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Abstract Determining a process plan in the early phase of the
sheet metal forming process is a mandatory task for a process
planner. The objective of a process planner is to find a feasible
and cost optimal process plan which, in particular, optimizes the
assignment of processing elements to processing steps of the
production process. We propose to find such an assignment in
an automatic way for all the hole features by splitting the entire
task into three subsequent steps. At each step, the combinatorial
optimization problem is modeled as a bin packing problem with
conflicts, and heuristically solved by a specifically designed ant
colony optimizer. It is ensured that, at each step, the process plan
is feasible while minimizing the tooling costs. In our computa-
tional results, we compare our approach to the existing greedy
heuristic when computing a process plan for five different
practice-relevant sheet metal parts, and show that we can save
up to 50 % of the entire tooling costs.
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1 Introduction

During the last decade, the car producers and their suppliers
have to face increasingly harsh market conditions: in order to

stay competitive, they have to react on the market's demand
for more variety in the car models. New regulations about CO2

emissions and about safety force them to develop lighter and
at the same time more robust cars. The further globalization of
the markets and severely increasing raw material costs lead to
an enormous cost pressure. All in all, this means that the car
producers have to optimize the three competing target values
quality, time, and costs at the same time. The sector of devel-
opment, planning, and production of the car body components
is affected even stronger by this effect as the increased number
of car models is realized mainly by varying the car body
design of existing models. Furthermore, the traditional sectors
of the car production chain have to compensate for higher
costs on the growing electronic sector.

Most of the costs of a sheet metal part are generated relatively
late in the process chain, namely during die building and part
production. However, the costs are determined during the first
planning phase where the process plan for the part is set up.
Therefore, it is essential that the process planner gets feedback
about the resulting costs of a potential process plan. As slight
changes in the process plan may lead, for instance, to a collision
of tool components in the dies, it is important for the planner to
assure the feasibility of the part when setting up or changing the
process plan. In this paper, we suggest an optimization method
to determine a cost optimal and feasible process plan.

The remaining part of the article is organized as follows: in
Section 2 we describe the general production process of sheet
metal parts followed by a description of the planning process
and how it is performed nowadays. Furthermore, a method for
semiautomatic process planning and automatic tool cost
calculation is presented. This method is the base and the
reference for the optimization approach that is presented in
Section 3. Results that compare the output of the reference
method and of the suggested optimization approach are pre-
sented in Section 4. In Section 5, we conclude and give an
outlook on future work.
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2 Computer-aided process planning for sheet metal
forming

2.1 Production of sheet metal parts

A sheet metal part is produced by a sequence of forming and
trimming operations (OPs): at first, a blank has to be cut, either
by a special blanking press or directly from the coil. As a
second step, there is typically a deep drawing operation in
which most of the shape of the part is formed. Afterwards,
there is a sequence of trimming and forming operations in
which the part gets its final shape. An automation system like,
e.g., roboters or gripper bars transports the part from one
operation to the next. Figure 1 shows the geometry of a side
panel after each of the operations of the production process.
Each operation is carried out in a separate press containing a
complex die that performs the trimming and forming of the
part. If certain regions cannot be accessed from press working
direction special components called cams are needed that
divert the press force to another direction. Figure 2 shows
the working principle of a piercing cam: when the press
closes, the upper die moves down and the cam driver pushes
the cam in the lower die to the left; the piercing punch that is
mounted on the cam cuts a hole in the part geometry (red); a
gas spring pushes the cam back to the original position when
the press opens. Figure 3 shows the complete upper and lower
die for a forming operation containing cams. As cams are very
expensive and need a lot of space within the die, the planner
tries to avoid the use of cams by positioning the part for each
operation in a way that the maximum number of regions of the
part can be processed from press working direction. This
positioning relative to the press working direction is called
tipping. Each die has to be individually designed and built
based on the content that the process planner assigns to each
operation.

2.2 Planning of the production process

The task of the process planner is to first analyze the input data
which consists of the part geometry and typically of further
data that forms bounding parameters for the planning process
like the part material, the press forces, the maximum number

of operations, and the size of the press beds on which the dies
have to be mounted. In the next step, a process plan is
elaborated which contains the following information:

& Number of operations,
& Tipping per operation,
& Part features: regions of the part geometry that have to be

processed in a certain way after the drawing operation in
order to get their final shape,

& The processing sequence for each feature which describes
the sequence of trimming and forming steps that has to be
performed on that feature,

& Assignment of the single steps within a processing se-
quence (so-called processing units) to the operations,

& For each processing unit: information whether it can be
realized from press working direction or it requires a cam,

& Size of the die in each operation.

Depending on the company-specific structure, the planner
might also have to estimate the costs of dies but often, this is
the task of a separate cost planner in another department who
gets the process plan as input.

The general practice to perform these tasks consists of
adapting a process plan, respectively, a tooling concept, of a
similar part to the new part geometry [2]. Typically, this is
done paper-based without connection to the 3D part geometry.

Fig. 1 Side panel of Opel Zafira
that is produced in 6 operations
(blanking OP is not shown
explicitly) [1]

Fig. 2 Working principle of a cam [60]
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Therefore, the planner has to first measure the parameters of
the part geometry in a CAD system or just on a printed picture
of the part in order to “guesstimate” in the next step the
information provided within the process plan. The decisions
are based on personal experience; however, no feedback about
potential better solutions is gathered. The same applies to the
cost calculation: at a very early stage in the process, the total
costs are often estimated based on the planner's experience [3],
later on, when a more detailed calculation is required, it is
performed within a commercially or personally developed
spreadsheet program without any connection to the part
geometry or the process plan.

2.3 Computer-aided process planning and cost calculation

Until recently, there was no standardized and computer-aided
method for process planning of sheet metal parts. An integrat-
ed approach for semiautomatic process planning and fully
automatic tooling cost calculation based on 3D part geometry
is proposed in [4, 5]. It consists of the following steps:

& Feature detection: analysis of the 3D part geometry in
order to find the part features. Figure 4 shows the features
of a bumper.

& Process plan: assignment of appropriate processing
sequences to the features and distribution of the process-
ing units to the available operations taking into account

bounding conditions of the process and the press (see
Fig. 5).

& Tooling concept: derivation of a parameterized list of tool
components that are associatively linked to the part geom-
etry and the process plan.

& Costs: for each tool component, calculation of the resource
consumption (labor and material) and the costs are based
on the component parameters.

No other approach is known that integrates the process plan
and the tooling costs with the part geometry in a way that the
costs are updated automatically if the part geometry or the
process plan changes. For the single steps of this procedure,
similar approaches are known:

& Feature detection: most of the work focuses on 2D or 2.5D
milling features, the latest approaches try to combine
different techniques [6–9]. Only a few articles can be
found for features of sheet metal parts [10] which are
typically 3D and contain free-form surfaces [11, 12].

& Associative process plan/tooling concept: in [11] a hybrid
system of knowledge-based engineering and case-based
reasoning is suggested which tries to retrieve similar cases
from a database. Approaches with an associative paramet-
ric linkage between the part geometry and the die faces
can be found in [13, 14].

& Tool cost calculation: literature about geometry-based cost
calculation typically refers to costs for the 3D object in
consideration [15–17] but in our case, the object in con-
sideration is the sheet metal part whereas the costs refer to
the dies that are needed to produce that part. Verlinden
et al. [18] compares the suitability of artificial neural
networks and multiple regression for the costs of sheet
metal parts. In [19], a top-down calculation based on
tolerance features is presented. Other approaches base
on a search for similar cases via case-based reason-
ing–the search can be based on the part geometry
[20] or on an alphanumeric manufacturing data set
(e.g., bill of material) [21] or on a combination of
both [22, 23].

Fig. 3 Upper and lower die of a
forming operation with cams.
Source: Gessler and Weimann,
Weingarten

Fig. 4 Features of a fender (holes and trim lines are not labeled) [5]
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The approach in [5] contains the possibility to manually
adjust and optimize the process plan that is automatically
derived from the part geometry. The most important options
are the change of the tipping for certain operations, the group-
ing of holes, the sharing of cams, and the removing of a
complete operation. Each of these steps leads to a reduction
of the number of tooling components and thus to a cost
reduction. However, there are constraints that have to be
respected; otherwise the process plan might not be feasible
any more. Furthermore, these steps strongly interact, e.g.,
removing an operation may cause the additional usage of
cams in the remaining operations (which then might be shared
between different features). For a planner, it is impossible to
manually find a best and feasible solution within this huge
amount of possible combinations of tippings, groupings,
shared cams, and potentially removed operations. In the next
section, we suggest an optimization method for this problem.

3 Optimization of the process planning

The main goal is to find a cost optimal and feasible process
plan: produce a valid sequence of operations with a feasible
assignment of processing units to each operation while mini-
mizing the total costs of the manufacturing process. We limit
our optimization to “hole” features, specified by the types
round, rectangular, long, special shape, opening, large open-
ing, and large plunging. The geometry of a feature is given as
3D Cartesian coordinates, the center of gravity, and the pro-
cessing direction. Each feature is assigned to exactly one OP,
in which the feature and the OP are linked via a processing
unit that specifies how the feature is processed in that opera-
tion. For hole features, there is only one valid processing unit
which is piercing. For the optimization, the constant cost per
processing unit can be ignored, only the variable costs, i.e., the
cam costs, are considered for the processing unit. Holes that

are close to each other and that have the same working
direction can be processed together, i.e., they share certain
components. This is represented by grouping the features,
respectively, their processing units. Furthermore, a cam can
be shared between features (or processing units, respectively)
that are processed within the same operation and that have
working directions that are close to each other (within a certain
limit). The task is to assign processing units to groups, assign
groups to OPs, and minimize the total costs—minimize the
usage of cams and minimize the number of OPs—for the full
assignment. We find an ordering of the OPs for saving cams
such that the operation direction between two consecutive
OPs is smaller than a certain value, here 20 °. To make the
final process plan feasible, approximating collision detection
is implemented by considering distance constraints within and
between OPs and processing units. The tipping of OPs is also
implemented which has an influence on the decision to use
cams or not.

The optimization of a process plan can be stated as a
combinatorial problem—a bin packing problem (BPP) with
conflicts. The general bin packing problem [24, 25], with the
item set I ={1,…,m} and the bin set J ={1,…,n}, models the
task of packing a given number of items into a minimal
number of bins subject to the capacity restriction for the bins.
The mathematical program looks as

min
X
j¼1

n

y j; ð1Þ

s:t:
X
j¼1

n

xij y j ¼ 1 ; i ∈ I Singularityð Þ ð2Þ

X
i¼1

m

wi xij ≤Wyj; j ∈ J Weight Capacityð Þ ð3Þ

Fig. 5 Process plan for the fender
in Fig. 4
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xij; y j ∈ 0; 1f g; i∈I ; j∈J ð4Þ

where xij ¼ 1 if item i is packed into bin j;
0 otherwise :

�

and y j ¼ 1 if bin j is used;
0 otherwise:

�

The objective function (see Eq. 1) minimizes the number of
used bins j . The singularity constraints (see Eq. 2) ensure that
each item i is assigned to exactly one bin j . Each bin j has a
weight capacity restrictionW. The sum over the weights w i of
items i in a bin should be smaller than the capacityW of each
bin (see Eq. 3). The decision variables are restricted to be
binary valued (see Eq. 4).

Due to the fact that the bin packing problem is NP-hard,
several exact heuristics and approximation algorithms
[26–36] are developed to solve the problem accurately.
Metaheuristics [37] are also quite successful applied to BPP
based on

& Tabu search [27, 36],
& Simulated annealing [38],
& Ant colony optimization [39, 40],
& Variable neighborhood search [41, 42], and
& Evolutionary algorithms [43–51].

In practical applications, metaheuristics can be more suc-
cessful than exact heuristics since they do not require any kind
of derivative information and also workwell for problems with
a moderate size (up to 1,000 decision variables). Additionally,
it is easy to extend the meta-heuristic algorithm to solve multi-
objective bin packing problems where two conflicting
objectives are simultaneously optimized [52–55]. However,
even in the single-objective case, there will be no guarantee
to find the global best solution for the process. For solving
the many-constraint bin packing problems, motivated by
optimization of process plans, heuristics based on ant colony
optimization are proposed.

3.1 Ant colony optimization

Ant colony optimization (ACO) was first introduced as ant
system and later renamed to ACO [56–59]. The idea comes
from real ants in nature finding the shortest path between their
nest and food source. Ants constantly deploy pheromones. In
general, an ant chooses a path having higher pheromone
concentration with a higher probability; therefore at the be-
ginning, all possible paths are chosen with the same probabil-
ity. The shorter paths take less time than the longer ones;
therefore the pheromone concentration on the shorter paths
grows faster than on the longer ones. Hence, more ants choose
the shorter paths so that the pheromone concentration there

grows even faster. Finally, almost all ants of the colony take
the shortest path when a trail has emerged. The ants find the
shortest path from the nest to the food source only by com-
municating indirectly via the pheromones.

The behavior of ants is mapped to a graph with vertices
1, …, n . The path from vertex i to vertex k is represented by
the edge (i , k ) and τ ik denotes the pheromone concentration on
edge (i , k ). ACO consists of two main parts: the solution
generation and the pheromone update as shown in algorithm 1.

Algorithm 1 Pseudocode of the ACO metaheuristic

1: repeat
2:        generateSolutions();                  > fill bins according to pheromones
3:        pheromoneUpdate();            > update information
4:        smoothing();                        > reinitialize pheromones if required
5: until terminationCriteriaMet

To generate a single solution, an ant chooses an edge from
one vertex to another until a path from start to end is found.
The probability p ik of an ant going from vertex i to vertex k is
calculated with:

pik ¼
tαik ⋅η

β
ikX

i

X
k
tαik ⋅η

β
ik

; ð5Þ

where η ik, the a-priori knowledge, is the desirability for taking
edge (i , k ) and α , β ≥0 are constants controlling the influence
of C and η . The pheromone update comprises pheromone
evaporation and deployment:

t ik ¼ ρ ⋅ t ik þΔik;

where ρ ∈ (0, 1) is the evaporation speed and Δ ik is the update
increment. If edge (i , k ) is not part of the generated solution,
then Δ ik=0. Otherwise, Δ ik is >0 and is calculated based on
the solution quality. It is a valid statement that the better the
solution, the bigger is Δ ik.

Over the years, several variations of ACO were invented.
The MAX-MIN Ant System significantly reduced the proba-
bility of getting stuck in a local optimum and additional
parameters were introduced. The pheromone concentrations
are bounded by Cmax and Cmin . At the beginning the
pheromones are initialized with Cmax, here tmax ¼ 1

1−ρ , and

then evaporated. Smoothing is a mechanism to escape local
optima after stagnation was detected without losing all the
information gathered in the earlier iterations. To smooth, the
pheromone concentrations are recalculated:

t ik ¼ t ik þ tmax−t ikð Þ⋅δ

with δ ∈[0,1] controls the influence of the pheromone concen-
trations before smoothing, whereas δ =1 equals a reinitialization
of the pheromone concentrations with τmax. Smoothing takes
place if the modulo of iteration count and stagnation is 0.
During iteration, a constant number of solutions will be
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generated. The best solution of this iteration is called
the local best solution. The best solution found since the
last smoothing is called the global best solution. To decide
whether to update with the global or local best solution
after iteration, the parameter γ was introduced. It updates
with the local best solution before an update with the
global best solution is performed (control exploration versus
exploitation).

3.2 Three-step ant colony optimization for process planning

The solution approach is implemented in a three-step ap-
proach to find an optimal process plan. Each step can be
modeled as a BPPwith conflicts where either some constraints
are added or changed in the original formulation, or the
objective function is reformulated as a cost function. The
mapping from bin packing to the process plan design is that
items are considered as features and bins as groups of items, or
in the final process plan as OPs. Recall that in the process plan,
each feature should be assigned to exactly one OP. Thus, the
decision is binary valued if a feature is placed in a group or
not. The objective function can be interpreted as a minimiza-
tion function over the number of OPs, or substituted as a cost
function to find a cost optimal process plan.

A specific modification is made on the generic ant
optimizer to solve each step accurately. We have designed for
each step an ant colony optimizer:

1. Grouping–Ant: grouping of holes based on geometrical
data,

2. No-Cam–Ant: combining groups of holes to super groups
without using cams,

3. OP–Ant: merging of the super groups to a feasible process
plan.

The first two steps combine features to geometrically con-
nected components. The grouping in the first step considers
costs and in the second step minimizes the number of super
groups. The cost optimal process plan is then generated from
the super groups to build OPs implemented by the third step.

To adapt ACO to bin packing problems, the pheromone
trail (see Eq. 5) is reinterpreted: C ik encodes the favorableness
to pick feature i and k for the same bin. Thus, pairing of
features is the major goal of this pheromone trail. Note that the
information is not taken into account to which group these two
features are assigned. In general, we set the a-priori knowl-
edge η ik equal to 1. In the original bin packing formulation,
each item has a weight, and in the process plan, each feature
can be described by a bounding box, which consists of two
three-dimensional vectors x , y ∈ℝ3. The weight of a feature is
given as the distance of its bounding box to the centers of
gravity of all other features. Thus each feature holds a distance
vector of size the number of features.

To generate a solution with an ant, a feature is randomly
picked from the feature set and placed into a new feature
group. Then, to select feasible candidates for this group, the
available constraints are checked for the un-grouped features.
A feature is feasible for this group if the constraints are
fulfilled with respect to all features in the group. If there is a
feasible candidate, the feature is added to the group. If there is
no feasible feature available, a new group is created and the
procedure starts from the beginning with the remainder of the
feature list. When all features are grouped together, the objec-
tive function values are evaluated and the pheromone trail is
updated with the best solution in this iteration. It is also
possible to update with the best solution over all iterations
after κγ iterations with κ , γ >0 and γ is a predefined constant.
The update is performed either by the normalized costs or by
the number of used bins. If the ant optimization process is
stagnating, smoothing will be activated and the pheromone
concentration is reset. We will describe each step in more
detail.

3.2.1 Grouping–Ant

Instead of the capacity constraint in BPP, we use several other
constraints to check for feasibility. Additionally, the objective
function is given by the cost function in relation to the cam
costs.

The constraints are five geometrical distances for grouping
of features. These constraints can be expressed by using the
decision variable x ij ⋅xkj having value either 1 (both features i
and k are in the group j) or 0 (otherwise). Clearly, x ij+xkj−1 is
the linearization of x ij ⋅xkj. In the following, the term distance
dik is defined as dik=‖(x i,y i,z i)

T−(xk,yk,zk)T‖where ‖⋅‖ is an
arbitrary norm. The maximum distance constraint is based on
the limited size of tooling components to process a large group
of features (see Eq. 6). But features should not be too close to
each other in the same group because dies cover some space to
manufacture one feature (see Eq. 7). Within a group a feature
should also not be too far located from the next feature
according to the sharing properties of dies (see Eq. 8). If the
difference in the height is too much, dies are not able to
process both features at the same time, where dz measures
the distance between the z coordinates of the two items (see
Eq. 9). The last limitation factor is the processing direction of
a feature. The angle between the processing directions
of two features should be smaller than a certain degree,
otherwise the resulting features might not have the desired
shape, where ∢ ik calculates the angle between features i and k
(see Eq. 10).

Max : dik xij þ xkj−1
� �

≤Dmaxy j ð6Þ

Min : dik xij þ xkj−1
� ��� ��þ Dmin xij þ xkj−2

� ��� ��≥Dminy j ð7Þ
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Next : ∃k : dik xij þ xkj−1
� �

≤Dnexty j ð8Þ

Height : dz xij þ xkj−1
� �

≤Dheighty j ð9Þ

Angle : ∢ik xij þ xkj−1
� �

≤Pyj ð10Þ

where Dmax=380, Dnext=70, Dheight=12, Dmin=4, and P=15.

The objective function is min∑ j¼1
n

c jy j where cj is computed

by the cam costs for the group j.
Now, a number of groups of features are clustered which

can be processed almost cost optimal; however, the number of
groups gets quite large. Thus, the next step must be to further
merge the groups to super groups.

3.2.2 No-Cam–Ant

The No-Cam–Ant combines the groups of the Grouping–Ant
to super groups. It is not yet known if a groupwill be processed
with a cam or can be processed from the press working
direction. The groups of features are represented as the items
of the BPP and the super groups are the bins of the BPP. The
constraints are checked during filling into the super groups.
The constraint types which were active to find feasible super
groups are again the minimum distance constraint by the same
argumentation. As a second constraint, the angle between the
processing directions of the two groups of features is limited,

because otherwise, a cam is required, causing additional costs
which should be decided by the last ant optimizer.

Min : dik xij þ xkj−1
� ��� ��þ Dmin xij þ xkj−2

� ��� ��≥Dminy j

Angle : ∢ v j; v jþ1

� �
≤Qyj; j∈ J ; v j ∈ℝ3;Q ¼ 20

The objective function minimizes the number of super
groups to achieve a smaller number of candidates for the final
process plan.

3.2.3 OP–Ant

The super groups of the previous step are merged to OPs to
find a feasible and cost optimal process plan. Here, the ACO
approach is slightly changed. The OP–Ant generates order-
ings for the super groups which are then evaluated by the
objective function. The pheromone concentration C ik tells
how favorable it was to choose operation k after operation i .
The objective function minimizes the cam costs.

When an operation is chosen, the following steps are
performed: the selected super group creates a new OP, and
the processing direction of the super group becomes the
operation direction. The next super group checks if it is
feasible to process the super groups on the current OP:

∢ v j; v jþ1

� �
≤ Ryj; j∈ J ; v j ∈ℝ3;R ¼ 20 ð11Þ

Table 1 Geometrical properties of five different parts

Part Surface [dm2] Length [mm] Width [mm] No. of holes

A pillar 34.27 1,059.83 1,138.13 16

C pillar 46.54 1,504.63 1,450.51 67

Hood inner 186.61 1,499.97 1,662.37 145

Door inner 60.92 1,125.17 754.92 76

Side panel 364.18 3,442.62 1,245.71 52
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default configuration and the
multi-step ant colony approach

Fig. 7 A pillar geometry containing various holes with different working
directions
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If this is cheaper than creating a new OP, the operation
becomes a sub OP of the current operation. Otherwise, a new
OP will be created. We have to determine the operation
direction v of the new OP. If the angle between the operation
direction of the previous OP and the current processing direc-
tion is smaller than 20 °, the processing direction becomes the
operation direction of the new OP. Otherwise, the operation
direction v* of the new OP will be determined by moving the
operation direction of the previous OP by 20 ° in direction to
the current processing direction:

v*jþ1 ¼ v j þ q⋅v jþ1; q∈ℝ3: ð12Þ

This mechanism generates always a feasible process plan.
However, the three-step approach is based on a metaheuristic
such that the global optimality cannot be guaranteed, but a
high quality of the solution is expected.

Due to the complexity of the practical optimization prob-
lem, i.e., finding a feasible assignment of processing elements
to processing steps, a three-step ACO approach has been
chosen as the adequate solution process to find an optimal
process plan. The advantages when following a three-step
ACO approach are twofold:

On the one hand, there are natural dependencies between
the intermediate optimization problems which we think cannot
be modeled as a single optimization problem. For instance, the
third ACO optimizer, the ordering of processing steps, needs as
a mandatory input the set of processing elements on each
processing steps. The elements are finally determined by the
second ACO optimizer. The input for the second step requires
groups of elements which are geographically categorized into

the same group to decide if a cam can be shared among groups.
The groups are identified by the first step.

On the other hand, there is a decision-making advantage for
the process planer as after each step, the results of the ACO
optimizer can be visualized and interpreted by a process
planer. For instance, the Grouping–Ant determines geographical
groups on the sheet. As this solution itself might not be the only
optimal solution, a process planer can possibly justify the result
and prioritize certain assignments of elements to groups.

4 Computational results in computer-aided process
planning

The multi-step ACO approach is applied to five different parts
of a car (see Table 1, Fig. 6). The parts differ in length and
width, and also the number of holes changes drastically. For
instance, the part hood inner has a large number of holes but
all holes can be processed from the same processing direction.
In contrast to this part, the part A pillar has only a few holes
(see Fig. 7) but grouping and tipping will have a strong
influence on the costs.

Currently, as the default configuration, a greedy heuristic is
implemented which consists of several steps: first, the part
geometry is tipped into an average normal position, i.e., the
weighted average vector of all part face normal is opposing the
press working direction. This tipping is applied to all OPs
where the number of OPs has to be defined by the user. Based
on this position and based on the tolerances for the working
directions, features are assigned to the processing operations
by the following scenario: starting from the original geograph-
ical location, all features next to this location are one-by-one

Fig. 8 Solution of the greedy
heuristic (left) and the ACO
optimization (right): the number
of cams (arrows) can be reduced
from 17 to 2

Table 2 Comparison between
the default configuration and the
optimized variant when applied to
different parts

No. of cams No. of OPs No. of groups Costs (in 104)

Part Default ACO Default ACO Default ACO Default ACO

A pillar 17 2 2 1 0 4 37.9 18.0

C pillar 41 6 1 1 0 14 41.2 35.4

Hood inner 64 8 2 2 0 19 54.2 46.2

Door inner 0 0 2 2 0 27 90.3 73.2

Side panel 50 7 2 1 0 7 76.0 42.1
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assigned to the first possible processing operation. Then, cams
are assigned to the features (or processing units, respectively).
In the last step, the processing units are assigned to the
OPs based on a set of constraints. Note that there is no change in
the costs when the assignment is changed because the number of
operations is fixed and all operations have the same tipping such
that a reassignment of the processing units does not lead to a
lower number of cams. Furthermore, cam sharing is not consid-
ered for the automatic assignment. The optimization can only be
done manually by changing the tipping of an operation, group-
ing features, or sharing cams between features. Hence, the
greedy heuristic generates a good start assignment with an upper
bound for the cost but not a cost optimal assignment.

We compare the costs obtained by the multi-step ACO
approach with the costs of the default greedy configuration
(see Fig. 6). Using the Grouping–Ant, a maximum reduction
in costs is achieved in case of Hood inner by an amount of
19 %, in case of side panel by an amount of 1.6 %. In the next
step, the No-Cam–Ant may reduce the costs further if cams
can be shared among groups. The reduction percentage ranges
from 4 % (door inner) to 0.05 % (A pillar). In hood inner, the
processing direction of the holes do not require any cams,
thus, no groups are sharing cams. The OP–Ant finds the
optimal tipping for the part and merges cams among groups.
In the parts, A pillar and side panel, a final cost reduction of
around 50 % can be achieved where in part C pillar, a reduc-
tion of 14 % is attained. Figure 8 shows the solution of the
ACO optimization (right) in comparison to the result of the
greedy heuristic (left) for the A pillar: due to grouping and
better tipping the amount of cams can be reduced from 17 to 2.

In Table 2, geometrical aspects of parts by considering cams,
OPs, and groups, and the total costs are compared to each other
using the default and the multi-step ACO heuristic. The number
of cams can be considerably minimized by grouping the holes
and sharing cams among holes. Additionally, the number of
OPs can be reduced. On average, a total reduction of the costs
by 29 % compared to the greedy heuristic is obtained.

5 Conclusions and outlook

We have presented a three-step approach to obtain fully auto-
matic a feasible and cost optimal process plan. At each step,
the optimization problem is heuristically solved by an ant
colony optimizer which outperforms the existing greedy
approach regarding tooling costs and practicability of the
process plan. At maximum, about 50 % of the tooling costs
compared to the greedy heuristic can be saved.

Future work will focus on the enlargement to the process-
ing of forming features like e.g., flanges or forming areas. The
challenge consists of the preprocessing of the features: a
forming feature might be formed in several steps and the
intermediate geometries are not known; therefore, the

computation of working directions for the features is difficult.
An approach consists in analyzing the sequence of radii in the
intersection of the form feature.
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