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Abstract Tube hydroforming process is widely used in
various industrial applications which consists of combin-
ing internal pressure and axial displacement to manufacture
tubular parts. Inappropriate choice as small changes in such
variables may affect the process stability and, in some
cases, lead to failure. Consequently, loading path should
be optimised to better control the process and to guaran-
tee hydroformed parts with desired specifications. However,
optimisation procedure requires several evaluations of the
real models which induces a huge computational time.
To cope with this limitation, we propose to compare two
metamodelling techniques to solve the problem efficiently:
the response surface method and the least squares support
vector regression. To enhance the metamodels precision,
optimal latin hypercube design is used to generate sampled
points. It is obtained through iterative optimisation proce-
dure based on a modified version of the simulated annealing
algorithm by minimising simultaneously two optimality
criterions. Then, multi-objective optimisation problem is
formulated to search for the Pareto optimal solutions. Fuzzy
classification is then applied to rank the non-dominated
solutions which helps designers in the decision-making
phase. Before optimising the process, a global sensitivity
analysis is carried out using the variance-based method by
coupling metamodels and Monte Carlo simulations in order
to identify the relative importance of the design variables
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in terms of internal pressure and axial displacement on the
variance of the responses of interest defined to control the
process.
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1 Introduction

Hydroforming (HF) processes have been extensively used
to manufacture a variety of components in the automo-
tive industry [1–3] and is of increasing interest to other
industries as well. They represent an excellent way of man-
ufacturing simple and complex parts with a high level of
repeatability, lower tooling cost and higher dimensional
accuracy. Generally, HF processes can be divided into two
broad categories: tube hydroforming (THF) process and
sheet hydroforming process, each characterised primarily
by the specific applied loads and involved tools. In the
present research, we focus only on THF process where
the tube is simultaneously subjected to a uniformly dis-
tributed internal pressure and axial displacement. A suc-
cessful hydroforming operation requires precise selection of
loading path which depends essentially on material prop-
erties, geometric characteristics and frictional conditions.
Selecting an appropriate loading path without any a pri-
ori knowledge about the problem is a very hard task for
engineers. So either we need some kind of trial-and-error
adjustment or we adopt some finite element (FE) simu-
lations based on reliable FE model coupled with iterative
optimisation method. The latter appears more appropriate
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since the former is very costly mostly for complex com-
ponents. Additionally, the use of this approach has been
widely adopted in the literature and its robustness has been
demonstrated through several studies. In the following, we
will present the recent interesting methods applied for opti-
mising THF process for various components with different
geometry.

During the last decade, several papers have been pub-
lished with the aim to optimise loading path in THF process.
The most proposed strategies are based on the finite element
analysis (FEA) coupled with an optimisation procedure.
They differ mainly in the optimisation algorithm cho-
sen (meta-heuristic algorithms, gradient-based algorithms,
hybrid optimisation methods, etc.) and the selected failure
criterions used to control the process. Ray and Mac Donald
[4] proposed to optimise loading path for THF process using
a fuzzy load control algorithm and FEA. The proposed algo-
rithm is used in conjunction with LS-DYNA FE code for
simulation of the forming process. An et al. [5] used a multi-
objective optimisation algorithm combined with the Taguchi
statistical method and FEA to determine optimal loading
path for a simple THF process. Ingarao et al. [6] proposed
a multi-objective approach to design a complex Y-shaped
tube hydroforming. These authors investigated the calibra-
tion of internal pressure and counter punch action to achieve
three different quality objectives: minimisation of thinning,
reduction of underfilling and accuracy of the final fillet
radius at the bulge zone corner. Lin and Kwan [7] applied
abductive network and finite element method (FEM) to
manufacture an acceptable product of which wall thick-
ness and the protrusion height fulfil the industrial demand
on the T-shape THF process. Mirzaali et al. [8] used the
simulated annealing algorithm as meta-heuristic method to
optimise loading path in THF process. Xu et al. [9] investi-
gated the effects of the loading path on the hydroformability
of trapezoid-sectional parts. Through numerical simula-
tions, the effects of die angles and friction coefficients on
the hydroforming process and the final parts are explored.
Zadeh and Mashhadi [10] investigated the formability of
unequal T-joints by FE simulations and experiments. These
authors showed that there is a good agreement between
FEM and experimental results. Alaswad et al. [11] used the
response surface (RS) models to investigate the effects of
geometrical factors on branch height and thickness reduc-
tion in T-shape bi-layered THF process. Abedrabbo et al.
[12] proposed an optimisation method linked with the FEM
to optimise internal hydraulic pressure and end feed rate,
while satisfying the failure limits defined by the forming
limit diagram (FLD). Di Lorenzo et al. [13] proposed a
gradient-based decomposition approach which consists in
reducing the required numerical simulations about 50 %
to optimise internal pressure and counter punch action in
Y-shaped THF operation. The basic idea is focused on

the possibility to decompose the design variables space in
subdomains which simplify significantly the problem.

The aforementioned strategies have been successfully
applied for optimising THF process; however, optimisation
of such process which have to consider various objective
functions and constraints, requires often large computa-
tional time, even when using reduced FE model. Implicit
functions have to be evaluated for many times to explore
the search space. To cope with this problem, metamodels
which consist in finding a functionals relations between
the responses of interest and selected process parameters
to be optimised are widely adopted to solve numerous
metal forming processes [14–20] and in particular THF pro-
cess [21–23]. The use of the metamodels is particularly
important when the optimisation procedure requires sev-
eral evaluations of the objective functions and constraints
via FE simulations which induce excessive computational
time. This alternative allows to reduce considerably the time
consumption and provides an optimal solution with reason-
able cost. However, it is important to mention that a careful
attention should be paid to this stage since the robustness
and the reliability of the optimal solution is directly depen-
dent on the ability of the selected metamodels to better
approximate the real function. Sophisticated metamodels
are often required mainly when the problem presents sev-
eral sources of nonlinearities as the THF process. In this
work, we propose to investigate the capability of the tradi-
tional response surface method (RSM) and the least squares
support vector regression (LSSVR). The LSSVR has been
recently introduced into various disciplines and it is proving
to be a very promising general regression technique. Sev-
eral studies [24–26] have successfully applied the LSSVR
for function approximation in different areas for nonlinear
problems. For enhancing the metamodels capability, both
metamodelling techniques are coupled with optimal latin
hypercube design (LHD) obtained with consideration of two
optimality criterions: minimising the correlation between
design variables vectors and maximising the minimum dis-
tances between variables in the design space. Then, the
problem is solved with a modified version of the simu-
lated annealing (SA) algorithm. This strategy allows an
optimal distribution of the sampled points in the design
space and consequently to improve the performance of the
metamodels for reliable prediction.

It should be noted that for all the optimisation strate-
gies discussed previously, it might be hard to discuss about
which one is superior because in different metal forming
processes or even in a same process with different variables,
these methods will perform variously. Consequently, the
problem formulation is always a difficult task mainly when
several desired specifications should be satisfied. In THF
process, it is always desirable to simultaneously optimise
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several opposing design objectives. For this reason, multi-
objective optimisation formulation appears more adequate
to formulate the problem under consideration. Before deal-
ing with optimisation, a global sensitivity analysis (GSA) is
performed based on the generated metamodels and Monte
Carlo simulations (MCS) by assuming random the design
variables. GSA allows to identify the most important vari-
ables which have the highest contribution to the variance of
the specified output defined to control the process. In addi-
tion, GSA investigates the interaction effects between the
design variables involved in the THF process.

The organisation of the paper is as follows. In Section 2,
we introduce the basic concepts of the RSM and the LSSVR
metamodelling techniques, then their prediction capability
is investigated and compared through nonlinear test func-
tion. In Section 3, we introduce the numerical example
proposed to optimise the THF process as the main objective
functions defined to control the process. Global sensitiv-
ity analysis using the variance-based method is detailed and
discussed in Section 4. In Section 5, multi-objective opti-
misation problem is formulated and the obtained results are
analysed and discussed. In the final section, some conclud-
ing remarks are drawn and future research directions are
proposed.

2 Metamodelling techniques and design of experiment

2.1 Response surface methodology

The RS model can be stated as follows in its general form:

z = z̃ + e =
L∑

i=1

βiψi(x) + e, (1)

where z denotes the true response, z̃ is the RS model, e

is the approximation error, x is a vector of design vari-
ables and βi (i = 1, . . . , L) is the ith unknown coefficients
corresponding to the ith basis function ψi(x).

The choice of the basis function depends directly on the
nature and the complexity of the problem to be solved. The
quadratic polynomial RS model given by Eq. (2) and used in
the present work was commonly adopted in solving various
metal forming processes as mentioned previously.

z̃ = β0 +
m∑

i=1

βiXi +
m∑

i=1

βiXi
2 +

m−1∑

i=1

m∑

j=i+1

βij XiXj (2)

where the unknown parameters β = [(β0, β1, . . . , βL)]T
can be determined by means of the least squares method
(The symbol “T” denotes the transpose operation) and m

is the total number of the design variables involved in the
model.

At the ith design points xi , the error between the actual
and the predicted values is expressed as:

ei = z(i) − z̃(i) = z(i) −
L∑

j=1

βjψj (xi ). (3)

The objective is to minimise the total squared error between
the actual and the predicted values which is called the least
squares regression, let define Q(β) as:

Q(β) =
nd∑

i=1

e2
i =

nd∑

i=1

⎡

⎣z(i) −
L∑

j=1

βjψj (xi )

⎤

⎦
2

(4)

where nd is the number of the design points used to identify
the coefficients model.

Equation (4) can be transformed in matrix notation as
follows:

Q(β) = (z− ψβ)T(z− ψβ) (5)

Then, the error is minimised by setting to zero the deriva-
tives ∂Q(β)

∂β
, the following expression can be derived:

β = [ψTψ]−1ψTz = ψ∗z (6)

where ψ∗ is the so called pseudo-inverse matrix of ψ and
the fitted values can be computed as:

ẑ̂ẑz = ψβ (7)

2.2 Basic concept of the LSSVR

The LSSVR is a modified version of the support vector
regression (SVR) [27] used to approximate an unknown
function using the set of nu samples {(XXX k, yk), k =
1, . . . , nu}. The regression function can be formulated as
follows:

f (XXX ) = ωωωTϕ(XXX ) + b, (8)

where ϕ(·) denotes the feature of the inputs, and ωωω and
b indicate the coefficients. The LSSVR introduces a least
squares version of the SVR by formulating the regression
problem as:

Minimise
ωωω,b,eee

J (ωωω,eee) = 1

2
ωωωTωωω + C

2

nu∑

k=1

e2
k

subject to : Xk = ωωωTϕ (XXX k) + b + ek, k = 1, 2, . . . , nu

(9)

where C ≥ 0 denotes the regularization parameter and ek

represents the error. The primal problem is difficult to solve
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as ωωω is high dimensional. Therefore, let us proceed by con-
structing the Lagrangian and derive the dual problem as
follows:

L(ωωω, b,eee; a) = J (ωωω,eee)−C

nu∑

k=1

al

[
ωωωTϕ(Xk) + b + ek − yk

]
(10)

Conditions for optimality can be obtained by calculat-
ing the partial derivatives with respect to all components of
(ωωω, b, e, a) and setting them to zero as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ωωω

= 0 ⇒ ωωω =
nu∑

k=1

akϕ(XXX k)

∂L
∂b

= 0 ⇒
nu∑

k=1

ak = 0

∂L
∂ek

= 0 ⇒ ak = Cek, k = 1, . . . , nu

∂L
∂ak

= 0 ⇒ yk = ωωωTϕ(XXX k) + b + ek, k = 1, . . . , nu

(11)

After elimination of ωωω and e, the solution is obtained as:

⎡

⎣
0 1T

1 Γ + 1

C
I

⎤

⎦
[

b

a

]
=
[

0
yyy

]
(12)

where yyyk = [
y1, . . . , ynu

]T, 111 = [1, . . . , 1]T, aaa =
[a1, . . . , anu]T, and I is an identity matrix. The kernel trick
is applied here as follows:

�kl = ϕ(XXX k)
Tϕ(XXX l) = κκκ(XXX k,XXX l) for k, l = 1, 2, . . . , nu

(13)

where κκκ (XXX k,XXX l) is the kernel function.
In this paper, two types of kernel functions, namely

the polynomial function (PL) and the radial basis func-
tion (RBF) were employed to investigate their prediction
capability. The analytical expressions of the PL and the
RBF kernel functions are given by Eqs. (14) and (15),
respectively:

κκκ(XXX k,XXX l) =
(
XXX k

TXXX l+td
)

(14)

κκκ(XXX k,XXX l) = exp

(
−‖XXX k −XXX l‖2

σ 2

)
(15)

We can get a and b from Eq. (12), therefore, the result of the
LSSVR model is:

f (XXX ) =
nu∑

k=1

akκκκ(XXX ,XXX k) + b (16)

It is important to mention that the performance of the
LSSVR relies significantly on the appropriate choice of the
kernel functions parameters. In this work, simplex algorithm
has been used to fine-tuning the parameters for both kernel
functions.

2.3 Optimal latin hypercube design

The choice of the design of experiment (DOE) plays a
key role in the accuracy and robustness of the approxima-
tion models. There are many different experimental design
methods available such as full factorial, latin hypercube,
central composite, and so on. Among the mentioned ones,
the LHD has excellent performance of capturing the higher
order of nonlinearity. However, a random LHD can be quite
structured in which the generated points in the design space
may be highly correlated or may not have good space-filling
properties. To cope with these limitations, two optimality
criterions are combined for searching the optimal one in
which the metamodels will be estimated. There are differ-
ent strategies proposed in the literature for finding a good
LHD, the most popular ones consist in minimising the pair-
wise correlations and maximising the inter-site distances. In
this work, we propose to combine the previous criterions in
one objective to find the optimal LHD.

Let us denote by D(nv, ζ ) the initial random LHD with
nv realisations and ζ factors. The first optimality crite-
rion which measures the correlation between all factors is
defined as follows:

ρ2 =

ζ∑

i=2

i−1∑

j=1

ρ2
ij

ζ(ζ − 1)2−1
(17)

where ρij is the linear correlation between columns i and j ,
notice that ρ2 ∈ [0,1].

The second criterion is expressed by means of the dis-
tances d(xi , xj ) in the design space between any two points
denoted by xi and xj . It is used to achieve better space-
filling property, it consists in maximising the minimum
inter-site distance as follows:

maximin
1≤i,j≤nv,i �=j

d(xi , xj ) (18)
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where d(xi , xj ) is the distance between two sample points
xi and xj evaluated as follows:

d(xi , xj ) = dij =
⎡

⎣
nv∑

ζ=1

| xiζ − xjζ |2
⎤

⎦
1/2

(19)

In our contribution, the formulation of maximin distance
proposed by Morris and Mitchell [28] is adopted for search-
ing the optimal LHD. This criterion is based on the inter-
points distances evaluated by means of Eq. (19). For a given
design, let us define a distance list d = (d1, d2, . . . , d)

in which the elements are the distinct values of inter-points
distances, ranked in ascending order. Let Ji be the num-
ber of pairs in the design that have distance di . Then a
design Di is called a maximin design if it sequentially
maximises di’s and minimises Ji’s in the following order:
(d1, J1, d2, J2, . . . , d, J). Then, the second criterion can
be stated as follows:

φp =
[

∑

i=1

Jid
−p
i

]1/p

(20)

where p is a positive integer chosen equal to 15.
Combining Eqs. (17) and (20) into one objective can

be an effective way of improving LHD and consequently
increases the metamodels performance by minimising the
following expression:

� = wρ2 + (1 − w)φp, (21)

where w is the weight factor; for simplicity, it is decided to
weight the objectives equally.

The problem formulated by Eq. (21) is a typical hard
optimisation problem to be solved mostly when the number
of factors and sample size increase due to the combinato-
rial explosion of possible solutions. A modified version of
the SA algorithm is used to solve the previous problem due
to its global search ability. Compared with the classical SA
algorithm, the modification lies in the perturbation operator,
where an exchange mechanism is used to make the pertur-
bation from the current LHD. It should be noted that there
are many ways to perturbate LHD randomly. In our contri-
bution, we use an exchange procedure to explore the search
space which consists in choosing randomly one column in
the range [1,ζ ] and two elements between [1,nv] within that
column which are exchanged to find a new design. The SA
algorithm starts with random LHD and an initial tempera-
ture T and generate a sequence of configurations denoted by
nt which represents the number of trials in each temperature
level. The iterative procedure can be described as follows:
given a random LHD denoted by Di with cost function
�(Di ), the next LHD Dj is generated based on an exchange
procedure described previously. If

(
�(Dj ) − �(Di )

) ≤ 0,

the new LHD is accepted, otherwise, in the case when the
difference is greater than zero, the new state will be accepted
with the probability:

Pr(·) = exp
(

�(Di )−�(Dj )

T

)
> ξ

where ξ is an integer random number generated with uni-
form distribution in the range [0,1].

This property promotes a better exploration of the search
space by accepting the worse LHD with specific probabil-
ity given above. Then, the temperature is decreased and the
new number of steps to be performed of the temperature
level is determined and the process is repeated. For updat-
ing temperature, the logarithmic update function is adopted.
The proposed algorithm can be easily implemented even for
large sample size but with significant increase in CPU time
and iterations number for convergence. It should be noted
that the required number of iterations to achieve better LHD
is exponentially dependent on the sample size. For large
sample size, it is obvious that the algorithm may become
prohibitively expensive in terms of both computational and
memory requirements. For this work, the stopping criterion
is defined as the maximum number of iterations conducted
which is set to 5,000. In the framework of this study, it
is found to suffice to guarantee a LHD with improved
properties.

In order to demonstrate the effectiveness of the above
algorithm, we take a random LHD with two factors and 16
sampled points as an example. The modified version of the
SA algorithm described above is implemented through iter-
ative subroutine developed in MATLAB R2008a environ-
ment [29]. Subpanels a and b of Fig. 1 display, respectively,
the random and the optimal LHD which show significant
improvements in terms of both the correlation and the inter-
sites distances criterions. Obviously, the exchange mech-
anism appears very efficient to make an effective search.
The improved LHD would be satisfactory for enhancing
the metamodels accuracy. This procedure is implemented in
the rest of this paper for generating LHDs to construct the
required metamodels.

2.4 Test function

To investigate the prediction capability of the RSM and the
LSSVR metamodelling techniques, test function from liter-
ature [30] has been chosen to compare their performance
prediction as their goodness-of-fit in particular when the
real function is nonlinear. The following test function is
proposed to conduct the comparison analysis:

f (x1, x2) = 2 + exp

(−x1
2

10

)
+
(x2

5

)4 − x1 (22)

where x1 and x2 are truncated Gaussian distribution vari-
ables.
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Fig. 1 Comparison between a
the random LHD
(φp = 0.6424, ρ2 = 0.3767)
and b the improved LHD
(φp = 0.2749, ρ2 = 0.0134)

ba

To evaluate the metamodels performance, three error
measures including the root mean square error (RMSE),
the maximum absolute error (MAE) and the coefficient of
determination R2 are used for accuracy assessment. The
mathematical definition of these criterions is summarised
in Table 1. The RMSE quantifies the deviation between the
predicted and the real data while the MAE provides a mea-
sure of the relative overall fit. Smaller (RMSE, MAE) means
that the metamodel output is accurate and exactly matches
with the real data. R2 is a measure of the amount of reduc-
tion in the variability of the predicted output. R2 close to
unity indicates that the model can explain well all the vari-
ability of the predicted data. In this work, we examined two
cases for comparing the RSM and the LSSVR metamod-
elling techniques: when the sample size used to identify
the metamodel is small and large. Optimisation procedure
detailed in the previous subsection is applied to obtain the
optimal LHD used to construct the metamodels.

Table 1 summarises the error measures values for the
different metamodelling techniques. It is obvious that the
LSSVR with PL and RBF kernel functions yields accu-
rate results with both small and large sample size. From
Table 1, we can see that the LSSVR(PL) provides prac-
tically the same performance prediction capability as the
LSSVR(RBF). In contrast, the RSM seems not suitable even
with large sample size. In addition, we can see that with the

RSM, increasing the number of sampled points will not nec-
essarily lead to a more accurate metamodels. In contrast, the
LSSVR metamodels become more and more accurate. One
may observe that the standard error (RMSE and MAE) goes
to zero at the sampled points, indicating that we have practi-
cally no uncertainty about the predicted values. The results
show as well the superiority of the RBF kernel function
compared to the PL one.

In order to compare the goodness-of-fit, we plot in sub-
panels a and b of Fig. 2 the contour line of the real function
and those obtained with the metamodels with both small
and large sample size, respectively. We can see that the RS
metamodels oversimplify the real function and is unable to
better capture the nonlinear behaviour which produce sub-
stantial errors in the prediction. In contrast, the LSSVR fits
very well the real function even with small sample size.

By extending the use of the generated metamodels in
optimisation framework, this may present a serious prob-
lem. One may observe that the fitted quadratic surface is
unreliable because the surface not sufficiently capture the
shape of the real function. Notice that the minimum of
the quadratic surface does not even lie close to the func-
tion minima. This example shows the drawbacks of the
RS metamodel which can fail to provide reliable optimum
in optimisation procedure. From literature, several authors
have been shown that even with iterative improvements of

Table 1 Performance
measures analysis: comparison
between the RS and the
LSSVR metamodels

Indicator Equationa Sample size Metamodelling technique

RSM LSSVR(PL) LSSVR(RBF)

R2 1 −
∑nv

i=1(yi−ŷi )
2

∑nv
i=1(yi−ȳ)2 25 0.9409 0.9997 0.9999

150 0.8966 0.9999 0.9999

RMSE
√

1
k

∑nv

i=1

(
yi − ŷi

)2 25 1.2008 0.0814 8.0285e-004
150 1.3887 0.0514 0.0369

MAE Max
i=1,...,nv

(|yi − ŷi

∣∣) 25 2.1116 0.1951 0.0022

150 3.5892 0.1097 0.0783

aWhere y, ŷ and ȳ are the real,
predicted and mean values,
respectively, and nv is the
sample size
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Fig. 2 Comparison between metamodelling techniques with a small and b large sample size

the quadratic response surface, it is hard to converge “near”
to the global optimum.

From comparison study including performance error
measures and graphical analysis, the LSSVR with both PL
and RBF kernel functions has shown its potential in produc-
ing statistically superior results to the RSM as demonstrated
through the proposed test function. This comparison is now
conducted for practical industrial problem as the THF pro-
cess before proceeding for optimisation using the generated
metamodels. As known, the process involves several sources
of nonlinearities originating from material behaviour, geom-
etry and applied loads.

3 Application to the THF process

3.1 Finite element model

Figure 3a shows a half FE model that was defined to
simulate the THF process. It is composed of the die that
represents the desired part, punches and tube. The FE mesh
of the tube is shown in Fig. 3b; due to the symmetric char-
acter of the THF process, only a quarter of the model is
used which is composed of 1,340 elements. Shell elements
with five integration points through the shell section called

S4R are employed to mesh the tube. The tools are meshed
with four-node, bilinear quadrilateral, rigid elements, called
R3D4. To simulate the process, we use the explicit dynamic
FE code Abaqus\Explicit [31]. A coulomb friction coef-
ficient of 0.15 is used to simulate the friction behaviour
between the contact surfaces of the tube and the die. The
parameters of the FE model (mesh, mass scaling and contact
algorithm) are selected after several numerical simulations
to evaluate their influence on the computational time and
to achieve good results. Table 2 summarises the dimen-
sions characteristics of the tube and the die used for FE
simulations.

3.2 Material properties

In this study, Swift hardening law given by Eq. (23) is used
to characterise the material behaviour:

σ̄ = K(ε0 + ε̄)n, (23)

where K is the strength coefficient value, n is the work
hardening exponent and ε0 is the pre-strain. σ̄ and ε̄ are
equivalent plastic stress and equivalent plastic strain, respec-
tively.

In order to analyse accurately the THF process, the free
bulge test is adopted to determine the material properties

Fig. 3 a A half finite element
model, b mesh used for
numerical simulations
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Table 2 Tube and die dimensions

Parameters Designation Value Unit

L0 Tube length 100 mm

D0 Outside tube diameter 19 mm

t0 Tube initial thickness 1 mm

rc Die corner 8 mm

as the state of stress conditions is similar to the THF pro-
cess. Table 3 summarises the material properties used for FE
simulations [32].

3.3 Selection of the loading path

A careful attention is crucial to select the suitable loading
path for the THF process to guarantee a defects-free part.
Applied loading path is dependent primarily on the follow-
ing: the material properties, the shell thickness, the tube
diameter as the die shape. The experimental investigations
lead to the conclusion that the formability phase can be
split into three stages: yielding, expansion and calibration
stages. Each stage is characterised by a certain level of inter-
nal pressure and axial displacement rate. The initial loading
path can be approximated based on the operator experience
or by trial-and-error procedure. Koç and Altan [33] pro-
posed to rely three components of pressure based on the
knowledge of the material and the geometrical parameters:
yield pressure py , expansion pressure pe and calibration
pressure pc. By estimating the previous quantities, one can
construct a preliminary loading path that can be used as
an initial guess for optimisation procedure. For axial dis-
placement, since the part geometry is simple, it is easy
to approximate an initial values. In the present work, the
bounds of design variables are adjusted according to the the-
oretical equations and some FE simulations. The operating
ranges for each design variable are summarised in Table 4.

Table 3 Material properties

Properties Designation Value Unit

σy Yield strength 215.18 MPa

� Material density 7800 kg/m3

E Young’s modulus 210 GPa

K Strength coefficient 514.66 MPa

n Strain hardening exponent 0.362 –

ν Poisson coefficient 0.3 –

ε0 Pre-strain 0.0904 –

Table 4 The proposed levels of loading variables

Levels py (MPa) pe (MPa) pc (MPa) da (mm)

Lower bound 15 25 45 4

Nominal values 20 32.5 52.5 6

Upper bound 25 40 60 8

3.4 Failure modes in the THF process

The possible failure modes in THF process are neck-
ing and wrinkling. Wrinkling occurs when we apply an
excessive axial displacement combined with low pressure
level. Figure 4a shows the tube shape as the most criti-
cal regions when the wrinkling phenomenon may initiate.
Those regions are identified by maximum values of the
plastic strain. One may observe that the wrinkles localised
in the form of an outward bulge where very high local
strains appeared in these waves. The same phenomenon was
observed experimentally in numerous studies [34, 35] as
shown in Fig. 4b. As it can be seen, the FE model repro-
duces accurately all aspects of the wrinkling phenomenon.
It should be noted that in practice, the wrinkles are influ-
enced by many factors such as the mechanical properties
of the material, the geometry of the die and the frictional
conditions. This plastic instability is usually observed dur-
ing initial and intermediate stages of the THF process. In
contrast, failure caused by necking appears when we apply
a high level of pressure combined with low axial displace-
ment and is observed at an advanced stage of the process.
The FE model shows that the bursting may occur in the
middle of the expanded zone as predicted by the numer-
ical simulation based on the fracture index (see Fig. 5a).
The FE simulation reveals that the maximum fracture index
occurs usually at the element located in the middle of the
expanded zone. The bursting location observed experimen-
tally for the same geometry was shown in the literature
in several works [36, 37] as shown in Fig. 5b which con-
firms the numerical prediction. Consequently and in order to
avoid occurrence of plastic instabilities, the usual objective
is to find a tradeoff between the applied internal pressure
and the axial displacement rate.

To control the process, numerous criterions were pro-
posed in the literature to prevent wrinkling and necking
plastic instabilities. For wrinkling, criterions based onto
geometrical considerations are widely applied due to their
simple mathematical formulations. However, those criteri-
ons are limited for components with simple geometry. The
FLD expressed in terms of limit major and minor in-plane
components of true strain is widely used in metal forming
processes for both wrinkling and necking failure modes [38,
39]. If critical levels of strain are attained during the form-
ing process, necking or wrinkling of the material occurs. It
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(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Max. In−Plane Principal

+1.701e−02
+3.561e−02
+5.421e−02
+7.281e−02
+9.140e−02
+1.100e−01
+1.286e−01
+1.472e−01
+1.658e−01
+1.844e−01
+2.030e−01
+2.216e−01
+2.402e−01

a b

Fig. 4 a Plastic strain distribution: wrinkles locations, b wrinkles initiation zone observed with experiment [34]

is worth to mention that the FLD is reliable only in pro-
cesses in which the loading path is linear which is not the
case for THF process. In the study of Stoughton [40], it has
been shown that the forming limit stress diagram (FLSD)
is insensitive by changes to the strain path. This property
makes the FLSD an attractive alternative to the FLD for the
prediction of necking instability under arbitrary loading (i.e.
proportional and non-proportional loads).

3.5 Definition of the objective functions

In metal forming processes, the objective functions can
be formulated in a different manner which depend on the

Fig. 5 a Fracture index evaluated with the FE model b experimental
bursting failure [36]

required specifications and performances desired by the
designer. These objective functions may include uniform
thickness distribution, shape conformity or damage distri-
bution among others. Those objectives may be in conflict
with each other; for this reason, multi-objective optimisa-
tion appears the appropriate formulation to find the tradeoffs
between them. In the present work, three objective functions
will be defined to control the process. The first one con-
sists in minimising the tube wall thickness variation which
is defined as follows:

Fthin(xxx) =
√√√√

ne∑

i=1

(
ti − t0

t0

)2

(24)

where t0 is the initial thickness, ti is the thickness of the
ith element at the end of the process, ne is the number of
elements and x = (py, pe, pc, da) is the vector of design
variables to be optimised.

To avoid necking occurrence, we define an objective
function which take advantage from the FLSD obtained
experimentally [32]. As the experimental process involves
several sources of uncertainties which may affect the FLSD
position, safety margin concept which is frequently used
in practice is defined. Based on the FLSD, we distinguish
mainly two regions: feasible region below the lower margin
curve when THF process can be done in secure conditions
and unfeasible one above the upper margin curve when plas-
tic instabilities occur (see Fig. 6). The implementation of the
FLSD damage initiation criterion in the FE code requires
the specification of the major principal in-plane stress at
damage initiation as tabular function of the minor principal
in-plane stress. The damage initiation criterion is met when
the condition wFLSD = 1 is satisfied, where the variable
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Fig. 6 Definition of the objective function for necking and wrinkling
based on the FLSD

wFLSD given by Eq. (25) is a function of the current stress
state and is defined as the ratio of the current major prin-
cipal stress σmajor to the major stress on the FLSD σ FLSD

major
evaluated at the current values of minor stress, σminor:

wFLSD = σmajor

σ FLSD
major

= σ1

η (σ2)
(25)

where η(·) is a polynomial model given the major stress as
a function of the minor stress.

It should be noted that Abaqus FE code evaluates the
FLSD criterion using the stresses averaged through the
thickness of the element. Based on Eq. (25), the second

objective function is defined to ensure a uniform stress
distribution by minimising the following expression:

Fnec(x) =
ne∑

i=1

(
σ i

1

η(σ i
2)

− 1

)2

(26)

In order to minimise the wrinkling tendency, an objective
function inspired from the FLSD is defined as well. The
risk of wrinkling is higher when the tube is in a state of
in-plane compression. Thus, the proposed criterion consists
in minimising the distances between the compressive minor
stresses from the line where σ2 = 0 (see Fig. 6). Mathe-
matically, the proposed objective function can be stated as
follows:

Fwr(x) =

⎧
⎪⎨

⎪⎩

1
20ne

ne∑
i=1

| di
w |= 1

20ne

ne∑
i=1

| σ i
2 | if σ i

2 < 0

0 if σ i
2 ≥ 0

(27)

It should be noted that for this criterion evaluation, the
objective function values are multiplied by (1/20ne) in
order to make them in the same order of magnitude as the
previous ones and to avoid possible problems related to
different scales.

From a practical point of view, the above objective func-
tions are frequently considered for optimising various metal
forming processes. To construct metamodels for the differ-
ent objective functions, we use an optimal LHD obtained
through the iterative procedure described in Section 2.3
which is composed of 25 sampled points. FE simulations
are performed using an Intel(R) Core(TM) 2 Duo CPU with
2.26 GHz processor and 4 GB RAM. Table 5 summarises

Table 5 Performance
measures analysis: comparison
between the proposed
metamodelling techniques

Indicator Equationa Response Metamodelling technique

RSM LSSVR(PL) LSSVR(RBF)

R2 1 −
∑nv

i=1

(
yi − ŷi

)2
∑nv

i=1 (yi − ȳ)2
Fthin 0.9855 0.9999 0.9999

Fnec 0.9889 0.9993 0.9999

Fwr 0.7402 0.7683 0.9999

RMSE

√√√√1

k

nv∑

i=1

(
yi − ŷi

)2
Fthin 0.1254 3.2255 × 10−5 0.0091

Fnec 0.1110 0.0278 1.0777 × 10−7

Fwr 7.5014 6.2483 0.0010

MAE Max
i=1,...,nv

(|yi − ŷi

∣∣) Fthin 0.3029 9.8507 × 10−5 0.0263

Fnec 0.2927 0.0885 2.7550 × 10−7

Fwr 22.7558 15.6114 0.0035

aWhere yi , ŷi and ȳ are the real,
predicted and mean values,
respectively, and nv is the
sample size
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the error measures used to evaluate the metamodels pre-
dictability. We can see that the LSSVR(RBF) metamodels is
the most accurate one based on the error measures. Hence,
through the rest of this manuscript, the LSSVR(RBF) meta-
models will be used for GSA and to make a comparison with
the RS metamodels for optimisation. We can see that the RS
and the LSSVR(PL) metamodels are unable to better cap-
ture the wrinkling phenomenon. Obviously, due to the high
nonlinear nature of this plastic instability and the high-order
interactions effects.

4 Global sensitivity analysis

In this section, we will introduce the GSA and then discuss
the obtained results. First of all, we have to make a dis-
tinction between local sensitivity analysis and GSA. Most
of the published papers dealing with sensitivity analysis in
metal forming processes concern the local sensitivity anal-
ysis in which one factor at a time is varied and the others
are kept constant at their nominal values. In our contribu-
tion, we propose a GSA which evaluates the effect of one
parameter while the others are varying as well. This method
is more complicated and more demanding in terms of com-
putational effort. In addition, it requires metamodels with
high precision to be effective and reliable. Recently, several
methods was proposed in the literature to conduct sensitivity
analysis in various engineering problems. The most popular
are: the sampling-based methods [41], the derivative-based
methods [42] and the variance-based method considered in
the present work. The GSA helps to identify accurately the
most influential parameters involved in the process. Addi-
tionally, it provides a better explanation on how perturbation
affecting each design variable may impact the variance of
the quality functions defined to control the process. For
GSA, the LSSVR(RBF) is preferred since it provides meta-
models with high quality as shown previously by means of
several error measures. The proposed method presents two
major advantages: it is based only on model evaluations and
easy to implement.

To deal with GSA, we associate some scatter to the
defined design variables. This is more realistic since in
manufacturing processes, such variables are defined with a
certain degree of accuracy. Let assume that the design vari-
ables are defined with truncated Gaussian distribution where
the lower and the upper bounds are defined previously
in Table 4. Table 6 summarises the statistical character-
istics of the random variables considered in the present
study: it should be noted that the coefficient of variation
(COV) might be the same for all variables and it also might
be different for every variable, depending on the designer
knowledge. In the following, the former case is considered.

Table 6 Statistical properties of random design variables

Variable Mean value COV(%) Distribution type

py 20 10 Gaussian

pe 32.5 10 Gaussian

pc 40 10 Gaussian

da 6 10 Gaussian

4.1 Variance-based method

The variance-based GSA can quantify the first-order and
total effect on the variance of model output. Let us con-
sider a model Y = f (θθθ), where Y is the model output,
θθθ = (θ1, θ2, . . . , θs) is the input parameters vector. A vari-
ance decomposition of f suggested by Sobol’ [43] is given
as follows:

V (Y ) =
s∑

i=1

Vi +
s∑

i=1

s∑

j=i+1

Vij + . . . + V1,...,s (28)

V (Y ) is the total unconditional variance, Vi is the partial
variance or main effect of θi on Y and given by Vi =
V [E(Y |θi)] (where E(Y |θi) denotes the expectation of Y on
θi), Vij is the joint impact of θi and θj on the total variance
minus their first-order effects.

Saltelli et al. [44] introduced the first-order sensitivity
index Si and total effect sensitivity index STOT

i given by Eqs.
(29) and (30), respectively:

Si = Vi

V (Y )
= V [E(Y |θi)]

V (Y )
(29)

STOT
i = Si +

∑

j �=i

Sij + . . . = E[V (Y |θ∼i )]
V (Y )

(30)

where θ∼i denotes variation on all input parameters except
θi , and Sij is the contribution to the total variance by the
interactions between parameters.

In order to compute Si and STOT
i , an efficient method

proposed by Saltelli et al. [45] is used. It consists in cre-
ating two independent input parameters sampling matrices
A and B with dimensions (N, s), where N is the sample
size and s is the number of input parameters. Each row in
matrix A and B represents a possible value of θ . The Monte
Carlo approximations for V (Y ), Si and STOT

i are defined as
follows:

f̂0 = 1

N

N∑

j=1

f (A)j (31)

V̂ (Y ) = 1

N

N∑

j=1

(f (A)j )
2 − f̂ 2

0 (32)
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Table 7 First- and high-order
sensitivity indices Variable Fthin Fnec Fwr

Ŝi ŜTOT
i Ŝi ŜTOT

i Ŝi ŜTOT
i

py 0.0579 0.0684 0.9007 0.9492 0.0116 0.2747

pe 0.0054 0.0125 0.0063 0.0427 0.1199 0.3337

pc 0.0081 0.0354 0.0042 0.0241 0.0182 0.1163

da 0.8877 0.9245 0.0125 0.1428 0.5326 0.6248
∑

i Ŝi

/∑
i ŜTOT

i 0.9591 1.0408 0.9237 1.1588 0.6823 1.3495

Ŝi = 1

N

N∑

j=1

f (B)j

(
f
(
A(i)

B

)

j
− f (A)j

)

V̂ (Y )
(33)

ŜTOT
i = 1

2N

N∑

j=1

(
f (A)j − f

(
A(i)

B

)

j

)2

V̂ (Y )
(34)

where ˆ. . . denotes the estimate, f̂0 is the estimated value of
the model output, A(i)

B represents all columns from A except
the ith column which is from B.

We generated a quasi random sequence matrix of size
(N, 2s), where A and B are the left and right half of this
matrix, respectively.

4.2 Discussion

Table 7 summarises the first- and high-order sensitivity

indices which shows how variation in design variables may

affect the variance of the objective functions defined to con-

trol the THF process. By analysing the sensitivity indices

obtained for the first objective function, one may observe

that the variation of the axial displacement affects consid-

erably the thickness distribution variance. The first-order

index for da, Ŝda = 0.8877 represents the fractional contri-

bution of da (i.e. its main effect) to the thickness distribution

variability. In contrast, variation affecting yielding, expan-

sion and calibration pressures affects slightly the thickness

distribution, their contribution is less than 8 %. Thickness

Fig. 7 Comparison between objective functions obtained with a–c the RS and d–f the LSSVR(RBF) metamodels
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Fig. 8 Pareto optimal solutions and fitted Pareto surface obtained with a the RS and b the LSSVR(RBF) metamodels

distribution seems to behave almost additively as the sum of
all the Ŝi’s is very close to 1 (0.9591).

Now let us analyse the sensitivity of necking objec-
tive function. We can see that for the first-order sensitivity
indices, yielding pressure is the most influential variable,
90.07 % of the necking objective variance is explained
by single contribution of the previous variable. For high-
order sensitivity, we can see that 14.28 % of the variance
is explained by the contribution of the axial displace-
ment. Variation which may affect expansion and calibration
pressures seems to affect slightly the necking response.
One may observe that 92.37 % of the necking output
variance is explained by single contribution of the load-
ing path design variables. For necking, axial displacement
da is found important only for its high-order interactions(
ŜTOT

da
− Ŝda = 0.1303

)
.

For wrinkling objective function, one may observe from
Table 7 that expansion pressure and axial displacement
are the dominant variables which may affect the wrin-
kling variance. Expansion as calibration pressures impact
the wrinkling response by approximately the same propor-
tion. We can see that the difference between the total effect
and the first-order index of py , ŜTOT

py
− Ŝpy = 0.2631, indi-

cates that 26.31 % of the output variance is accounted for
by interactions in which py is involved. This means that
py interacts with other input parameters but it does indicate
with which parameters these interactions occur. It should be
noted that wrinkling is influenced by some high-order inter-
actions, as seen by the sum of ŜTOT

i , which is greater than
1 (ŜTOT

i = 1.3495). This result confirms the non-suitability
of the RS as the LSSVR(PL) metamodels to better capture
the wrinkling phenomenon due to the higher order effects.

GSA reveals that variation which may affect the loading
path variables have significant effect on the variance of the
defined objective functions and consequently on the quality
of the hydroformed part. One may conclude that varia-
tion in axial displacement affects considerably the thickness
distribution and wrinkling objective functions. In contrast,
necking objective function appears very sensitive to the
yielding pressure. Additionally, we can see that wrinkling
phenomenon is impacted by some high-order interactions.
The above results show that all the design variables should
be controlled during the manufacturing process due to
the interaction effects to avoid potential failure occurrence
and to guarantee hydroformed parts with high mechanical
properties.

5 Multi-objective optimisation of the THF process

5.1 Optimisation problem formulation

Before dealing with optimisation, let us compare the general
shape of the objective functions provided by the different
metamodelling techniques. Subpanels a–c and d–f of Fig. 7
show in three-dimensional space the objective functions
obtained with the RS and the LSSVR(RBF) metamodels,
respectively. By comparing the same objective function

Table 8 Performance measures metrics for the optimal Pareto fronts

Metric SP G(Pr ,Pl ) G(Pl ,Pr )

Pareto front (RSM) 0.9350 0 0.8811

Pareto front (LSSVR(RBF)) 0.5612
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Fig. 9 Fuzzy classification of the Pareto optimal solutions a RSM b LSSVR(RBF)

obtained with RS and LSSVR(RBF) metamodels, one may
observe that the general shape is different. In addition, we
can see the differences in the objective functions ranges in
the color map where the lowest values are dark blue and the
highest values are dark red. For wrinkling, one may observe
that the RS metamodel predicts the objective function val-
ues with a relatively larger error, consequently the algorithm
may fail to converge near to the “true” Pareto front and may
affect considerably the quality of the obtained solutions.

Now let us formulate the multi-objective optimisation
problem which can be stated as follows:

Minimise
x

F = [Fthin(x), Fnec(x), Fwr(x)]
subject to : xl ≤ x ≤ xu

(35)

where F is the vector of the objective functions and xl , xu

are the lower and upper bounds, respectively, imposed on
the design variables.

To solve the problem formulated by Eq. (35), various
algorithms are proposed in the literature. In this work, the
Non-dominated Sorting Genetic Algorithm (NSGA-II) [46]
which has successfully solved various complicated real-
world problems is used. Metamodels generated by the RSM
and the LSSVR(RBF) are used to solve the problem in
order to analyse the robustness of each optimal Pareto front
by comparing several performance metrics detailed in the
next subsection. Subpanels a and b of Fig. 8 show the

Pareto optimal solutions as the fitted Pareto surface in the
objective space obtained with the RS and the LSSVR(RBF)
metamodels, respectively.

5.2 Performance measures metrics of the Pareto fronts

Let us compare the Pareto fronts obtained based on the
RS and the LSSVR(RBF) metamodels using two differ-
ent performance metrics to judge about the robustness of
each one. It should be noted that the proposed performance
metrics was basically used in the literature to compare
the performance of the Pareto fronts issued from different
multi-objective algorithms. Some of these metrics require
the knowledge of the “true” Pareto front; in our selection,
we limited ourselves on those which are independent on the
“true” Pareto front. The performance metrics used in this
paper are described as follows:

• The first metric proposed by Schott [47] consists in
measuring the spread of the non-dominated solutions
throughout the Pareto front. Let us denote by q the num-
ber of solutions in the non-dominated Pareto set and nf

is the number of objective functions. The first metric is
expressed as follows:

SP =
√√√√ 1

q − 1

q∑

i=1

(
1 − di

d̄

)2

(36)

Table 9 Comparison between
the FE and the predicted values
computed by the RS and the
LSSVR(RBF) metamodels

RS LSSVR(RBF)

Fthin Fnec Fwr Fthin Fnec Fwr

FE model 5.9118 13.9667 11.9147 5.8822 13.3863 11.6031

Predicted values 5.4876 13.0383 9.6264 5.8507 13.2087 11.5168

Relative error (%) 7.1800 6.6500 19.2100 0.5400 1.3300 0.7400
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Fig. 10 Optimal loading paths obtained with a RS and b
LSSVR(RBF) metamodels

where di = minv

∑nf

m=1 | F i
m − Fv

m |, v = 1, . . . , q

and i �= v, d̄ is the mean of all di .
A value of zero for this metric indicates the ideal

diversity that all member of the Pareto front are equidis-
tantly and uniformly spaced. A smaller value of SP is
preferable.

• The second metric is the generalizational distance [48,
49] in which the distance between a dominated solution
and its corresponding nearest solution has been consid-
ered in the objective function space. It measures how
far a solution is relative to another one. Let us denote
by Pr and Pl two Pareto sets, obtained by using the RS
and the LSSVR(RBF) metamodels, respectively and 
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Fig. 11 Comparison between optimal loading paths

by at least one solution from a Pareto set Pr . Each dom-
inated solution in Pl searches its nearest solution in the
objective function space in Pr . The difference in each
objective function of a solution vector is raised to power
γ and summed up. The obtained values for each domi-
nated solution are raised to power (1/γ ) and then they
are summed up to obtain the generalizational distance,
G. Mathematically, G is defined as:

G(Pr , Pl) =
(∑

j=1

(∑nf

i=1 �d2
ij

)γ /2)1/γ


(37)

�dij = (Fi(Pr ) − Fi(Pl )) of the j th dominated solu-
tion of the Pareto set Pl . Fi(Pl ) implies the ith objective
function value in the Pareto set Pl and Fi(Pr ) is the cor-
responding objective function from the nearest solution
in Pareto set Pr . γ is an index with integer value.
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Fig. 13 FLSD criterion values
at the end of the process a RSM
b LSSVR(RBF)
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Max: +9.340e−01

(Avg: 75%)
SNEG, (fraction = −1.0)
FLSDCRT

+4.760e−01
+5.197e−01
+5.633e−01
+6.070e−01
+6.507e−01
+6.943e−01
+7.380e−01
+7.817e−01
+8.253e−01
+8.690e−01
+9.127e−01
+9.563e−01
+1.000e+00

  Node: 1001
  Elem: TUBE−1.919
Min: +4.760e−01

  Node: 1376
  Elem: TUBE−1.1288
Max: +9.565e−01

a

b

If the value of G(Pr , Pl ) is more than G(Pl , Pr ), then
it can be said that the Pareto set Pr is a better approx-
imation of the true Pareto set than the Pareto set Pl .
The difference in G(Pr , Pl ) and G(Pl , Pr ) values gives
a quantitative measurement.

To provide a quantitative measure that describe the
quality of the Pareto fronts obtained with both RS and
LSSVR(RBF) metamodels, the previous metrics are evalu-
ated. Table 8 summarises the values of the different metrics
obtained for each Pareto front. It should be noted that
the following metrics are evaluated only for the final non-
dominated solutions and not for all generations during opti-
misation iterative process. It is revealed that the Pareto front
provided by the LSSVR(RBF) metamodels is completely
superior to the one obtained based on the RS metamod-
els considering the different metrics. It appears that the
multi-objective optimisation based on the LSSVR(RBF)

metamodels find good solutions and a good spread of solu-
tions across the front. Consequently, we can admit that the
Pareto front obtained by the LSSVR(RBF) is more close to
the “true” Pareto front.

5.3 Results and analyses

5.3.1 Fuzzy classification of the Pareto set solutions

A question that is often raised in practice is whether to
select the best solution from the non-dominated ones for
real manufacturing process. To answer to this question, we
use the fuzzy classification of the Pareto set solutions which
allows quick ranking of solutions without additional simula-
tions. This technique can be very useful and very helpful for
designers and decision makers, but such choice is not nec-
essarily the best alternative, the designer has to try several
techniques to decide on the best one for the problem under
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Fig. 14 Stress distribution obtained with a RS and b LSSVR(RBF)
best loading path

consideration. In order to guide the designer selection, it is
assumed that there is fuzziness in the goal of each objec-
tive. In the present work, we use fuzzy decision making
proposed by Panigrahia et al. [50] to classify the Pareto opti-
mal solutions and to find the best compromise solution. This
fuzziness is defined by membership function which repre-
sent the degree of fuzziness in some fuzzy sets using values
in the range of [0,1]. The proposed membership function is
defined as follows:

μ
j
i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if Fi ≤ F min
i

F max
i −Fi

F max
i −F min

i

if F min
i < Fi ≤ F max

i

0 if Fi > F max
i

(38)

where μ
j
i indicates how well the j th non-dominated solu-

tion is able to satisfy the ith objective. The sum of mem-
bership values for all objectives of the j th non-dominated
solutions suggests how well it satisfies all the objectives.
The achievement of each non-dominated solution can be
with respect to all the q non-dominated solutions and can be
obtained as follows:

μj =

nf∑

i=1

μ
j
i

q∑

j=1

nf∑

i=1

μ
j
i

(39)

The solution with maximum value of μj is the compro-
mised solution that can be accepted by the decision maker.
Subpanels a and b of Fig. 9 show the solutions which con-
stitute the front Pareto with their respective μj values for
both RSM and LSSVR(RBF), respectively. It can be seen
that for the RSM, the 19th solution is the best one with high
value of μj while for LSSVR(RBF), the 20th one is the
best. It means that those solutions provide the best trade-
off between the defined objective functions. After ranking
the solutions issued from the proposed metamodelling tech-
niques, let us make a deep comparison between the best
ones which provide the ideal compromise and their effect
on the hydroformability of the tube based on the desired
specifications.

5.3.2 Comparison between the best RS and the
LSSVR(RBF) optimums

To verify the accuracy of the metamodels at the selected
optimum solutions. FE simulations with those optimal load-
ing paths are carried out to make a comparison with the
predicted values. Table 9 summarises the obtained values as
the relative errors obtained for each metamodel. One may
observe that the predicted values based on the LSSVR(RBF)
metamodels are in good agreement with that from the
FE simulations. In contrast, significant relative errors is
observed with the RS metamodels mostly for the wrinkling
response. This may induce a substantial errors for meta-
models predictions and consequently affect the solutions
robustness.

Subpanels a and b of Fig. 10 show, respectively, the opti-
mal loading paths (LPs) obtained for the non-dominated
solutions obtained by RS and LSSVR(RBF) metamodels
as discretised by the FE code. For numerical simulations,
the loading path is divided into 20 equal increments and
the loading rate is uniform for both axial displacement
and internal pressure. Figure 11 shows the initial loading
path and the best ones obtained by the fuzzy classifica-
tion method for each metamodelling technique. One may
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Fig. 15 Out-of-plane plastic
strain contour obtained with a
RS and b LSSVR(RBF) best
loading path (Avg: 75%)

SNEG, (fraction = −1.0)
PE, Out−of−Plane Principal

−3.014e−01
−2.712e−01
−2.411e−01
−2.109e−01
−1.808e−01
−1.507e−01
−1.205e−01
−9.039e−02
−6.025e−02
−3.011e−02
+2.988e−05
+3.017e−02
+6.031e−02

  Node: 344
  Elem: TUBE−1.271
Min: −3.014e−01

  Node: 34
  Elem: TUBE−1.33
Max: +6.031e−02

(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Out−of−Plane Principal

−2.944e−01
−2.652e−01
−2.359e−01
−2.066e−01
−1.774e−01
−1.481e−01
−1.188e−01
−8.957e−02
−6.031e−02
−3.104e−02
−1.778e−03
+2.749e−02
+5.675e−02

  Node: 1296
  Elem: TUBE−1.1209
Min: −2.944e−01

  Node: 34
  Elem: TUBE−1.33
Max: +5.675e−02

a

b

observe that the loading paths are quite similar at the
beginning of the process. However, for the LSSVR(RBF),
optimal loading path an increase in the expansion pressure
is observed while a relatively small increase is shown for the
RSM optimal loading path. In contrast, at the final stage, the
calibration pressure is decreased for the LSSVR(RBF) opti-
mal loading path. Compared with the initial loading path,
we can see that more axial displacement rate is required for
both optimums to push material into the die cavity to guar-
antee the degree of conformity and to improve the thickness
distribution.

Let us compare the tube wall thickness distribution
obtained with each optimal loading path selected previ-
ously. Based on Fig. 12, one may observe that with the
LSSVR(RBF) loading path, a uniform thickness distribu-
tion is guaranteed mainly at the expanded region when the
probability of necking occurrence is higher. The gain in
reduction rate in wall thickness distribution is significant

compared with the RSM. Percentage in thinning ratio drops
down to 19.71 % with the optimal loading path obtained
based on the LSSVR(RBF) metamodels while it is equal to
21.45 % with the one obtained using the RS metamodels.

Subpanels a and b of Fig. 13 show the resulting FLSD
criterion values at the end of the THF process obtained
with the best solutions based on the RS and LSSVR(RBF)
metamodels, respectively. It should be noted that the onset
of instability is reached when the FLSD criterion is equal
to 1. The corresponding maximum FLSD criterion values
are 0.9565 and 0.9340 based on RS and LSSVR(RBF)
metamodels, respectively.

Comparing the stress distribution in the minor–major
space (based on Fig. 14a,b), we can see that for both
RSM and LSSVR(RBF), major and minor stress distribu-
tion are below the lower safety margin. However, one may
observe that the lowest stress range is obtained with the
optimum provided by the LSSVR(RBF) metamodels. The
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Fig. 16 Degree of shape conformity obtained with a RS and b
LSSVR(RBF) best loading path

LSSVR(RBF) optimal loading path leads to a smaller major
stress at the critical element. For the RS loading path, the
maximum major stress reaches 363 MPa while it is equal
to 347 MPa with the LSSVR(RBF) optimum. For the minor
stress, the absolute maximum stress is decreased by 16 MPa
with the LSSVR(RBF) optimum. This indicates that the
LSSVR(RBF) optimum leads to a significant improvement
in the THF process deformation mechanics.

In order to compare the wrinkling tendency for both
optimums, Fig. 15a,b show the out-of-plane plastic strain
contour and deformed tube. One may observe that load-
ing path obtained by using the LSSVR(RBF) metamodels
provides less out-of-plane plastic strain which better for
wrinkling prevention.

By verifying the degree of shape conformity, one may
observe (see Fig. 16a,b) that for both optimums, the tubes
fill perfectly the die shape; however, better thickness dis-
tribution and less deformation severity are achieved with
the optimal loading path obtained using the LSSVR(RBF)
metamodels.

Based on the obtained results, one may conclude that
the high performance of the metamodels is reflected in the
quality of the solutions achieved. Optimisation of the THF
process based on the RSM suffers from the inaccuracies
of metamodels due to the approximation errors associated
with metamodels. It seems that the high nonlinear nature
of the THF process requires metamodels with high per-
formances to better optimise the process. The degree of
accuracy achieved by the RS metamodels seems insufficient
to provide a good approximation of the true Pareto front;
in contrast, the LSSVR(RBF) metamodels provide better
Pareto front as was shown based on the performance met-
rics. For this reason, it is advisable to use more sophisticated
metamodelling techniques for better capturing the nonlin-
ear phenomenons involved in the THF process. Moreover,
the presence of nonlinearities in the objective functions give
raise to non-convexity issues which represent the limita-
tions of the RSM. Due to the high precision of describing
the involved phenomenons in THF process, multi-objective
optimisation coupled with the LSSVR(RBF) shows its abil-
ity of searching high quality solutions.

6 Concluding remarks

This research provides a deep comparison between the
RSM and the LSSVR as metamodelling techniques to con-
struct metamodels for global sensitivity analysis and multi-
objective optimisation of the THF process. The LSSVR
shows its superiority over the RSM to deal with nonlinear-
ities proved through analytical test function and practical
industry problem as THF process. The main advantages of
the LSSVR technique lies in its ability to conduct opti-
misation strategy and global sensitivity analysis with high
accuracy. In contrast, the RSM shows several limitations
due to the errors of approximation associated to the meta-
models. On the other side, the GSA reveals that thickness
distribution and wrinkling are highly sensitive to the axial
displacement while necking appears very sensitive to the
yielding pressure. This can provide guidance for designer to
better control the process in order to guarantee hydroformed
components with high mechanical properties and minimise
the rejection rate in a mass production environment. In
addition, optimisation of the THF process based on the
LSSVR(RBF) metamodels yields to significant improve-
ments in thickness as stress distribution; moreover, the
wrinkling tendency is as well minimised. With the help
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of some performance metrics, it has been found that the
quality of a Pareto set of solutions obtained based on the
LSSVR(RBF) metamodels is better than the ones using
RS metamodels. One may conclude that the LSSVR(RBF)
based on improved LHD can be an effective alternative to
determine optimal loading path for the THF process than
the RSM which was widely used in metal forming processes
as already mentioned. The RSM presents several limitations
and the LSSVR seems the best alternative to deal with GSA
and optimisation in hydroforming processes when various
sources of nonlinearities exist.

Our future research consists in extending the use of the
LSSVR in multi-objective optimisation with uncertainty
consideration applied for the THF process. This will be
done in order to investigate how uncertainties may affect
the location as the shape of the Pareto front since impre-
cise knowledge of process parameters including material
properties, geometric characteristics and loads are often
encountered in a mass production environment.
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