ð ÞTi−1
2

þ −1:2495ð ÞTi−1
3 þ −5:113ð ÞTi−1

4 þ 0:335Ti−1
5 þ −3:7186ð ÞTi−1

6 þ 6:435Ti−1
7 þ 0:2906Ti−1

8
þ0:5038Ti−1

9 þ −0:0105ð ÞTi−1
10 þ −0:0873ð ÞTi−1

11 þ −2:5182ð ÞTi−1
12 þ −0:1703ð ÞTi−1

13
þ −0:0305ð ÞTi−1

14 þ −2:7þð ÞTi−1
15 þ −0:0002ð Þvi−1 þ −5:1547ð ÞΔt þ 0:9182Y i−1

ð13Þ

where T1
i ~ T15

i and T1
i−1 ~ T15

i−1 are temperature data, Y and
Yi−1 are the axial thermal errors of the spindle, vi and vi−1 are
the spindle speeds at moment ti and ti−1; △t is the time lag
between ti and ti−1.

The fitting and the prediction results of MR model
are shown in Fig. 13. The errors between the measured
data and curve-fitting and prediction results are in the
range of −2.5 to +2.5 μm and −6 to +10 μm,

respectively. In order to verify the correctness and the
effectiveness of modeling based on multiple variables
which have been filtered, other two groups of input
variables are used for MR modeling. Fitting and predic-
tion results are shown in Table 3.

MSE is widely used to assess the quality of an
estimator or a set of predictions in terms of its variation
and degree of bias. Here, the less the MSE is, the better
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performances of the model are. According to Table 3,
the fitting accuracy of the model established based on
data 2 is better than the one built on data 1. The MSE
of the former is about 8.5 % of the MSE of the latter. It
means that it is necessary to take multiple variables as
the input for modeling. The fitting accuracy of the
model established based on data 3 is the highest. Its
MSE is 1.41, which is only 2.1 and 25 % of the MSE
of the models established based on data 1 and data 2,
respectively. It illustrates that MR model accuracy can
be further improved if the input data have been filtered.
Besides, the prediction accuracy of the model
established based on data 2 and data 3 is much better
than the one built on data 1. MSE of models established
based on data 2 and data 3 is about 6.1 and 6.3 % of
MSE of the model established based on data 1, respec-
tively. It illustrates that taking multiple variables as
input data for modeling could improve the prediction
performance. The prediction performance is not greatly
improved after data filtering (MSE based on data 2/3=
17.77/18.31). This may be because that the robustness
of MR model is limited.

4.2 BP modeling

4.2.1 Data filtering for BP model

Here, the data for BPmodeling are filtered based on the theory
of thermal deformation (function 12). To make it easy to
follow, the equation is showed again as following:

ΔL ¼ αLA Ti−Ti−1ð Þ
L

Ej
þ A

j2

For simplicity, the original length (L), modulus of elasticity
(E), the axial stiffness (j), and the area of the cross section (A)
are considered as constant. Therefore, Equation 12 is changed
to Equation 14:

ΔL ¼ α˙L ˙C ˙ Ti−Ti−1ð Þ ð14Þ

Here, C is the constant.
Considering that the thermal expansion coefficient of the

materials used in the spindle system is very small [25], Equa-
tion 14 is converted to Equation 15 and then simplified into
Equation 16.

ΔL1
L
¼ αC T1−T0ð Þ ¼ αCΔT1

ΔLiþ1

ΔLi
¼ ΔTiþ1

ΔTi
1þ αCΔTiþ1ð Þ ΔTi ¼ Ti − T0 ΔLi ¼ Li − L

8><
>:

ð15Þ

ΔLiþ1

ΔLi
¼ ΔTiþ1

ΔTi
; ΔTi ¼ Ti − T 0 ΔLi ¼ Li − L ð16Þ

where T0 is the initial temperature of the spindle.
According to the results of calculation based on Equa-

tions 15 and 16, almost 90 % of the data are in the range of
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Fig. 14 Results of calculation based on the theory of thermal
deformation

Table 3 Fitting and prediction results of MR modeling based on different data

Number Data for modeling Fitting results Prediction results

Errors MSE Errors MSE

Data type Data filtering Min Max Min Max

1 Only temperatures Not taken −17.35 23.27 65.72 7.52 24.41 289.37

2 Temperature, spindle speed, historical data Not taken −8.61 6.51 5.60 −4.20 10.15 17.77

3 Have taken −2.45 2.20 1.41 −5.61 10.02 18.31

MSE mean squared error
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−1.5 to 1.5 (Fig. 14). The data out of the range are regarded as
the outliers and needed to be eliminated.

4.2.2 Results of BP modeling

The neural network is useful for mapping the relationship
between multivariable inputs and outputs [26]. BP is one of
the most popular methods of neural network [27] due to the
satisfying accuracy and good robustness. Before training the
BP network, the inputs and the targets are normalized by
function “mapminmax” in MATLAB. After normalizing, the
data become dimensionless and fall in the range [−1, 1], which
helps to accelerate the training speed of BP network.

Figure 15 shows the results of BP modeling based on the
filtered data including temperatures, the spindle speed, and the
historical data. The errors between the test data and curve-
fitting results are in the range of −10 to +10 μm which is
acceptable although it is not as high as MR modeling. In
addition, the prediction performance of BP modeling is great.
Almost all of the errors between the data measured and
predicted are limited in the range of −5 to +10 μm. Similarly,
the results of BP modeling based on three different groups of
input variables (Table 4) are used to verify the correctness and
effectiveness of modeling based on multiple variables and to
emphasize the meaning of the data filtering.

From Table 4, it can be seen that the fitting and prediction
accuracy of BP model based on data 2 are better than the one
built on data 1. The former MSE of fitting and prediction
results are about 14.8 and 36.9 while the latter are 50.3 and
82.8, respectively. The model established based on data 3 has
the highest fitting and prediction accuracy (MSE=8.2/13.5).
Its fitting MSE is only 16.4 and 55.7 % of the MSE of models
established based on data 1 and data 2, while the prediction
MSE is about 16.3 and 36.5 %, respectively. It means that
taking multiple variables as the inputs for modeling can
definitely enhance the accuracy and robustness of the
BP model. Furthermore, data filtering can further im-
prove the model performance.

In conclusion, the results of MR and BP modeling verify
the correctness and the necessity of modeling based on mul-
tiple variables and implementing data filtering. The models
with good accuracy and robustness can be used for the further
thermal error compensation.

4.3 Relative importance of variables

In multivariable studies, there is an ambition to compare the
relative importance of different variables. One of the most
commonly used methods is the standardized regression coef-
ficients. The rank order of the standardized regression

Table 4 Fitting and prediction results of BP modeling based on different data

Number Data for modeling Fitting results Prediction results

Errors MSE Errors MSE

Data type Data filtering Min Max Min Max

1 Only temperatures Not taken –20.8781 19.6508 50.3428 –15.7547 0.5880 82.8370

2 Temperature, spindle speed, historical data Not taken –12.9982 10.2513 14.7897 −13.3429 3.1407 36.8886

3 Have taken −8.0014 9.9291 8.2433 −4.5721 8.1990 13.4773

MSE mean squared error
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Fig. 15 Results of BP modeling. a Fitting curves, b prediction curves
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coefficients(absolute value) reveals the influences of the pre-
dictors on the dependent variable [28]. In this article, the
temperatures, the spindle speed, and historical running condi-
tions (T1

i ~ T15
i , v i, T1

i−1 ~ T15
i−1, v i−1, △t, and Y i−1) are

predictors, while the thermal error is the dependent variable.
The standardized regression coefficients are computed and
sorted by SPSS software (Table 5).

According to Table 5, the standardized regression coeffi-
cients of 15# and 13# are the top two. Possibly this is because
that 15# and 13# temperature sensors are placed close to the
rear bearing which is the heat source with the highest temper-
ature. The temperatures of two sides and the top of the spindle
box (4#, 3#, 7#) at previous ti−1 moment have severe impacts
on the thermal error as they rank third, fourth, and sixth,
respectively. The coefficient of present motor temperature
(11#) is in fifth place. The oil temperatures at the present
and previous times (T9

i, T9
i−1, T10

i , T10
i−1) rank seventh to tenth,

respectively. Besides, the present spindle speed (v i), the pre-
vious thermal error of the spindle (Yi–1), and the time lag
between ti and ti−1 (△t) rank 24th, 27th, and 32nd, respectively.
The ranking demonstrates that the historical temperature plays
a very important role in thermal error modeling as there are
five temperatures at previous time (ti−1) rank in the top 10 of
the most significant predictors. In addition, the ranking can be
used as a new criterion for optimal temperature variable
selection [29] in the future because it can reflect the influences
of the predictors on the dependent variable.

5 Conclusions

1. The thermal error is determined not only by temperatures
but also by multiple variables such as the spindle speed, the
historical spindle temperature, the historical thermal error,
and the time lag between the present and previous times.

2. Multiple variables are taken as the input data for optimal
spindle thermal error modeling in this paper. Two com-
mon multivariable modeling methods, MR and BP, are
applied to establish models. The modeling results demon-
strate that models built on multiple variables have better

fitting and prediction accuracy than the ones based only
on temperatures.

3. Data filtering can help to further improve the accuracy and
the robustness of the thermal error model.

4. Standardized regression coefficients are computed to de-
termine the relative importance of multiple variables to
the thermal error. The ranking of the coefficients reveals
that historical temperature plays a very important role in
the thermal error modeling. Therefore, it can be used as a
new criterion for optimal temperature variable selection in
the future research.
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