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Abstract Cloud manufacturing (CM) is a new type of
networked manufacturing model, which is proposed in 2010.
Optimization technology is one of the key techniques for CM
operation, which are used for the efficient integration of
manufacturing resources. In all kinds of manufacturing re-
sources, the machining equipment is one of the most impor-
tant resources. Using optimization techniques to achieve op-
timal selection of machining equipment is rarely studied in the
CM. In order to handle the optimization selection of machin-
ing equipment in CM, comparing with the existing resources
optimal configuration, an optimal selection strategy is intro-
duced for the machining equipment in CM. In the selection
strategy, first, a multiple objective and binary integer program-
ming model is proposed to describe the optimal selection of
machining equipment in CM. Second, after analyzing the
mathematical model and the real-world problem of the ma-
chining equipment selection in CM, the priority method is
adopted to convert the multiple-objective problem into a
single-objective problem. Third, an improved particle swarm
optimization (IPSO) algorithm based on a novel encoding
scheme and fitness function is presented to solve the single-
objective mathematical model. Finally, the simulation exper-
iments verify the effectiveness of the IPSO algorithm and
show that the selection strategy is more objective and effective
to help the client select the machining equipment in the CM
than current resources optimization model. This research pro-
vides a theoretical support for the development of CM.

Keywords Cloudmanufacturing .Machining equipment
selection . Particle swarm optimization .Multiple objective
programming . Binary integer programming

1 Introduction

In recent years, the next generation of information technology
obtains fast development and widespread application, for
example, cloud computing and Internet of Things technology.
At the same time, servitization is one of the development
movements in modern manufacturing [1]. The concept of
integration between manufacturing and service gets compre-
hensive and rapid upgrade based on IT technology. Many
manufacturing enterprises are changing from manufacturing
product providers to manufacturing service providers for
adapting to dynamic market demand. Under this background,
a new service-oriented networkedmanufacturingmodel called
cloud manufacturing (CM) was proposed in 2010 [2]. The
basic idea of the CM is that all manufacturing resources are
collected in a virtual resource pool, and on-demand use of
manufacturing services is provided for all types of users.
Nowadays, the research of CM has gradually entered into
the needs of different industries [3–7], such as mold, aero-
space, electronics, and automobile. On the other hand, many
researchers focus on the CMmodel and system in the different
stages of product life cycle [8–11]. We had proposed a cloud
manufacturing system (CMS) for machining equipment from
the perspective of product life cycle [12]. The system’s goal
include constructing a third-party CM service platform, estab-
lishing relevant CM service for the machining equipment
resources demanders (client) and their provider (service
supplier).

In order to realize the system goal, one of the important
keys is to achieve the optimal allocation of machining equip-
ment. In other words, how the system selects the optimal
machining equipment in the resource pool is the key issue
when the client submits process (or processes) to the CMS.
(detailed description in Section 3).

Currently, there are two kinds of resources optimization
from the perspective of networked manufacturing concept.
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One is collaborative networked manufacturing based on
Internet, which uses corporations as nodes; the other is work-
shop (factory) networked manufacturing system, which uses
computer and equipment (including machine tools, cutting
tools, logistics vehicle) in workshop (factory) as nodes.
From the perspective of resources optimizing selection, it
mainly includes supplier selection, outsourcing manufacturer
selection and shop scheduling.

In the networked manufacturing supplier’s selection, the
decision theory is mainly used to select raw materials and
components suppliers for strategic cooperation [13–15],
which reduces producing cost and improves product qual-
ity for the core enterprise. In the networked supply chain
management, the core enterprise selects all the supply
chain nodes ranging from the raw materials suppliers,
parts, and component suppliers to partly outsourcing man-
ufacturers. In the selection of outsourcing manufacturers
under the networked manufacturing environment, machine
parts are used as the smallest task granularity to build
optimization model [16, 17]. The typical resources optimi-
zation configuration in workshop (factory) is shop sched-
uling, including job shop and flow shop, which researches
on the optimization of n workpieces machining process on
m machines [18].

Comparing with the existing resources optimal configu-
ration, it is found that the existing models lack of resources
optimization abstraction and the mathematical models lack
practicality. The objective function is described differently
in different resources optimal configuration. For example,
some literatures [14, 17, 19] only consider time or cost, or
time and cost, and some [20–22] do not consider the logis-
tics time and cost between resource provider nodes. In
addition, the optimization parameters are not clear. For
example, the quality parameter has different definition at
different level of manufacturing activities. Compared with
the above two types of networked manufacturing resources
selection, the optimization goal and optimization parame-
ters are different with before in this research. Therefore, it is
necessary to set up the mathematical model for optimal
selection of machining equipment in CM. In this paper, a
selection strategy of machining equipment in CM is pre-
sented and the solution is also given in detail.

The rest of this paper is organized as follows. Relative
research is presented in Section 2. The problem description
and mathematical model are detailed in Section 3. The
algorithm design is explained in Section 4. In Section 5,
the simulation experiment and discussion is presented.
Especially, the comparison results are provided to demon-
strate how our model can be applied for real-world optimal
selection of machining equipment in CM. Section 6 pro-
vides a conclusion of this paper and concise further re-
search direction.

2 Relative research

Our work is related to resources optimizing configuration in
networked manufacturing and resource optimization selection
in shop scheduling. In this section, relative research domain
will be brief mentioned.

There are a lot of research supplier selection problems in
the networked manufacturing. For example, Sarfaraz and Balu
[23] presented a multi-objective criteria pertaining to supplier
selection process by combination of quality function deploy-
ment, analytical hierarchy process(AHP) and preemptive goal
programming techniques. Wang and Huang [24] used AHP
and preemptive goal programming based multicriteria
decision-making methodology to take into account both qual-
itative and quantitative factors in supplier selection. Wang
[25] searched supplier selection in a quantity discount envi-
ronment using multi-objective linear programming, AHP, and
fuzzy compromise programming. Single supplier selection is
a multicriteria problem, and the decision theory method is
widely used to solve this problem. Another stream of supplier
selection research is supply chain management. For example,
Kawtummachai and Hop [26] proposed an algorithm for
allocation of products and order quantities among multiple
suppliers with the objective of minimizing the total purchase
cost for various service levels under uncertain demand. Li
et al. [19] developed a model for optimizing the supply chain
configuration, which included sourcing and planning deci-
sion. Yohanes Kristianto [27] presented a decision support
system for integrating manufacturing and product design into
the reconfiguration of the supply chain network. In the shop
scheduling, more about the optimal selection for machining
equipment can be found. For example, Lim et al. [22] intro-
duced a multiagent system using iterative bidding mechanism
to select machining equipment for enhancing manufacturing
agility. Tasgetiren et al. [28] presented a variable iterated
greedy algorithmwith differential evolution, designed to solve
the no-idle permutation flow shop scheduling problem.
Moslehi et al. [29] presented two mixed binary integer pro-
gramming models for the shop scheduling problem. Naderi
et al. [30] presented a multi-objective open shop scheduling
using a hybrid immune algorithm to solve open shop
problems.

Overall, the choice of suppliers is a form of resource
selection for the core enterprise. But the selection objective
and parameters are very different with selection of machining
equipment in CM. The optimal allocation of resources in
networked supply chain management is broader range, includ-
ing all kind of resources in sourcing, planning, designing,
fabricating, and distribution. Moreover, the relationship be-
tween the core enterprise in the supply chain and other part-
ners is strategic cooperation or long term cooperation, which
is not temporary working relationship. Therefore, the above
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mentioned field resource optimization models cannot be ap-
plied to optimal allocation of resources under the CM envi-
ronment. In the shop scheduling, the logistics time and cost of
workpiece from one device to another device have not been
considered in numerous models. However, our work in this
paper is an interregional optimal selection of machining
equipment in CM environment. The logistics time and cost
of the workpiece need to be considered, which have great
impact on the result of optimal selection (Section 5 will
discuss its impact).

3 Problem description and mathematical model

3.1 Problem description

Based on the current network manufacturing resource optimal
selection and shop scheduling problem, a process-level ma-
chining equipment selection problem is described in Fig. 1.

Assuming that the manufacturing resources demander
(client) submits some parts machining processes to the cloud
manufacturing platform (CMP), it is called m tasks. Based on
resources discovery, the CMP has returned candidate re-
sources for each task. Meanwhile, the candidate resource
providers are named as candidate service suppliers, marking
Rij. Corresponding candidate resources of the task i are marked
as {Ri1, Ri2, ,Rini}, where i=1, 2,…,m, and the ni is the number
of candidate resources of the ith task. The concept of logistics
time is the logistics days of parts are transported from client or
one service supplier to next service supplier or client. The
logistics cost is the charge fee of logistics company when parts
are transported from client or one service supplier to next

service supplier or client. The service time is the days from
the service supplier receive the parts to submit to the logistics
company. The service cost is the outsourcing cost of the
service supplier completes the parts, including process charge
and so on. And the quality in the machining refers to the
passing rate.

Where

t(oj) is the logistics time from the client to the first
service supplier

c(oj) is the logistics cost from the client to the first
service supplier

t(ij) is the service time of the service supplier Rij
completes the ith task

c(ij) is the service cost of the service supplier Rij
completes the ith task

q(ij) is the pass rate of service supplier Rij completes
the ith task, j=1, 2, …, ni

t(ij,(i+1)k) is the logistics time from the service supplier Rij
to the service supplier R(i+1)k, c(ij,(i+1)k) is the
logistics cost from the service supplier Rij to the
service supplier R(i+1)k

t(mj) is the logistics time from the jth service supplier
in the mth task to the client

c(mj) is the logistics cost from the jth service supplier in
the mth task to the client.

The optimization problem is how to choose the service
suppliers when the client total cost and time is the shortest,
and the pass rate is the highest. From the goal programming
perspective, the problem is a multiple objective programming
problem; from the integer programming perspective, it be-
longs to binary integer programming (BIP) problem; from

Task 1

R11
R12
…

R1n1

Task 2

R21
R22
…

R2n2

Task 3

R31
R32
…

R3n3

Task m

Rm1
Rm2
…

Rmnm

…

Resource Pool  

Cloud Manufacturing Platform

1

2

Client Client 

Fig. 1 Schematic diagram of
machining equipment selection
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the perspective of combination optimization problem, the
problem is a typical similar TSP or 0–1 knapsack combinato-
rial problems. Therefore, this paper will consider the problem
of selecting the machining equipment (service suppliers) to be
a BIP model, and then it is transformed into a single objective
programming model by using the priority method. Finally, the
intelligent computation is used to solve the model.

3.2 Mathematical model

Set the decision variables α, βmnm ; xij; xij; iþ1ð Þk , where α=0 or
1; βmnm ¼ 0 or 1; xij=0 or 1; xij,(i+1)k=0 or 1.

α ¼ 1 ; the client to service supplier R1 j exist logistics
0; the client to service supplier R1 j do not exist logistics

�

ð1Þ

When α=0, it denotes task 1 is the first process of part
manufacturing, and the service supplier offer rough material.
When α=1, it denotes task 1 is the first process of part
manufacturing, but the client offer rough material or task 1
is not the first process of part manufacturing.

βmnm ¼ 1 ; the nm service supplier in the m th task is selected
0; the nm service supplier in the mth task is not selected

�

ð2Þ

xij ¼ 1 ; the j th service supplier in the i th task is selected
0; the jth service supplier in the ith task is not selected

�

ð3Þ

xij iþ1ð Þk ¼ 1; the i; jth service supplier to the i þ 1; k th service supplier is selected
0; the i; jth service supplier to the iþ 1; kth service supplier is not selected

�
ð4Þ

So, the time mathematical model is:

f tð Þ ¼ f ttð Þ þ f tsð Þ ð5Þ

f tsð Þ ¼
X
i¼1

m X
j¼1

ni

xijt ijð Þ ð6Þ

f ttð Þ ¼ α
X
j¼1

n1

x1 jt 0 jð Þ þ
Xm−1
i¼1

X
j¼1

ni X
k¼1

niþ1

xij iþ1ð Þk t ij; iþ 1ð Þkð Þ

þ
X
j¼1

mi

βmnm t mjð Þ
(7)

Where, Formula (5) is the total time objective function, in-
cluding logistics time f(tt) and service time f(ts). Formula (6) is
total service time objective function. Formula (7) is logistics time

objective function, which is consists of three parts: α ∑
j¼1

n1
x1 jt 0 jð Þ

denotes the logistics time from the client to the jth service

supplier in the first task; ∑
m−1

i¼1
∑
j¼1

ni
∑
k¼1

niþ1

xij iþ1ð Þk t ij; iþ 1ð Þkð Þ

denotes the logistics time of adjacent two service suppliers; ∑
j¼1

mi

βmnmt mjð Þ denotes the logistics time from the jth service supplier

in the last task to the client. Similarly, the cost mathematical
model is:

f cð Þ ¼ f ctð Þ þ f csð Þ ð8Þ

f csð Þ ¼
X
i¼1

m X
j¼1

ni

xijc ijð Þ ð9Þ

f ctð Þ ¼ α
X
j¼1

n1

x1 jc 0 jð Þ þ
Xm−1
i¼1

X
j¼1

ni X
k¼1

niþ1

xij iþ1ð Þkc ij; iþ 1ð Þkð Þ

þ
X
j¼1

mi

βmnmc mjð Þ
(10)

The meaning of Formula (8)–(10) is similar as Formula
(5)–(7). Similarly, the pass rate is as follows:

f qð Þ ¼
X
i¼1

m X
j¼1

ni

xijq ijð Þ ð11Þ
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Where, q(ij) denotes the qualification rate that the candidate
service supplier Rij promised. Therefore, the BIP model of the
problem is:

min f tð Þ ¼ f ttð Þ þ f tsð Þ
min f cð Þ ¼ f ctð Þ þ f csð Þ
min 1− f qð Þð Þ

8<
:

s:t:

f tð Þ≤Tmax

X
j¼1

ni

xij ¼ 1

X
j¼1

ni X
k¼1

niþ1

xij iþ1ð Þk ¼ 1

X
j¼1

nm

βmnm ¼ 1

xij ¼ 0 or 1; i ¼ 1; 2;⋯;m; j ¼ 1; 2;⋯; ni

xij iþ1ð Þk ¼ 0 or 1; k ¼ 1; 2;⋯niþ1

βmnm ¼ 0 or 1

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

When the m is equal to 1 the problem becomes a single-
process problem. Its mathematical model is:

f tð Þ ¼ f tsð Þ þ f ttð Þ ð13Þ

f tsð Þ ¼
X
j¼1

n

x jt jð Þ ð14Þ

f ttð Þ ¼ α
X
j¼1

n

x jt 0 jð Þ þ
X
j¼1

n

x jt 0 jð Þ ð15Þ

Where, t( j) denotes the service time of the jth service
supplier; j=1,2,…, n; n is the maximum number of candidate
services supplier; and xj denotes the jth service supplier is
selected.

Similarly, the cost function is denoted as follows:

f cð Þ ¼ f csð Þ þ f ctð Þ ð16Þ

f csð Þ ¼
X
j¼1

n

x jc jð Þ ð17Þ

f ctð Þ ¼ α
X
j¼1

n

x jc 0 jð Þ þ
X
j¼1

n

x jc 0 jð Þ ð18Þ

Namely:

min f cð Þ ¼¼ f csð Þ þ f ctð Þ
min f tð Þ ¼ f tsð Þ þ f ttð Þ
min 1− f qð Þð Þ

8<
:

s:t:

f tð Þ≤Tmax

X
j¼1

n

x j ¼ 1

x j ¼ 0 or 1; j ¼ 1; 2;⋯n

8>>>><
>>>>:

ð19Þ

When m is greater than 1, task i and task i+1 are isolated
from each other. Then, the multiprocess problem is con-
verted into single-process problem, which mathematical
model is as Formula (19). When m is greater than 1, task i
and task i+1 insulated from each other, but task k and task l
have dependence, then the multiprocess problem is con-
verted into multiple and single hybrid problem. But from
the perspective of task submitter (client), this process re-
spectively belong to multiple and single process
manufacturing activity. From the perspective of system
optimization, it belongs to single and multiple process
problems in different times. So only the single process
solution and the multiple process solution need to design
in the CMS. For the solving algorithm of single process
problem is simple, this paper will focus on the solving
algorithm of multiple process problem.

4 Algorithm design

The above problem has multiple characteristics of multi-
objective, nonlinear, and 0–1 integer programming. The
common method is that firstly converting the multi-
objective into single objective for this kind of mathematical
model. Conversion methods mainly include linear weighted
method, priority method, etc. At present, the linear weight-
ed method is frequently used as a conversion method in a
lot of published literature, which has similar resources
optimal selection with our paper [16, 19, 31]. However,
many multi-objective programming problems are reflection
of the actual problem, and all the parameters have physical
units. Therefore, it is difficult for the clients to issue all
targets in the unified unit to measure or determine a reason-
able weighting factor as the coefficient of coordination
objective. The client needs to modify the weighting factor
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many times in order to achieve the optimum results, which
will reduce the automation of CMS operation. In addition,
the above variables (t/c/q) only have single border restric-
tions, which can take the extremum method of unipolar
value. Thus, the client is difficult to estimate the boundary
value time, cost, and pass rate. However, the above bound-
ary values are hard to determinate. Nevertheless, these
parameters are very important for the particle problem,
which cannot be reflected based on linear weighted method.

We adopt the priority method as conversion method in
order to reflect the actual need more objectively. The
outsourcing process (processes) will eventually be
returned to the client after the completion of machining
part. The time index is the most concerned for the client,
and the boundary value of maximum time is presented by
the client. What’s more, the total cost is also a particularly
concerned index for the client, which is deterministic
indicator. Under meeting the schedule requirement, this
indicator should be given priority. the last parameter is
pass rate. Therefore, the above multi-objective can be
expressed as:

Min 1 ‐ f qð Þ

s:t:

f tð Þ≤Tmax

f tð Þ ≤ f �t
f cð Þ ≤ f �cX
j¼1

ni

xij ¼ 1

X
j¼1

ni X
k¼1

niþ1

xij iþ1ð Þk ¼ 1

X
j¼1

nm

βmnm ¼ 1

xij ¼ 0 or 1; i ¼ 1; 2;⋯;m; j ¼ 1; 2;⋯; ni

xij iþ1ð Þk ¼ 0 or 1; k ¼ 1; 2;⋯niþ1

α;βmnm ¼ 0 or 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ

Where, ft* denotes the optimal value of f(t), fc
∗ denotes the

optimal value of f(c).
The multiple objective programming is converted into

single objective problem by the above method. It is a
nonlinear programming problem from the perspective of
model variables. Overall, the nonlinear programming has
not a general solving method like linear programming

which has commonly simplex method. Nonlinear program-
ming algorithm’s applicability is limited in scope. It mainly
uses analytical method and numerical method from the
perspective of solving method. Most practical nonlinear
programming problems are solved using numerical
methods, because the analytic method is only applicable
to a significant analytic objective function. Nevertheless,
even if the partial derivative of the objective function can be
found, the solving of nonlinear equations is very compli-
cated and even no solution. Currently, the most used in
nonlinear programming algorithm is intelligent algorithm,
including genetic algorithm, simulated annealing algo-
rithm, ant colony algorithm, particle swarm optimization,
etc., and the combination of the above algorithm and im-
proved algorithm.

The genetic algorithm (GA) [32] is an evolutionary
computation algorithm inspired by biological evolution,
which is proposed by holland in 1975. The ant colony
algorithm [33] is a stochastic optimization algorithm

Table 1 Candidate service suppliers’ data

Process Services
suppliers
name

Service time
(unit time)

Service cost
(unit cost)

Pass rate
(%)

Process 1—machine
type: lathe

R11 31 34 95

R12 36 75 94

R13 42 73 93

R14 6 1 98

R15 16 82 90

Process 2—machine
type: mill

R21 28 14 92

R22 3 24 90

R23 39 39 90

R24 1 33 82

R25 23 42 90

Process 3—machine
type: drill

R31 2 58 95

R32 43 44 90

R33 25 68 95

R34 46 42 90

R35 32 88 93

Process 4—machine
type: planer

R41 46 26 93

R42 46 68 90

R43 8 70 96

R44 15 27 90

R45 1 39 90

Process 5—machine
type: grinder

R51 36 4 95

R52 49 35 90

R53 19 44 98

R54 14 19 96

R55 42 76 90
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(technology) by simulating the behavior of ants, which is
proposed by an Italian scholar Dorigo in 1991. The particle
swarm optimization (PSO) [34] is proposed by Kennedy
et al. in 1995, which is a group of stochastic optimization
techniques based on the social behavior of birds simulation.
Among them, the genetic algorithm, ant colony algorithm
and PSO belong to intelligent computing. The PSO com-
bines the evolutionary computation and the swarm intelli-
gence computing, which has dual characteristics of evolu-
tionary computations such as genetic algorithm and swarm
intelligence algorithm such as ant colony algorithm. It
shows more intelligent in the global search and local search.
In recent years, there are more and more optimization
studies based on PSO, which indicates that research on
the PSO is still a hot field in intelligent algorithm and shows
that the PSO has strong advantage to solve the same prob-
lem compared with the past intelligent algorithm. On the
other hand, the above single problem is also typical 0–1
integer programming problem, which is the NP problem as
we all know. Currently, there are exact methods for solving

approach (such as recursion, backtracking, branch and
bound method, etc.), approximation algorithms (such as
greedy method, Lagrange method, etc.) as well as intelli-
gent optimization algorithms (such as simulated annealing,
genetic algorithms, genetic annealing evolutionary algo-
rithm, and ant colony algorithm). Through analyzing the
nonlinear integer programming problem and 0–1 integer
programming solving method, an improved PSO algorithm
is proposed.

PSO is a population-based stochastic optimization method
introduced firstly by Eberhart and Kennedy [34] for continu-
ous optimization problems. It is inspired by the social behav-
ior of organisms such as bird flocking and fish schooling. Shi
et al. [35] proposed a modified particle swarm optimizer in
1999, which is called standard PSO (SPSO). The SPSO refers
to add inertia weight factor in the original PSO velocity update
formula. The new velocity update formula is as follows:

v tþ1
id ¼ w� v tid þ c1r1 pt

id − x tid
� �þ c2r2 pt

gd − x tid

� �
ð21Þ

Table 2 Client A, candidate service suppliers’ logistics cost data

Name Logistics cost (unit cost)

i

1 2 3 4 5

Client A—service supplier R1i 39 82 86 58 63

Service supplier R11–R2i 80 78 61 92 28

Service supplier R12–R2i 75 31 98 58 53

Service supplier R13–R2i 37 53 52 1 69

Service supplier R14–R2i 21 8 47 12 49

Service supplier R15–R2i 79 11 80 86 53

Service supplier R21–R3i 94 13 22 48 44

Service supplier R22–R3i 32 67 49 84 12

Service supplier R23–R3i 67 49 90 20 49

Service supplier R24–R3i 43 18 57 55 85

Service supplier R25–R3i 83 49 84 62 87

Service supplier R31–R4i 76 14 73 3 27

Service supplier R32–R4i 16 5 58 61 20

Service supplier R33–R4i 86 85 24 36 56

Service supplier R34–R4i 98 56 66 4 64

Service supplier R35–R4i 51 92 8 48 41

Service supplier R41–R5i 88 69 62 19 20

Service supplier R42–R5i 58 58 66 12 94

Service supplier R43–R5i 15 81 72 20 8

Service supplier R44–R5i 19 87 89 14 10

Service supplier R45–R5i 40 98 98 18 14

Service supplier R5i—client A 74 0 76 4 16

Table 3 Client A, candidate service suppliers’ logistics time data

Name Logistics time (unit time)

i

1 2 3 4 5

Client A—service supplier R1i 5 0 4 1 1

Service supplier R11–R2i 8 5 0 8 1

Service supplier R12–R2i 3 3 8 3 5

Service supplier R13–R2i 4 1 1 2 4

Service supplier R14–R2i 0 2 0 7 8

Service supplier R15–R2i 1 9 3 0 7

Service supplier R21–R3i 6 6 4 0 7

Service supplier R22–R3i 3 4 1 6 0

Service supplier R23–R3i 8 9 9 6 0

Service supplier R24–R3i 1 1 3 5 0

Service supplier R25–R3i 9 7 2 7 7

Service supplier R31–R4i 5 7 0 7 9

Service supplier R32–R4i 7 5 2 7 6

Service supplier R33–R4i 9 1 0 2 1

Service supplier R34–R4i 2 5 5 6 7

Service supplier R35–R4i 4 2 7 5 1

Service supplier R41–R5i 4 1 6 3 1

Service supplier R42–R5i 7 2 0 0 6

Service supplier R43–R5i 8 8 0 7 3

Service supplier R44–R5i 1 0 7 3 6

Service supplier R45–R5i 1 2 9 6 7

Service supplier R5i—client A 3 0 5 7 5
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x tþ1
id ¼ x tid þ v tþ1

id ð22Þ

w ¼ wstart−
wstart − wend

tmax
� t ð23Þ

Where, w is the inertia weight, c1 and c2 are learning factor
respectively, general admission c1=c2=2, and r1 and r2 are
distributed in the (0, 1) random number.

Shi et al. recommend the wstart is 0.9 and the wend is 0.4, so
that the algorithm will have good performance. A lot of
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literature [36–39] show the basic structure of SPSO algorithm,
which is summarized as follows:

Procedure PSO Algorithm 

Begin

initialize Xt and Vt; evaluate fiteness(t);

while (not termination condition ) do

update Vt+1 and Xt+1; 

evaluate fiteness(t+1); 

end while 

return best solution;

End 

However, typical particle swarm algorithm is designed for
continuous function. In this research the variables are logical
variables 0 and 1. Therefore, the use of particle swarm needs
firstly to convert variable, which is a difficult point for PSO
applied to practical problem, especially combinatorial optimi-
zation problem. Real random coding mode is a coding
method used in the GA, which is proposed by Bean [40].
Its basic principle is randomly generate n-dimensional vector
x=[x1,x2,⋯xn], xi∈[0,1], i∈[1,n]. According to the value of xi
in x, and backing subscript i permutations, a segmented
random vector encoding mode is proposed. Set the particle
swarm location as n-dimensional vector:

X ¼ x11; x12;⋯x1n1; x21; x22;⋯x2n2;⋯xm1; xm2;⋯xmnm½ �
ð24Þ

Then, Formula (24) is converted into the vector block:

X ¼ X 1;X 2;⋯Xm½ � ð25Þ

Where,

X 1 ¼ x11; x12;⋯x1n1½ �
X 2 ¼ x21; x22;⋯x2n2½ �

…
Xm ¼ xm1; xm2;⋯xmnm½ �

8>><
>>:

9>>=
>>;

ð26Þ

Table 4 Test results of IPSO
algorithm Test no. Task no. Vmax c1=c2 Popsize MaxIter rc rt Fitness value When

convergence?

1 5 2 2 10 50 500 100 2,516 12

2 5 2 2 10 50 500 100 2,516 19

3 5 2 2 10 50 400 100 2,516 13

4 5 2 2 10 50 400 100 2,516 15

5 5 2 2 10 50 500 80 2,516 45

6 5 3 2 10 50 500 80 2,516 13

7 5 3 2 10 50 400 80 2,516 24

8 5 3 2 10 50 400 80 2,516 43

9 5 3 2 10 50 500 80 2,516 18

10 5 3 2 10 50 500 100 2,516 27

11 5 2 2 20 50 500 100 2,516 28

12 5 2 2 20 50 500 100 2,516 16

13 5 2 2 20 50 400 100 2,516 26

14 5 2 2 20 50 400 100 2,516 32

15 5 3 2 20 50 500 80 2,516 25

16 5 3 2 20 50 500 80 2,516 20

17 5 3 2 20 50 400 80 2,516 34

18 5 3 2 20 50 400 80 2,516 41

19 5 3 2 20 50 500 80 2,516 46

20 5 3 2 20 50 500 100 2,516 25

Table 5 Changed logistics cost data

Name Logistics cost (unit time)

i

1 2 3 4 5

Client A—service supplier R1i 100 164 172 150 126

Service supplier R5i—client A 120 105 152 110 90

Int J Adv Manuf Technol (2014) 71:1549–1563 1557



Select from X1,X2⋯Xmwhere the subscript of their larg-
est element value as the target combination vector which is
the service supplier’s number (the optimal combination of
machining equipment).

In addition, the fitness function is used to evaluate particle
in the PSO algorithm, which is the function of the particle
position. A particle’s fitness value is determined by its loca-
tion, usually taking the fitness function as objective function.
The constraints of objective function will make the solution
leave the solution space with the particle change in position
and velocity, causing the solution is not feasible. This is a
common problem in constrained optimization. If the con-
straint problem can’t be handled, the solution is not a reason-
able solution. Currently, the most widely used treatment for
constrained optimization method is to learn the traditional
method of introducing penalty function. The penalty function
method is used to construct the first stage particle fitness
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function based on the objective function and constraints in
formula (20):

Min c; rtð Þ ¼ f cð Þ þ rt max f Tð Þ; 0ð Þ½ � ð27Þ

Where f(T)=f(t)−Tmax, rt is the total time penalty coeffi-
cient, which is a sufficiently large positive number.

Set [Min (c,rt)]=ft
∗,f(C)=f(c)−ft∗, then the second-level

particle fitness function is constructed:

Min c; q; rt; rcð Þ ¼ 1− f qð Þ þ rc max f Cð Þ; 0ð Þ½ � ð28Þ

Where rc is the total cost penalty coefficient, which is a
sufficiently large positive number. Combining Formulas (24)
and (25), the particle fitness function is:

Min c; q; rt; rcð Þ ¼ 1− f qð Þ þ rc max f cð Þ− f cð Þðð½
þrt max f tð Þ−Tmaxð Þ; 0ð Þ½ �Þ; 0Þ�

According to the above improvement point, the improved
PSO algorithm step is as follows:

Step 1: Initialize the particle swarm

1.1 According to the above variables into principles, Formula
(24)–(26), convert the problem state space into particle swarm
position space

1.2 Define the range of particle position components

1.3 Define population size

1.4 Define cognitive and social coefficients c1, c2, weight
coefficients start and end values

1.5 Define the maximum number of iterations

Step 2: Initialize particle position and velocity

Step 3: Evaluate the particle swarm according the particle
fitness function, Formula (29)

Step 4: Update the particle position and velocity according the SPSO
velocity Formulas (21)–(23)

Step 5: Evaluate the particle swarm according the Formula (29)

Step 6: Judgment iteration termination condition, if it reaches the
maximum number of iterations then end iteration, otherwise,
return step 4

Step 7: According to the results, output optimum particle position
components, decode and convert to the candidate resource number
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5 Simulation experiment and discussion

5.1 Experimental preparation

In the section, we first verify that the proposed IPSO algorithm
is feasible and effective to solve the above model. Second, the
effect on solving the optimal selection of machining equip-
ment is analyzed by using the proposed model with current
model.

In order to verify the feasibility and superiority of the
proposed algorithm, the improved particle swarm algorithm
is analyzed firstly, then comprising with the genetic algorithm.
The experimental environment is Intel (R) Core (TM) 2 Quad
CPU Q800, 2.33GHz; RAM 2GB, 32-bit window 7 operating
system. The experimental tool is Matlab2012 software.
Assume a client named A submits five successive process of
certain machine part to the CMP, and the client A provides
rough part. Five kind of machining equipment (relevant ser-
vices suppliers) have been found through the resources

discovery. And the relevant data are shown in Tables 1, 2,
and 3 below.

In addition, the Tmax=60, the maximum penalty coefficient
rc=500, rt=100. Set the IPSO population size as 10 and 20,
respectively, c1=c2=2, the maximum number of iterations is
50. Set genetic algorithm population size as 10 and 20 respec-
tively, crossover probability Pc=0.5, mutation probability
Pm=0.005, the maximum number of iterations is 50.

5.2 Experimental discussion

5.2.1 IPSO test

First, the improved particle swarm algorithm is tested 20
times, due to space limitations four test results picture are
shown in Fig. 2. The more data information can be seen in
Table 4.

Figure 2 illustrates when the population size is set at 10 and
20, respectively, all the particles are obtained at each IPSO
iteration. The fitness value converged to 2,516, the optimiza-
tion is R14-R22-R31-R43-R53, the total cost is 516, total time
is 49, and the average quality is 95 %. In addition, from the
change trend of individual fitness in Fig. 2, it is shown that the
maximum number of iteration is appropriate. (As this test
problem size is 5×5, it is not the large-scale combination
problem). From Table 5, we can know the IPSO algorithm
parameter setting is reasonable and effective, all iterations
converge between 10 and 46 times (average is 26.2) and the
fitness value converges to 2516.
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Table 6 Changed logistics time data

Name Logistics time (unit time)

i

1 2 3 4 5

Client A—service supplier R1i 10 5 8 2 2

Service supplier R5i—client A 10 7 10 14 10
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In comparison with the genetic algorithm, it is found when
the population size is 10 in Fig. 3a. the GA exist precocious
situation and do not converge to the optimum value, which
solution is R15-R24-R31-R43-R53, the total cost is 700, the
total time is 53, and the average quality is 92 %. More
progress difference can be found in Fig. 4. Both GA and
IPSO are almost the same run time to solve the problem
(between 2.5 and 2.7 in Fig. 4a), but the total cost and time
of GA are more 84 (unit of cost) and 4 (unit of time) than
IPSO, respectively. From the comparison we can see, the
IPSO could help the client save machine part outsourcing cost
and reduce the overall outsourcing time.

What’s more, when the population size is set into 20,
Fig. 3b illustrates the genetic algorithm and the improved
particle swarm algorithm all converge to the optimal solution.
However, the IPSO converge when the iteration is set as 30,
the GA converged when the iteration is 35. In the 6×6 scale
test, the performance of GA and IPSO is more obvious (the
population size is set as 20). From the above comparison
showed that the proposed IPSO algorithm had better solution
quality.

5.2.2 Comparison and discussion

The feasibility and superiority of the IPSO is proved by a lot of
test experiments and comparative experiments based on the
above simulation. Using the IPSO algorithm based on its

configuration parameters and the above experimental data
(Tables 1, 2, and 3), this paper further studied the practicality
effect of the proposed model with the similar model. In the
literature [16, 41], there are similar resource optimal selection
problems, but the logistic effect is not be considered in the
actual modeling, making this model similar to shop schedule.
If the selection of machining equipment in CM uses their
model, the result can see in Figs. 5 and 6. The fineness value
is 141 in Fig. 5. The combination no. is R14-R22-R31-R45-
R54. The results can be computed according the combination
number, which is shown in the Fig. 6. But these are just the
model solution results, the client need to pay the actual part
logistics cost and will longer time to receive the outsourcing
part in the real-world operation, which is marked by red dotted
line in Fig. 6.

Figure 6a shows the comparison of total cost. Bar graph 1 is
the total cost of not considering the logistics effect; bar graph 2
is the total cost of adding actual spending in real world; bar
graph 3 is the total cost of considering the logistics effect (our
model). Figure 6b shows the comparison of total time.
Figure 6c shows the comparison of quality (pass rate), and
the corresponding bar graph number has a similar meaning.

From Fig. 6 we can see, when the model does not consider
logistics cost under the above test data (Tables 1, 2, and 3), the
actual total cost is less than the logistics cost is considered.
However, from the comparison of total time, we can see that
the actual total time is larger than considering logistics time,
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but it beyond the time limit set by the client, which is 60 (unit
of time). What’s more, the average quality is lower than
combination of resources when considering logistics. In gen-
eral, the total cost is minimal when logistics effect is not
considered, but from the overall optimization goal (t, c, q),
considering the logistics effect meet client all requirements,
only the c satisfy when without considering the logistics.

Furthermore, the literature [17] considered the logistics
cost and time between supplies, but the logistics time and cost
between the client to first task suppliers and the last suppliers
to the client is ignored in many models, but it cannot be
neglected in CM. Figures 7 and 8 show the effect of not
considering the logistics effect from the client to the first
service suppliers and from the last service suppliers to the
client.

The fineness value is 1,782 from the Fig. 7, the combina-
tion is R14-R22-R33-R45-R54. The model solution is
C=516, T=49, and Q=92.8, but the actual total cost and time
comparison can be seen from Fig. 8.

In Fig. 8, the bar graph 1 presents the actual result of not
considering logistic effect between suppliers and client A in
model. The bar graph 2 presents the result of using our paper
model. From Fig. 8 we can see, when the logistic effect
between suppliers and client A is not considered, the solving
quality is less than considering it. What’s more, when the
client provides rough material, the selection of machining in
CM is usually multiple regions. Therefore, the logistic effect
between suppliers and client Awill increase with the distance
of suppliers and client A. Assuming the address of candidate
suppliers have changed, the logistics cost and time of the first
suppliers R1i and the final suppliers R5i are increased. The
change data is shown in Tables 5 and 6.

Using the same data, the new combination number is still
R14-R22-R31-R43-R53 coincidently, but the total cost is 684,
the total time is 55, the average quality is same as before. But
the significant changes can be seen from Fig. 9.

In Fig. 9, the two fan diagram in the first line denote the
distribution of the logistic cost and time before logistic cost
and time changed, the two fan diagram in the second denote
the distribution of the logistic cost and time after their
changed. All the meaning is marked in Fig. 9. From the
comparison of two figures on the left, we can see that because
of the logistics effect the cost proportion from the client to first
supplier and the last supplier to client has increased. The
similar can be seen from total time comparison. However, if
the model does not consider this effect, the client will spend
more money for total cost, and will wait more days to receive
the outscoring part. Especially, when the above two kinds of
total logistics proportion increase or decrease, this effect will
be enlarged. Through the contrast research, the proposed
model is more correspond to the objective reality, which can
be more close to the actual situation, and providing the opti-
mal selection of machining equipment in CM.

6 Conclusions

In this paper, we studied the selection strategy of machining
equipment in CM. An optimal selection of machining equip-
ment model is proposed, which not only considers the logis-
tics effect between the service suppliers, but also considers it
between the client to the first service supplier as well as the
last service supplier to the client in the model. The mathemat-
ical model is established on the basis of problem description.
In order to solve the multi-objective programming, we use the
priority method as conversion method and presented the pri-
ority order of t\c\q after analyzing the practical problem, and
improve the PSO algorithm including two components: vector
segmented random coding and multilevel constraint conver-
sion based on penalty function. The simulation experiment
indicates that the proposed IPSO is more practical and supe-
rior than the prevalent GA. The comparison simulation exper-
iment indicates that our model is more objectively reflect the
selection of machining equipment. When clients submit
process-level manufacturing task to the CMP, it would make
the actual total cost and time lower, average quality higher.

In the further, we will continue to model other level
manufacturing task of relevant resources optimal selection
and design corresponding algorithm. Ultimately, they will be
used in CMP.
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