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Abstract This paper considers a single machine scheduling
problem, with the objective of minimizing a linear combina-
tion of total tardiness and waiting time variance in which the
idle time is not allowed. Minimizing total tardiness is always
regarded as one of the most significant performance criteria in
practical systems to avoid penalty costs of tardiness, and
waiting time variance is an important criterion in establishing
quality of service (QoS) in many systems. Each of these
criteria is known to be non-deterministic polynomial-time
hard (NP-hard); therefore, the linear combination of them is
NP-hard too. For this problem, we developed a genetic algo-
rithm (GA) by applying its general structure that further
improves the initial population, utilizing some of heuristic
algorithms. The GA is shown experimentally to perform well
by testing on various instances.

Keywords Bicriteria scheduling . Singlemachine . Genetic
algorithms . Total tardiness .Waiting time variance

1 Introduction

In this study, we consider the problem of scheduling a set of n
jobs on a single machine in order to minimize total tardiness

and waiting time variance simultaneously. In this problem,
each of n jobs has a processing time (pi) and a due date (di);
furthermore, it is assumed that the machine can only process
one job at a time, and the idle time is not allowed.

Scheduling problems in many practical systems are gener-
ally considered according to due dates [1]. Managers are regu-
larly faced with the problem of satisfying customer require-
ments such as delivery dates. Minimizing total tardiness is used
as one of the most frequent performance criteria to avoid
penalties of late deliveries and increase the responsibility of
the system to the customers [2]. Morton et al. [3] and Yoon and
Lee [4] proposed constructive heuristics for total tardiness
problem. Panneerselvam [5] also developed a simple heuristic
for total tardiness problem. Variance minimization criterion was
proposed by Merten and Muller [6], and it has received wide
attention during the past four decades. Minimizing waiting time
variance (WTV) is a well-known problem, which is substantial
in providing quality of service (QoS) in many industries that
lead to stable and predictable performance [7]. This criterion is
often desirable to provide a uniform response to process re-
quests [6]. Eilon and Chowdhury [8] and Ye et al. [7] proposed
heuristic algorithms for WTV problem.

Actual scheduling problems may necessitate the decision
maker to consider a variety of criteria prior to make any
decision. Consequently, many studies have been conducted
in multi-criteria scheduling problems. Koksalan et al. [9]
considered the bicriteria scheduling problem of minimizing
flowtime and maximum earliness on a single machine. Jolai
et al. [10] focused on bicriteria scheduling to minimize max-
imum earliness and number of tardy jobs, and they presented a
genetic algorithm in order to solve it. Koksalan and Burak
Keha [11] studied two bicriteria scheduling problems: mini-
mizing flowtime and maximum earliness, and minimizing
flowtime and number of tardy jobs, and they recommended
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genetic algorithms (GAs) for both of these problems. Hallah
[12] used a hybrid of SA and GA to solve the problem of
minimization of earliness and tardiness on a single machine
and showed the performance of the presented algorithm.
Bagchi [13] studied a bicriteria scheduling problem involving
completion times and waiting times and presented an efficient
algorithm for it. Molaee et al. [14] researched on simultaneous
minimization of maximum earliness and number of tardy jobs
on a single machine, and developed a heuristic algorithm for
it. Hoogeveen [15] provided a comprehensive survey of the
multiple-criteria scheduling problems.

This research focuses on minimizing the linear combina-
tion of total tardiness and waiting time variance criteria. Du
and Leung [16] showed that the total tardiness scheduling
problem on a single machine is non-deterministic
polynomial-time hard (NP-hard). Moreover, Wieslaw [17]
demonstrated that the waiting time variance scheduling prob-
lem is NP-hard. It is concluded that the problem of linear
combination of total tardiness and waiting time variance is
NP-hard. Optimal algorithms for the NP-hard problems would
require a computational time that increases exponentially with
the size of the problem. Therefore, we developed a genetic
algorithm for the problem in this research. We present com-
putational experiments that show the performance of the de-
veloped GA.

In section 2, we discuss the bicriteria problem of minimiz-
ing total tardiness andwaiting time variance. Then in section 3,
we delineate the developed GAs and utilized methods and
finally in section 4, the performance of GAs is illustrated by
computational experiments.

2 Problem description

The problem is to schedule n jobs (i=1, 2,…, n) on a single
machine with the aim of minimizing total tardiness and waiting
time variance. Each job has a processing time (pi) and a due date
(di). The following assumptions are considered in the problem:

& The jobs are available at time zero.
& The jobs are independent of each others.
& Each job is processed only once on the machine.
& Job’s preemption is not allowed.
& Job’s processing times and due dates are known at time

zero.

We use the following notations to express the problems:

n Number of jobs
pi Processing time of the job i
p[j] Processing time of the job located at jth position in

sequence and j=1,2,…,n
di Due date of the job i

d[j] Due date of the job located at jth position in sequence
and j=1,2,…,n

C[j] Completion time of the job located at jth position in
sequence and j=1,2,…,n C[j]=∑k=1

j p[k]
W[j] Waiting time of the job located at jth position in

sequence and j=1,2,…,n W[j]=C[j]−p[j] and W1=0
T[j] Tardiness of the job located at jth position in sequence

and j=1,2,…,n T[j]=max{C[j]−d[j],0}
W Average of total waiting time of sequence

W ¼ 1
�
n

� �
∑n

k¼1W k½ �

We address two criteria of this problem as Z1 and Z2. As
can be seen in the following, Z1 denotes the total tardiness
criterion and Z2 denotes the waiting time variance criterion.
The purpose of this research is to minimize Z1 and Z2
simultaneously.

Z1 Total tardiness of sequence Z1=∑k=1
n T[j]

Z2 Waiting time variance of sequence

Z2 ¼ 1
�
n

� �
∑n

k¼1 W k½ �−W
� �2

3 The genetic algorithm application

The GA is an optimization and search technique based upon
the rules of genetics and natural selection. A GA enables a
population made up of many individuals to evolve under
particular selection rules to a state that maximizes
(minimizes) the “fitness” (i.e., minimizes the cost function).
The most common form of genetic algorithm involves three
types of operators: selection, crossover, and mutation. There
are several preferences to be developed concerning the GA
application. In this research, we define two levels to present
our developed GA: “primary GA” and “secondary GA,” and
these are described as follows:

3.1 Primary GAs

This level of the developed genetic algorithm includes the
main GAs for solving the problem, in which following fea-
tures and operators are used.

3.1.1 The solution encoding

For the single machine problem which is considered through-
out this paper, the natural permutation representation of a
solution is a permutation of the integers 1,…,n, which defines
the processing order of n jobs. Each chromosome is repre-
sented by such a scheduling solution, i.e., the natural permu-
tation representation of a solution, so as to simplify the solu-
tion encoding. For example, for a 10-job problem:
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A scheduling solution : 2 1 4 3 6 10 8 9 7 5
A chromosome : 2 1 4 3 6 10 8 9 7 5

3.1.2 The fitness function

The fitness function of the primary GAs in this research is a
linear combination of total tardiness and waiting time vari-
ance. We define the fitness function as follows:

fitness ¼ w Z1 Sð Þ−Z*
1

�� ��= 1þ Z*
1

� �� 	þ 1−wð Þ Z2 Sð Þ−Z*
2

�� ��= 1þ Z*
2

� �� 	
;

ð1Þ

where S represents a chromosome (schedule) in the popula-
tion, and Z�

1
and Z2

∗ are explained in coming sections. We
utilize this fitness function in the two following ways:

Dynamic fitness function In this way, large values are
assigned to Z�

1
and Z 2

∗ in the first iteration. When better value

is found in the next iterations, the old value is replaced by the
better value. Thus, values of Z�

1
and Z 2

∗ can be updated several

times throughout generations.

Static fitness function In this way, we obtain Z�
1
and Z 2

∗ values
by the secondary GAs (S1-GA and S2-GA which are de-
scribed in section 3.2) before starting primary GA iterations.
Next, primary GA begins and values of Z�

1
and Z 2

∗ do not alter

during generations.

3.1.3 The initial population

We use two types of the initial population with the population
size 30 (POP=30). The first type is a completely random
initial population, and the second type is a heuristic initial
population. In the first type, we generate random permutations
of jobs to produce the random initial population. In the second
type, the population is divided into seven parts (part 1 to part
7) to produce the heuristic initial population. The first six parts
(part1 to part 6) are the heuristic parts, and each of them has
the size PS=⌊POP/7⌋. We use one heuristic for each part;
therefore, we use six heuristics in total. The first and second
heuristics are the methods that Eilon and Chowdhury [8]
presented for the waiting time variance scheduling problem,
and they called “Method 1.1” and “Method 1.2.” The third
heuristic is the EDD (earliest due date) method that minimizes
total tardiness on a condition that, at most, one job has positive
tardiness [18]. The fourth heuristic is a constructive method
that Yoon and Lee [4] presented for the total tardiness problem
and called “Heuristic H1.” The fifth heuristic is AU rule that
Morton et al. [3] proposed, and the sixth heuristic is a simple
method that Panneerselvam [5] presented for minimizing total

tardiness. Letting C denotes the counter of chromosomes in a
part. The following steps are used to produce chromosomes
for each of the first six parts:

1. Obtain the schedule with the heuristic and put it as the first
chromosome, C←1

2. Select two positions in the first chromosome
3. Exchange the genes in these positions
4. Put the obtained chromosome at the next place in the part,

C←C+1
5. If PS-C=0 then stop, else go to step 2

The last part (part 7) is a random part with the size RS=
POP−6PS. We generate random permutations of jobs for part
7.

3.1.4 Parent selection

Selection rate of the developed algorithm is 0.5 (50 %). It
could be said, in each iteration, half of the population that has
better fitness value, survive for the next iteration (mating
pool), and others are discarded and replaced by offsprings.
In order to bear an offspring, we should select two chromo-
somes as parents from the mating pool. We determine both
first and second parents by using tournament selection. In the
tournament selection, T chromosomes are chosen randomly
and the chromosome that has the best fitness value among
those becomes the parent. We determined T=4 as a good
tournament size with better CPU time.

3.1.5 The crossover operator

We utilize two-point crossover with one offspring. For exam-
ple, we have parents 1 and 2 as (1, 2 , 3, 4, 5, 6, 7, 8, 9, 10) and
(5, 2, 10 , 3, 7, 1, 8, 4, 6, 9), respectively, and the crossover
points are 3 and 8. The offspring will be born as shown in
Fig. 1.

Points “x” and “y” in Fig. 1 represent the crossover points.
Crossover points in this research are the function of the
number of jobs in problems (n). We use a parameter that
controls the crossover points, and k is the symbol of it. It
should be noted that k is greater than 2 (k>2). We define “x”
and “y” as follows:

x ¼ n=kb c þ 1; ð2Þ

y ¼ n−x; ð3Þ

If k increases and moves close to n, then the number of
inherited genes of the offspring from parent 1 will be de-
creased. Similarly, making k close to 2 reduces the number
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of inherited genes from parent 2. We choose k=6 as the best
value for k in experimental computations.

3.1.6 The mutation operator

The mutation rate of this algorithm is μ=0.1 that means 10 %
of the genes from the population in each iteration are mutated.
We randomly select chromosome that we want to be mutated,
then two positions are selected randomly along the selected
chromosome, and the genes in these positions are exchanged.
It should be noted that the best chromosome (chromosome
that has better fitness) in each iteration is not mutated due to
elitism.

3.1.7 Stopping conditions

In this section, we define two parameters to describe stopping
conditions:

a Number of consecutive iterations for which the best
chromosome of the population does not change

b Number of total iterations

According to a few basic analyses, we terminate the genetic
algorithm either the best chromosome of the population does
not change for “a=40” consecutive iterations or after “b=
100” iterations in total.

3.1.8 The genetic algorithm

Based on mentioned features and operators, we developed
four genetic algorithms as follows:

1. GA-A: This genetic algorithm uses the dynamic fitness
function and completely random initial population.

2. GA-B: This genetic algorithm uses the dynamic fitness
function and heuristic initial population.

3. GA-C: This genetic algorithm uses the static fitness func-
tion and completely random initial population.

4. GA-D: This genetic algorithm uses the static fitness func-
tion and heuristic initial population.

Letting ITR and NC denote the iteration number and the
number of consecutive iterations for which the best

chromosome does not change, respectively. Steps of GA-A
and GA-B can be summarized as follows:

1. Create initial population. Let ITR←1, NC←0.
2. Assign large values to Z�

1
and Z2

∗

3. Evaluate Z1 for each chromosome of the population and,
if Z1<Z1

∗ then Z1
∗←Z1

4. Evaluate Z2 for each chromosome of the population and,
if Z2<Z2

∗ then Z2
∗←Z2

5. Evaluate fitness for each chromosome of the population.
6. Select two parents by tournament selection.
7. Apply crossover and replace discarded chromosomes of

the population with the generated offsprings.
8. Apply mutation.
9. If the best fitness of iteration ITR is equal to that of

iteration ITR-1, then NC←NC+1, else NC←0.
10. ITR←ITR+1
11. If ITR>b or NC≥a, then stop, else go to step 3.

And following steps are used for GA-C and GA-D:

1. Create initial population. Let ITR←1, NC←0.
2. Obtain values of Z�

1
and Z2

∗ by secondary GAs (S1-GA
and S2-GAwhich are described in section 3.2).

3. Evaluate fitness for each chromosome of the population.
4. Select two parents by tournament selection.
5. Apply crossover and replace discarded chromosomes of

the population with the generated offsprings.
6. Apply mutation.
7. If the best fitness of iteration ITR is equal to that of

iteration ITR-1, then NC←NC+1, else NC←0.
8. ITR←ITR+1
9. If ITR>b or NC≥a, then stop, else go to step 3.

3.2 Secondary GAs

This level includes S1-GA and S2-GA which are used to
obtain Z�

1
and Z2

∗, respectively, in static fitness function mode.

These genetic algorithms are very similar to the primary GAs.
However, differences between them are listed below:

1. The initial population: the population size of secondary
GAs is half of the primary GA population size (POP=
15). We divide the population into two parts (part 1 and
part 2) to produce the initial population. The first part (part
1) is the heuristic part and has the size PS=⌊POP/7⌋. The
second part (part 2) is the random part and has the size RS=
POP−PS. We use the same steps of section 3.1.3 to pro-
duce chromosomes of the first part (part 1). “Heuristic H1”
and “Method 1.2” are used for S1-GA and S2-GA, respec-
tively. We produce random permutations of jobs for part 2.

Fig. 1 The crossover operator
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2. The fitness function: total tardiness is the fitness function
of S1-GA and waiting time variance is the fitness function
of S2-GA.

3. Stopping condition: we terminate S1-GA and S2-GA if the
best chromosome of the population does not change for “a=
20” consecutive iterations or after “b=50” iterations in total.

Selection, crossover and mutation operators of these GAs
are the same as primary GAs. The algorithm which we used
for S1-GA and S2-GA is as follows:

1. Create initial population. Let ITR←1, NC←0.
2. Evaluate fitness for each chromosome of the population.
3. Select two parents by tournament selection.
4. Apply crossover and replace discarded chromosomes of

the population with the generated offsprings.
5. Apply mutation.
6. If the best fitness of iteration ITR is equal to that of

iteration ITR-1, then NC←NC+1, else NC←0.
7. ITR←ITR+1
8. If ITR>b or NC≥a, then stop, else go to step 2.

4 Computational results

We carried out experiments using randomly generated prob-
lems to assess the performance of the developed GAs. Pro-
cessing times of problems were generated from the discrete

Table 1 Due date
ranges of problem sets Problem set Due date range

I [0.0P, 0.4P]

II [0.1P, 0.3P]

III [0.25P, 0.45P]

IV [0.3P, 1.3P]

Table 2 Average deviation for 10 replications of CAT-1

n Problem set w=0.3 w=0.5 w=0.7

GA-A GA-B GA-C GA-D GA-A GA-B GA-C GA-D GA-A GA-B GA-C GA-D

Low processing time

5 I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0607 0.0000 0.0000 0.0639 0.0000

II 0.0289 0.0289 0.0537 0.0537 0.0000 0.0000 0.0247 0.0000 0.0001 0.0001 0.0205 0.0929

III 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0943 0.0200 0.0707 0.0000 0.0707 0.0000

IV 0.0000 0.0000 0.0529 0.0972 0.0000 0.0000 0.1047 0.0190 0.0001 0.0001 0.0795 0.0878

10 I 0.4934 0.3007 0.1273 0.1090 0.0693 0.3698 0.0426 0.1638 0.0534 0.1010 0.1840 0.3076

II 0.0124 0.0137 0.0829 0.3161 0.0202 0.0000 0.4998 0.0219 0.1060 0.0000 0.3775 0.0000

III 1.2113 0.2449 0.1494 0.0252 0.3921 0.5306 0.8494 0.7854 0.1070 0.2517 0.5981 0.6096

IV 0.0668 0.5000 0.6542 0.6283 0.3571 0.5000 0.5985 0.5003 0.3459 0.7470 0.7295 0.5000

15 I 0.4359 0.1930 0.6707 0.1408 5.0416 0.0295 7.2318 0.8612 0.5186 0.5543 1.6046 0.5220

II 0.4528 0.1123 0.5443 0.1909 0.8262 0.2812 0.6323 0.4387 1.3996 0.3643 1.1824 0.4504

III 0.2112 0.0904 0.3201 0.0755 0.3489 0.0955 0.8579 0.3085 0.6585 0.4468 1.8587 0.7992

IV 0.6943 0.5624 1.2228 0.3398 0.7859 0.2152 1.1692 0.4910 0.6731 0.4300 1.0427 0.5477

Average 0.3006 0.1705 0.3232 0.1647 0.6534 0.1685 1.0088 0.3059 0.3278 0.2413 0.6510 0.3264

High processing time

5 I 0.0000 0.0000 0.0283 0.0135 0.0000 0.0000 0.0540 0.0346 0.0000 0.0000 0.0000 0.0000

II 0.0550 0.0550 0.0648 0.1155 0.0107 0.0107 0.0107 0.0107 0.0000 0.0000 0.0001 0.0000

III 0.0225 0.0225 0.0308 0.0279 0.0000 0.0000 0.0169 0.0062 0.0000 0.0000 0.0000 0.0000

IV 0.0001 0.0001 0.0248 0.0001 0.0002 0.0002 0.0075 0.0001 0.0001 0.0001 0.0001 0.0001

10 I 0.0508 0.0835 0.3136 0.2226 0.0569 0.0709 0.3099 0.2977 0.4548 0.0148 0.2689 0.0148

II 0.6452 0.6435 0.0000 0.0167 0.0872 0.0324 0.4102 0.0324 0.3102 0.3598 1.1127 0.6772

III 0.1224 0.0000 0.1751 0.1365 0.1836 0.1996 0.9364 0.4130 0.1861 0.4506 0.6884 0.4979

IV 0.2100 0.0000 0.0988 0.0292 0.5542 0.0002 0.6946 0.0203 0.2662 0.0274 0.1946 0.0000

15 I 0.7258 0.4033 0.7230 0.3227 0.3341 0.1610 0.6456 0.2002 0.9438 0.1300 0.7887 0.0768

II 0.6209 0.3955 1.3122 0.3580 0.8426 0.2115 0.7514 0.2403 1.2046 0.3556 1.7619 0.9021

III 0.3342 0.0982 0.2125 0.0813 0.3045 0.0306 0.5778 0.1150 0.5195 0.2336 1.0585 0.4470

IV 1.0172 0.4228 0.9327 0.1697 0.6179 0.3287 1.2176 0.5296 0.6896 0.6331 1.1719 0.4458

Average 0.3170 0.1770 0.3264 0.1245 0.2493 0.0872 0.4694 0.1583 0.3812 0.1838 0.5872 0.2551
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uniform distributions in two ranges of low and high process-
ing time as in Koksalan et al. [9]. The range [1–25] represents
low processing time variability, and the range [1–100] shows
high processing time variability. Due dates were generated
using discrete uniform distributions in four sets given in
Table 1 as in Koktener and Koksalan [19]. In this table, each
set represents a range and P denotes the sum of processing
times of the jobs.

We tried six problem sizes n=5, 10, 15, 20, 50, and 100
with three weights w=0.3, 0.5, and 0.7. These problem sizes
were divided into two categories. First category (CAT-1)
represents problems relating to sizes n=5, 10, and 15. We
compared GAs result deviations from global optimal results of
LINGO 8 in the first category. Second category (CAT-2)
shows problems relating to sizes n=20, 50, and 100. We
compared GAs result deviations from the best results in the
second category.With regard to different levels of factors such
as processing times (high and low), number of jobs, different

GAs, different weights (w=0.3, 0.5, and 0.7), and due date
ranges, respectively, we tried 2×3×4×3×4 class of problems.
We randomly made 10 problems for each class. Therefore,
2,880 problems were solved in each category. Note that all
GAs were coded in MATLAB, and all computations were
carried out on a computer having a 2.1-GHz processor.

4.1 CAT-1

In this category, we considered problem sizes n=5, 10, and 15
and we compared deviations from global optimal results
which were obtained by the LINGO 8 global solver. For this
purpose, we minimized the following function in the LINGO:

f Z1; Z2ð Þ ¼ w Z1−Z*
1opt

���
���= 1þ Z*

1opt

� �h i
þ 1−wð Þ Z2−Z*

2opt

���
���= 1þ Z*

2opt

� �h i
;

ð4Þ

Table 3 Average deviation for 10 replications of CAT-2

n Problem set w=0.3 w=0.5 w=0.7

GA-A GA-B GA-C GA-D GA-A GA-B GA-C GA-D GA-A GA-B GA-C GA-D

Low processing time

20 I 1.3396 0.2683 1.1070 0.2129 0.8208 0.2700 0.9633 0.4108 1.6908 0.1787 1.7597 0.1695

II 1.0262 0.3825 1.1634 0.3209 0.6965 0.1290 0.7829 0.2994 1.7881 0.3488 1.3915 0.9997

III 0.2581 0.0916 0.3317 0.0847 0.4583 0.1354 0.3765 0.0794 0.7567 0.0060 0.8850 0.3401

IV 0.6697 0.8238 0.9823 0.5778 1.1486 0.0936 1.0660 0.4423 0.4955 0.2819 1.1586 0.2359

50 I 2.8374 0.0857 2.6100 0.2016 4.0312 0.1785 3.7418 0.0878 9.0609 0.0541 8.3800 0.0031

II 3.0802 0.1956 3.3615 0.0807 3.1351 0.1770 3.6849 0.3226 7.7713 0.1822 7.5583 1.0536

III 8.3372 0.1833 7.4454 0.8784 9.3234 0.1710 8.7701 1.6697 10.7723 0.2011 12.4626 0.7186

IV 9.2752 0.9521 9.3519 1.1074 7.2650 0.7793 9.1899 0.7281 6.6366 0.7600 9.1246 1.0642

100 I 6.7527 0.1306 6.0638 0.0826 7.5046 0.0853 8.2023 0.0775 15.0430 0.0028 14.8075 0.0602

II 6.9867 0.0823 6.9647 0.0882 7.1315 0.1349 6.6497 0.0794 13.4371 0.0409 14.6170 0.1014

III 8.8226 0.3163 9.5934 0.2008 12.6793 0.2449 12.7736 0.7433 15.1369 0.1742 16.3595 0.8028

IV 13.3649 0.5571 11.5751 0.4501 12.8504 0.2907 11.6826 0.9631 12.1645 0.3751 15.9035 0.3339

Average 5.2292 0.3391 5.0459 0.3572 5.5871 0.2241 5.6570 0.4920 7.8961 0.2172 8.7007 0.4903

High processing time

20 I 1.1400 0.5184 0.5441 0.2973 0.8701 0.2196 1.0522 0.0690 2.9972 0.2126 1.8686 0.0376

II 0.7563 0.2604 1.3478 0.1755 0.8246 0.1894 0.6922 0.3561 1.6736 0.3309 2.3991 0.5152

III 0.3249 0.1250 0.3677 0.1155 0.6600 0.0217 0.5459 0.1376 0.5634 0.1275 1.1383 0.4329

IV 3.3498 0.5309 1.2739 1.0959 1.1241 0.4613 0.9249 0.6245 1.4878 0.3916 2.3641 0.5899

50 I 3.6334 0.1727 2.8457 0.2517 4.0599 0.1803 3.3548 0.1507 9.0815 0.0293 7.5107 0.0103

II 3.3457 0.1314 2.7266 0.1547 4.0495 0.1865 4.3928 0.1423 8.2248 0.0110 7.8472 0.2532

III 6.6457 0.8500 6.3789 0.0654 9.5799 0.2802 9.6658 0.7189 11.9338 0.3035 11.7440 1.3162

IV 11.1039 0.1369 5.9775 1.1401 9.2860 0.9786 7.5011 1.0030 10.6825 0.6302 9.5386 1.9013

100 I 6.3481 0.1578 5.9670 0.1652 7.2581 0.3000 7.2450 0.0313 12.6918 0.0134 12.1979 0.0047

II 6.5732 0.0618 6.9566 0.1488 6.4570 0.1841 6.4790 0.0474 10.9099 0.0664 12.1113 0.1234

III 10.9300 0.1855 11.3794 0.2595 13.4912 0.2824 12.6521 0.8499 17.6231 0.3687 16.4503 0.9553

IV 10.7974 0.3181 10.1538 0.1124 9.4985 0.7334 8.9271 0.7158 11.9430 0.4078 12.2828 0.1679

Average 5.4124 0.2874 4.6599 0.3318 5.5966 0.3348 5.2861 0.4039 8.3177 0.2411 8.1211 0.5257
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where Z1opt
∗ and Z2opt

∗ represent optimal values for total tardiness
and waiting time variance problems, respectively, and these
were obtained by LINGO 8 for each replication, separately.

In order to be able to assess the deviation of GA results
from optimal results of LINGO, we scaled the results. For this
aim, we put Z1 and Z2, which were obtained from GAs (GA-
A,GA-B, GA-C, and GA-D) for each problem in the objective
function of LINGO that was mentioned above, and we ob-
tained values of f(Z1,Z2) for each GA. Next, we obtained
deviations from the global optimal value of LINGO with the
following deviation measure:

% deviation ¼ 100�
f − f opt

� �

f opt

2
4

3
5; ð5Þ

where f denotes the scaled result of the GAs, and fopt repre-
sents the global optimum which were obtained by LINGO for
each replication.

The average percent of deviation is shown in Table 2. From
this table, it can be seen that the performance of GA-D for w=
0.3 is better than other algorithms both in low and high
processing time. However, for w=0.5 and w=0.7, GA-B
performed better than other algorithms.

4.2 CAT-2

This category includes problem sizes n=20, 50, and 100, and
we compared deviations from the best results of each replica-
tion. In order to be able to evaluate the deviation of GA results
from best results, we scaled the results. For this purpose, we
put Z1 and Z2, which were obtained from GAs (GA-A, GA-B,
GA-C, and GA-D) for each problem in the following function,
and we obtained values of f(Z1,Z2) for each GA:

f Z1; Z2ð Þ ¼ w Z1−Z*
1GA

�� ��= 1þ Z*
1GA

� �� 	þ 1−wð Þ Z2−Z*
2GA

�� ��= 1þ Z*
2GA

� �� 	
;

ð6Þ
where Z1GA

∗ and Z2GA
∗ represent near optimal values for total

tardiness and waiting time variance problems, respectively,
and these were obtained by using genetic algorithms like the
secondary GAs which are illustrated in section 3.2 with the
stopping condition parameters: a=80 and b=200. We com-
pared the performance of the GAs using the following devia-
tion measure:

% deviation ¼ 100� f − f bestð Þ= f best½ �; ð7Þ

where f represents the scaled result of the GAs, and fbest shows
best scaled result of each replication.

The average percent of deviation is shown in Table 3. With
respect to Table 3, we can say that the performance of GA-B is
relatively better than other GAs in both low and high process-
ing time.

5 Conclusion

In this research, we concentrated on a singlemachine bicriteria
scheduling problem. We considered the problem of minimiz-
ing a linear combination of total tardiness and waiting time
variance criteria. Then, we developed genetic algorithms for
solving this bicriteria problem since it was an NP-hard prob-
lem. Two types of heuristic and random initial population and
two distinct fitness functions were applied to genetic algo-
rithms. Consequently, four genetic algorithms presented with
regard to initial population and fitness function. In order to
show the efficiency of proposed GAs, we solved different
problems in two categories. We concluded that heuristic initial
population and dynamic fitness function increase the perfor-
mance of genetic algorithm for this bicriteria scheduling
problem.
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