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Abstract A manufactured aero-engine blade is commonly
inspected in sections, and its geometric errors are evaluated
from the sectional inspection data points. To maintain consis-
tency in evaluating the geometric errors, in particular, the
position and twist errors of the stacked blade sections, recon-
struction of valid sectional airfoil profiles from the measure-
ment points is preferred. Considering that inspection data
points are subject to measurement uncertainty, profile recon-
struction via approximation-based curve fitting, rather than
interpolation-based curve reconstruction, is adopted in this
work. The fitting error of the approximated airfoil profile is
deemed equivalent to the measurement uncertainty in the
inspection data points. Thus, according to a given measure-
ment uncertainty value, a progressive curve fitting scheme is
proposed to generate the airfoil profile that meets the mea-
surement uncertainty constraint. A closed nonperiodic B-
spline curve is utilized to model the reconstructed airfoil
profile due to its versatility in closed curve approximation.
Typical computational tests have been carried out to demon-
strate the effectiveness of the proposed airfoil profile recon-
struction method, which is in fact generic and can be equally
applied to approximating other closed sectional profiles.
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1 Introduction

Airfoil blades are key components in aero-engines. To main-
tain efficient energy conversion and survive the intense oper-
ating conditions, these blades need to be manufactured under
extremely tight tolerances. Due to the unavoidable
manufacturing errors, once a blade is produced, it must be
precisely inspected in order to verify its conformance to the
specified tolerances. In addition to being used as a means of
acceptance or rejection of a manufactured part, correct repre-
sentation of complete geometric error distribution on a
manufactured blade also provides the fundamental data for
improving the associated manufacturing operations.

The aero-engine blade tolerances are commonly specified
and evaluated in sections. Some tolerances are effectively
two-dimensional and section specific such as profile tolerance
and airfoil dimensions, which are to be evaluated for each
airfoil section individually. Other tolerances are three-
dimensional, which are specified primarily to constrain the
stacking of the airfoil sections with regards to the resulting
position and twist errors. All of these tolerances and their
associated geometric parameters are normally indicated on
the engineering drawings for an airfoil blade. Typically, the
associated geometric parameters include the leading edge
point, trailing edge point, centroid of the airfoil profile, chord
line, camber curve, maximum thickness, and orientation angle
[1, 2]. The specific positions or values of these geometric
parameters must be determined from the inspection data
points in order to evaluate the related tolerances. Two chal-
lenges exist in this tolerance evaluation process. One is how to
properly consider the measurement uncertainty present in the
inspection data points. The other is how to determine the
geometric parameters via a consistent approach across the
various inspected airfoil sections for which the inspection data
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points are collected under similar but different inspection
conditions. The latter challenge is particularly important in
evaluating three-dimensional position and twist tolerances of
the blade from seemingly biased inspection data.

To successfully address both challenges stated above, it is
proposed in this work to generate a continuous mathematical
expression for the complete airfoil profile at each blade sec-
tion from the discrete inspection data points. Due to the
presence of measurement uncertainty, the inspection data
points do not correspond to the actual points on the inspected
blade surface exactly. As a result, the actual airfoil profile can
never be precisely generated from the inspection data points.
A valid approximation, however, can be generated according
to the measurement uncertainty constraint. The measurement
uncertainty-based approximation also provides the needed
consistency in the systematic reconstruction of the individual
airfoil profile at each blade section. With valid airfoil profiles
consistently reconstructed at the inspected sections, the spec-
ified geometric tolerances on the blade, either two- or three-
dimensional, are readily evaluated according to their
definitions.

Existing studies attempted to evaluate the tolerances by
determining the associated geometric parameters directly from
the discrete inspection data points [2, 3] (without
reconstructing the sectional airfoil profiles). Effectiveness of
such an approach relies heavily on the consistency of the
inspection process across the various airfoil sections, in par-
ticular in the evaluation of their position and twist errors.
When the number and/or distribution of the collected data
points vary among the inspected blade sections, biased com-
putational results are likely produced. In these existing stud-
ies, it is evident that the consistency requirement was ignored
and simplification was made to the three-dimensional toler-
ance evaluation procedure, which is possibly due to the chal-
lenge in reconstructing valid airfoil profiles from the inspec-
tion data points.

This paper presents a new, measurement uncertainty based
airfoil profile reconstructionmethod, targeting the consistency
requirement in three-dimensional blade tolerance evaluation.
The reconstructed airfoil profile must be considered a feasible
solution according to the measurement uncertainty constraint.
A progressive curve fitting scheme is devised to reconstruct
the airfoil profile that satisfies the imposed feasibility condi-
tion. A closed nonperiodic B-spline curve is used to represent
the reconstructed airfoil profile due to its versatility in closed
curve approximation. To ensure consistency, the reconstructed
airfoil profile is to be generated without user input. As a result,
a fully automatic closed B-spline curve approximation algo-
rithm has been developed in this work, which improves on
existing B-spline curve approximation methods. In the next
section, the proposed criteria for airfoil profile reconstruction
under the measurement uncertainty are described. Section 3
provides an overview on the existing B-spline curve

approximation methods. Section 4 presents the proposed air-
foil profile reconstruction method including the improvement
made to the existing B-spline curve approximation methods.
Section 5 illustrates some typical computational tests relevant
to airfoil profile reconstruction, and Section 6 concludes the
paper.

2 Criteria for airfoil profile reconstruction

A set of measured data points Q i (i =0 to m) containing a
known level of uncertainty is given. The known measurement
uncertainty U is the expanded uncertainty, which defines an
interval about the measurement result within which the actual
value of the measurand should lie. The probability distribution
in this interval is equivalent to the normal (Gaussian) distri-
bution as shown in Fig. 1. An interval of ±3σ (σ being the
standard deviation of the normal distribution) is employed in
the figure, which means that the actual value would lie within
the uncertainty interval of the measured point with a 99.74 %
probability [4].

Since planar coordinates are measured, the uncertainty
interval for each measured data point can be considered as a
circle centered on the measured point, with the diameter equal
to the measurement uncertainty U . Figure 2 shows a series of
measured data points on a plane along with their uncertainty
intervals. According to the fact that the actual point corre-
sponding to each measured point could lie anywhere inside
the measurement uncertainty circle, a curve passing through
all the circles is considered as a feasible approximation of the
actual profile. Since the curve approximates the measured data
points (by not passing through them), there exists a deviation
e i (a Euclidean distance) between the i th measured point and
the approximated curve, namely the i th fitted residual. A
quantity comparable to the expanded uncertainty U can then
be derived from the fitted residuals to assess the feasibility of
the approximated curve. More specifically, the standard devi-
ation σ r estimated as the root mean square (RMS) of the fitted
residuals is to bemultiplied by 6 and compared againstU . The
feasibility condition is then mathematically formulated as:

6σr ≤U ð1Þ

Fig. 1 Expanded uncertainty interval of ±3σ
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There exist many curves that satisfy the above feasibility
condition as shown in Fig. 2. In order to better approximate
the actual airfoil profile, an additional criterion is introduced.
This criterion is derived from the fact that the ideal CAD
profile is smooth and without any redundant undulation. In
order to establish the smoothest possible profile under the
feasibility condition, the involved computation should not
introduce unjustified undulation to the approximated curve.
Hence, a feasible curve with minimum undulation is to be
selected to best approximate the actual airfoil profile. For a
composite polynomial curve of a fixed degree, a smaller
number of segments would result in less undulation.
Therefore, a progressive curve-fitting scheme is devised in
this work to determine the feasible solution curve that em-
ploys the minimum number of segments. In this scheme, the
algorithm starts with the smallest possible number of curve
segments and then progressively increases the number of
segments until the resulting curve satisfies the feasibility
condition. The feasible curve with the minimum number of
segments also has the benefit of data storage reduction and
improved computational efficiency.

3 Curve approximation using B-splines

A B-spline curve C(u ) of order p (degree p −1) is commonly
expressed as:

C uð Þ ¼
X

j¼0

n

N j;p uð ÞP j u ∈ 0; 1½ � ð2Þ

where P j are the control points and Nj ,p(u ) are the B-spline
basis functions of order p defined over the knot vector
U =[u0,u1,…,un+p−1,un+p] [5–7]. The knot vector U con-
sists of nondecreasing real-value knots. It is commonly desir-
able to use nonperiodic knots, which generate nonperiodic B-
spline curves. The first and last p knots in a nonperiodic knot
vector are duplicated. This makes the B-spline curve pass
through the first and last control points and tangent to the first
and last segments of the control polygon at the curve end
points.

In order to fit a B-spline curve to a given set of points, some
researchers have tried to solve this as a global nonlinear
optimization problem by treating the parameter value at each
data point, the number and location of the control points, and
the knot vector as unknowns. Optimization schemes have
been proposed, which start with an initial B-spline curve
called the active curve [8–11]. The developed optimization
algorithms will converge properly only if an appropriate ac-
tive curve is specified. The active curve needs to be sufficient-
ly close to the target curve shape and defined by an appropri-
ate number of control points. Therefore, there still remain
many challenges in the global nonlinear optimization ap-
proach and it is far from being fully automatic.

Instead of solving the global nonlinear optimization prob-
lem, a widely used method to approximate a B-spline curve
from data points is via least-squares curve fitting. This ap-
proach involves three steps. First, the parameter value ui for
each data points Q i is specified. This step is called parame-
terization. Second, a knot vector U is defined, corresponding
to the parameter value ui , number of data points m +1,
specified degree p −1, and number of control points n +1.
This procedure is usually referred to as knot placement. The
third step is least-squares minimization in which the location
of each control points P j is determined. The common practice
is that the resulting curve would interpolate (pass through) the
start and end data points, Q0 and Qm, and approximate (not
pass through) the remaining points. Therefore, the locations of
the first and last control points are respectively fixed at the
start and end data points. In this case, in order to find the
locations of the other control points, the following summation
of least-squares deviations are minimized with respect to the n
−1 variables, P j (j =1 to n −1), where n is in general less than
m :

Xm−1

i¼1

Qi−C ui
� ����

���
2

ð3Þ

After differentiating Eq. (3) with respect to P j and setting
the resulting expressions equal to zero, the minimization
problem is converted into one of solving a system of linear
equations in the following form:

NTN
� �

P ¼ R ð4Þ

where P=(P1 P2 ⋯ Pn−1)
T and

N ¼
N1;p u�1ð Þ ⋯ Nn−1;p u�1ð Þ

⋮ ⋱ ⋮
N1;p u�m−1ð Þ ⋯ Nn−1;p u�m−1ð Þ

2

4

3

5

m−1ð Þ� n−1ð Þ

ð5Þ
Fig. 2 Feasible approximated curves satisfying the uncertainty criterion

Int J Adv Manuf Technol (2014) 71:675–683 677



R ¼ NTQ ¼
N1;p u�1ð ÞQ1 þ⋯þ N1;p u�m−1ð ÞQm−1

⋮
Nn−1;p u�1ð ÞQ1 þ⋯þ Nn−1;p u�m−1ð ÞQm−1

2

4

3

5

n−1ð Þ�1

ð6Þ

Detailed derivation of the matrices above can be found in
[7, 12]. Solving the derived system of linear equations re-
quires a known knot vector. In order to compute the knot
values, it is necessary to know the parameter value at each
data point first. To compute the parameter value ui , many
parameterization techniques have been proposed [13–16],
among which the chord length method is the most widely
used. Once the parameter values are computed, a knot vector
is to be defined. De Boor [12] suggested a choice of internal
knots to facilitate the least-squares approximation, which
guarantees that every knot span contains at least one param-
eter value. When this condition is met, (NTN) in Eq. (4) is a
positive definite matrix that makes the system of linear equa-
tions solvable by Gaussian elimination without pivoting.

It should be noted that the majority of the existing studies
have been focusing on the approximation of open curves. The
main difference between constructing an open curve and a
closed curve lies in the clear indication of where the start point
should be located. To construct a closed curve, there is no
obvious location set for the start point with reference to the
given point set. Therefore, there is a definite need to devise a
systematic approach to select a suitable start point as a refer-
ence to parameterizing the data points. Parameterization can
affect the shape of the fitted curve by altering the location of
the solved control points. The method to select the start point
must thus be sound in order to construct a curve with en-
hanced shape fidelity.

The above requirement for approximating closed
nonperiodic B-spline curves over closed data point sets was
raised by Piegl and Tiller [17]. They assumed that, in addition
to data point positions, end derivatives were also available.
End derivatives uniquely govern the locations of end control
points. Thus, the computation of these control points was
separated from the least-squares fitting procedure, where the
rest of the control points were computed. This method suffers
from the need of data point interpolation at the start and end
control points. In addition, end derivative information is often
not readily available for data point sets measured from closed
profiles.

The curve approximation method devised in this work is in
effect similar to that of Piegl and Tiller [17] in data point
parameterization and knot placement. Themain difference lies
in its independence from the extra input information of end
derivatives for selecting the start point. As a fully automatic
method, the start point in this paper is selected based on the
continuity constraints of a smooth closed B-spline curve.
Compared with the existing methods, the set of parameters
to be fitted in the proposed method is expanded to avoid any

unnecessary interpolation of data points in generating the
closed curve.

4 Profile reconstruction methodology

The airfoil profile reconstruction problem to be solved in this
work can be formally defined as follows:

Given a set of discrete inspection data pointsQ i (i =0 tom)
and the associated measurement uncertainty, a closed
nonperiodic B-spline curve of degree p −1 is to be computed
to best fit the data point set such that it meets the feasibility
condition and employs the smallest possible number of curve
segments.

Figure 3 shows the flow chart of the overall profile recon-
struction procedure. For a given number of curve segments,
the procedure involves the following main steps:

1. Select an appropriate start point for constructing the
curve.

2. Compute the parameter value for each data point starting
from the selected start point.

3. Generate the knot vector using the computed parameter
values at the data points as well as the number of control
points so as to obtain the B-spline basis functions.

Input to 
the 

Algorithm

Set of sectional data 
points

Associated measurement 
uncertainty U

Select starting point

Parameterize

Set n equal to 5

Generate knot vector

Compute B-spline 
basis functions

Solve the constrained 
minimization of Eq. (13)

Calculate 
r

6
r

 U

Reconstructed 
profile

Yes

n = n + 1

No

Fig. 3 Flow chart of the progressive profile reconstruction procedure
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4. Determine the locations of the control points by solving
the formulated least-squares minimization problem with
the continuity constraints presented below.

The selection of an appropriate start point in step 1 is based
on the continuity requirement for the best-fitted closed B-
spline curve as applied to airfoil profile reconstruction.
Airfoil blades are typically designed with curvature continuity
since any curvature discontinuity would result in undesirable
performance of the blades [18]. This means that, if an airfoil
sectional profile is to be constructed as a piecewise polyno-
mial curve, the resulting curve must provide at least C 2

continuity at the joint (knot) points of the involved curve
segments. The continuity of a B-spline curve of degree p −1
is Cp−2 at the knots. Thus, a cubic B-spline curve can provide
the needed C2 continuity. A higher degree would give higher
continuity at the joints, but it may cause unwanted curve
undulations. As a result, the cubic curve is employed to
reconstruct the airfoil profile in this work. In order to obtain
a smooth closed curve, continuity at the joint of the first and
last curve segments (equivalent to the start as well as the end
point) must be consistent with the continuity at all the other
knots. Thus, for the closed cubic B-spline curve to be recon-
structed, it needs to be C2 continuous at the start and end
points. This leads to the following continuity constraints on
the associated control points:

Pn ¼ P0 ð7Þ

Pn−Pn−1 ¼ P1−P0 ð8Þ

4 P0−Pn−1ð Þ ¼ P2−Pn−2 ð9Þ

Figure 4 shows a C2 continuous closed cubic nonperiodic
B-spline curve together with its control polygon. It should be
noted that a nonperiodic B-spline curve passes through its first
and last control points and its tangent vectors at the start and
end points are, respectively, in the same direction as the first
and last segments of the control polygon. Equation (7) re-
quires thatP0 and Pn should be placed at the same location (in

order to form a closed curve). This constraint gives C0 conti-
nuity at the start/end point, the joint of the first and last curve
segments. Equation (8) gives C1 continuity via equating the
first derivatives of the closed curve at the joint, and Eq. (9)
gives C2 continuity by requiring the second derivatives at the
start and end points to be the same.

From Eqs. (7) and (8), the set of control points {Pn−1,Pn=
P0,P1} should always be on a straight line, as can be seen in
Fig. 4. This condition is to be used to select the start point.
When a specific data point is designated as the starting point
for parameterization (corresponding to the parameter value 0),
it specifies a neighborhood for the potential location of the
first and last control points. Due to the required C2 continuity,
the control polygon in this neighborhood should closely fol-
low a straight line. Since the nonperiodic B-spline curve
shares its tangents at the start/end point with the direction of
both the first and last segments of the control polygon, the
condition of the control polygon being close to a straight line
in the start point neighborhood means that the curve will be
geometrically flat around the start point. Therefore, the start
point is to be selected as the point with minimum curvature
variance along the airfoil profile.

In step 2, the popular chord length method [6, 7] is adopted
to compute the parameter value for each data point:

u�0 ¼ 0; u�i ¼ u�i−1 þ Qi−Qi−1j j
d

; u�m ¼ 1 ð10Þ

where

d ¼
X

i¼1

m

Qi−Qi−1j j ð11Þ

To generate the knot vector in step 3, the knot placement
method by De Boor [12] is utilized in this work. For a
nonperiodic B-spline curve of degree p −1 with n +1 control
points, a knot vector of n +p +1 knot values must be defined.
Since the first and last knots are duplicated p times, there are
n −p +2 internal knot spans. While u0=…=up−1=0,un+1=
…=un+p=1, the internal knots up+j are defined by:

upþ j ¼ 1−αð Þu�k−1 þ αu�k j ¼ 0 to n−p
k ¼ Int jvð Þ
v ¼ mþ 1

n−pþ 2
α ¼ jv− k

ð12Þ

In step 4, the least-squares minimization problem is solved.
One unique feature of the proposed method lies in avoiding
any unnecessary interpolation of the data points. In particular,

Fig. 4 A C2 continuous closed cubic non-periodic B-spline curve (in
blue) and its control polygon (in black)
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existing methods that interpolate the selected start/end data
points are in effect inconsistent with the requirement that an
approximated curve should not pass through any data point.
Thus, in this work, the first and last control points are com-
puted in the same way as all the other control points according
to the imposed constraints ofC2 continuity. More specifically,
the following objective function, in comparison with Eq. (3),
is to be minimized with the constraints of Eqs. (7), (8), and (9)
in order to solve for the complete control point set (P0 P1 P2

⋯ Pn−1 Pn) for the construction of aC
2 continuous closed B-

spline curve:

X

i¼0

m

Qi−C ui
� ����

���
2

ð13Þ

Once the control points are computed, the B-spline curve
that approximates all the data points is obtained. The mini-
mum possible number of control points to construct a closed
cubic B-spline curve of C2 continuity is 6. This means that at
least three curve segments are needed to construct such a
piecewise composite curve. Because of this, the progressive
profile reconstruction algorithm proposed in this work starts
with a curve composed of three segments (six control points).
The resulting fitted curve is then checked against the feasibil-
ity condition of Eq. (1). If the feasibility condition is not met,
one more curve segment (control point) is added and a new
curve is fitted. This iteration continues until the feasibility
condition is satisfied.

5 Results and discussion

The proposed progressive profile reconstruction algorithm has
been implemented and its effectiveness evaluated using many
synthesized test data sets. Using synthesized data sets allows
straightforward evaluation of the computed results against
reference values in the test data sets.

5.1 Ideal data sets sampled from theoretical profiles

The first series of tests to assess the performance of the
proposed algorithm are to validate the presented least-
squares formulation with the continuity constraints in approx-
imating closed curves. To perform this analysis, a theoretical
B-spline curve is sampled into a sequence of 1,000 points.
Then, the minimization problem is solved. Least squares,
being a maximum likelihood estimator [19], would give the
best approximate of the theoretical profile if the formulated
mathematical expression for the curve fitting is correct.
Hence, the minimum number of curve segments required, so
that the fitted curve corresponds best to its theoretical solution,
is expected to be exactly the same as the number of curve
segments in the theoretical curve. Figure 5a shows the points
sampled from a cubic closed nonperiodic B-spline curve
composed of nine segments and joined with C2 continuity,
which resembles the shape of an airfoil profile. Since the
minimum number of segments required to construct a C2

continuous cubic closed nonperiodic B-spline curve is 3, the
algorithm starts fitting the curve with three segments. Then,

Fig. 5 a Ideal sampled points and b reconstructed profile of nine
segments (in blue) along with its knot points (in red)

Fig. 6 RMS of the fitted residuals versus number of segments employed
in the approximated curve (ideal sampled points)

Fig. 7 a Noisy points with uncertainty and b reconstructed profile of
nine segments (in blue) along with its knot points (in red)

Fig. 8 6σ r versus number of segments in the approximated curve
(dashed line indicating U=12 μm)
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the number of segments is increased incrementally. The RMS
value of the fitted residuals of the approximated curve de-
creases with an increase in the number of curve segments until
it drops to a value close to zero for nine curve segments. The
fitted B-spline curve with nine segments shown in Fig. 5b
corresponds very well to the original theoretical curve. The
plot in Fig. 6 presents the RMS value of the fitted residuals,
σ r, of the approximated curve versus different number of
curve segments employed in the approximated curve, from
three to nine segments. The RMS value for the nine-segment
curve is 3.6×10−5mm, which indicates that the obtained so-
lution reliably represents the original theoretical curve.

5.2 Synthesized noisy data sets

The previous set of 1,000 points is ideal and sampled from a
theoretical curve. However, in practice, measured data points
would contain measurement noise. As mentioned earlier, the
input to the proposed algorithm is a data point set together with
a known expanded measurement uncertainty interval. Reliable
estimation of measurement uncertainty is difficult and varies
with the measurement task being performed [20]. Savio and
De Chiffre [21] developed a task-specific modular artifact to
estimate measurement uncertainty in the inspection data of
turbine blades. According to their reported results, the estimat-
ed measurement uncertainty is around 5–10 μm. In the present
work, comparable Gaussian deviates are superimposed onto
the ideal points shown in Fig. 5a in order to emulate noisy
inspection data points characterized by different expanded
measurement uncertainty intervals, ranging from 5 to 12 μm.
Figure 7a shows a typical set of 1,000 points characterized with
an expanded uncertainty interval of 12 μm.

As stated previously, one important feature of least-squares
fitting is that normal (Gaussian) deviations in the fitted data
will be dealt with automatically since least-squares is a max-
imum likelihood estimator. It is thus expected that the

proposed progressive curve fitting on the noisy data set would
end up with exactly the same number of curve segments as
that for the ideal sampled points; i.e., nine segments. The
computed results have shown that a feasible reconstructed
profile from the noisy point set of Fig. 7a requires a minimum
of nine curve segments as shown in Fig. 7b. Figure 8 illus-
trates how the RMS value of the fitted residuals, σ r, decreases
with increasing number of curve segments, starting from three
segments. It can be seen that when nine curve segments are
employed, the feasibility condition of 6σ r≤U is met. The
dashed line in the figure, which corresponds to the termination
criterion of the proposed algorithm, is set as the measurement
uncertainty of the point set.

The RMS value of the fitted residuals is in effect equivalent
to the standard deviation of normally distributed fitted resid-
uals. Thus, once the 6σ r value becomes less than the mea-
surement uncertainty of 12 μm for the point set, the fitted B-
spline curve is considered to lie within the uncertainty interval,
making it a feasible solution. At the same time, the generated
airfoil profile is characterized by minimum undulation since it
contains the minimum possible number of curve segments to
satisfy the desired shape fidelity. Another advantage of the
feasible curve solution employing the least number of seg-
ments is that the constructed B-spline curve will be the sim-
plest possible in formulation, as it employs the least number of
defining knots and control points. Such simplicity makes it
more computationally efficient to solve for the B-spline curve.

It should also be noted that, in practice, RMS of the fitted
residuals is a more useful measure of closeness of the fitted
curve to the input noisy points than other measures such as

Table 1 Minimum number of segments to reconstruct a feasible profile
from point sets with different uncertainty values

Expanded uncertainty U (μm) 5 6 7 8 9 10 11 12

Minimum number of segments required 13 11/9 9 9 9 9 9 9

Fig. 9 Variation of 6σr (for approximated curves employing minimum
number of segments) with different uncertainty intervals

Fig. 10 RMS deviations between the approximated and theoretical pro-
files under different uncertainty intervals

Fig. 11 Maximum deviations between the approximated and theoretical
profiles under different uncertainty intervals

Int J Adv Manuf Technol (2014) 71:675–683 681



maximum deviation. This is because the RMS measure is
much less sensitive to potential outliers in the point set. The
maximum fitted residual of an approximated profile is likely
to exceed the uncertainty interval, while the evaluated RMS of
the fitted residuals would match the standard deviation of the
underlying measurement uncertainty. Since the exceeded
maximum fitted residual is often a result for noisy point sets,
using the maximum deviation measure to confirm the feasi-
bility condition of the fitted curve is likely to result in an
incorrect minimum number of required curve segments.

Table 1 lists the minimum number of curve segments
required to construct a feasible profile from point sets charac-
terized with different uncertainty values. It can be seen that
reducing the uncertainty in a point set tends to increase the
number of curve segments required to form a feasible profile
solution. When U =6 μm, close to half of the associated
synthesized point sets require nine segments and the other
half require 11 segments. WhenU is reduced further to 5 μm,
13 segments are needed. For the curves composed of the
minimum possible segments corresponding to each uncertain-
ty value as listed in Table 1, Fig. 9 shows the variation of 6σ r

(6×RMS of the fitted residuals) with the measurement uncer-
tainty. As expected, the trend of variation of the RMS value is
ascending with an increase in measurement uncertainty.

In Fig. 9, the RMS value of the fitted residuals is seen to
grow at a reducing rate with measurement uncertainty. The
significance of this reducing rate of growth can be illustrated
by examining the degree of resemblance between the recon-
structed profile under the imposed uncertainty and the theo-
retical reference profile. To examine this, both the RMS and
maximum deviations of the reconstructed profile from the
theoretical profile are adopted as measures of closeness.
Variations of the RMS and maximum deviations with mea-
surement uncertainty are shown in Figs. 10 and 11, respec-
tively. As shown in these two figures, deviations between the
approximated and theoretical profiles are not continuously
growing with increasing measurement uncertainty in the point
set. For interpolation-based reconstructed profiles, the general
trend of such deviation plots would be ascending, which is due
to the fact that the difference between the reconstructed and
actual profiles increases as a result of the increased uncertain-
ty. Conversely, for approximation-based reconstructed pro-
files using the proposed progressive algorithm, although the
probability to accurately approximate the noisy data sets by
the reconstructed profile still reduces with increased uncer-
tainty, the reconstructed profile composed of the minimum
possible number of segments for minimum curve undulation,
is still faithful to the shape of the actual profile. This is
confirmed by the implementation results of the proposed
algorithm shown in Figs. 10 and 11 that the profiles have been
reconstructed with similar degree of closeness to the actual
profile even with increased measurement uncertainty values.
The seemingly steady RMS and maximum deviations shown

in the figures clearly indicate that the reconstructed profiles
closely represent the actual profiles and are robust to the
uncertainty in the input point sets.

6 Conclusions

A progressive curve fitting algorithm to reconstruct an airfoil
profile from a given inspection data point set with a known
measurement uncertainty has been presented in this work and
is based on two criteria. The first criterion states that a con-
structed profile is considered a feasible solution if six times the
standard deviation of the fitted residuals is less than the
measurement uncertainty value. This means that the approx-
imated curve would be within the expanded uncertainty inter-
vals for the vast majority of the input points. Since numerous
reconstructed curves can satisfy this criterion, the second
criterion requires the curve to be of minimum undulation in
order to be consistent with the general shape of an airfoil
profile. The minimum undulation criterion in effect requires
the curve to be constructed using the minimum possible
number of curve segments. This will also bring the benefit
of data reduction as a parametric curve with fewer segments
results in fewer knots and control points. The implementation
results have demonstrated the effectiveness of the proposed
method. With the airfoil profile reliably reconstructed from a
set of inspection data points, it can then be used to evaluate the
stacking errors of airfoil sections in an airfoil blade. Relevant
research work is underway and will be reported in the future.
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