
ORIGINAL ARTICLE

A heuristic algorithm for solving flexible job shop
scheduling problem

Mohsen Ziaee

Received: 14 December 2011 /Accepted: 18 November 2013 /Published online: 1 December 2013
Springer-Verlag London 2013

Abstract This paper deals with the flexible job shop sched-
uling problem with the objective of minimizing the makespan.
An efficient heuristic based on a constructive procedure is
developed to obtain high-quality schedules very quickly. The
algorithm is tested on benchmark instances from the literature
in order to evaluate its performance. Computational results
show that, despite its simplicity, the proposed heuristic can
obtain effective solutions in very short and nearly zero time
and is comparable with even metaheuristic algorithms and
promising for practical problems.

Keywords Scheduling . Flexible job shop .Makespan .

Heuristic

1 Introduction

In recent years, scheduling plays a vital role in manufacturing
environments due to the growing consumer demand for vari-
ety, reduced product life cycles, changing markets with global
competition, and the rapid development of new technologies.
These economic and commercial market pressures have
challenged the manufacturers to output products with low
production cost and to deliver to customers on time. Schedul-
ing, a decisionmaking process which deals with the allocation
of limited resources to tasks over time, plays an important role
in achieving these goals. The Job shop Scheduling Problem
(JSP) is one of the most popular scheduling problems existing
in practice. It has attracted the attention of many researchers
due to its wide applicability and inherent difficulty. The JSP
has been proven to be NP-hard [10]. In the n ×m classical JSP,

a set of n jobs must be processed on a group of m machines,
where the processing of each job i consists of J i operations
performed on these machines. Each job has a specified pro-
cessing order on the machines which is fixed and known in
advance, i.e., each operation has to be performed on a given
machine. Moreover, the processing times of all operations are
fixed and known. Each machine is continuously available
from time zero and can process at most one operation at a
time. The operations are processed on the machines without
interruption [2]. A typical performance indicator for the JSP is
the makespan, i.e., the time needed to complete all the jobs.

In modern manufacturing environments, a machine may
have the flexible capability to be set up to process more than
one type of operations. This capability leads to an extension of
the classical JSP called the Flexible Job shop Scheduling
Problem (FJSP). This problem (FJSP) is very important in
both academic and application fields. In the FJSP, each oper-
ation is allowed to be processed on any among set of available
machines and, thus, the scheduling problem is to choose for
each operation, a machine and a starting time at which the
operation must be processed. The FJSP is more difficult than
the classical JSP because it contains an additional problem,
i.e., assigning operations to machines. Therefore, the FJSP
is a problem of challenging complexity and high practical
value. This problem is known to be strongly NP-hard even
if each job has at most three operations and there are two
machines [10].

In this paper, an efficient heuristic method based on a
constructive procedure is presented to solve the FJSP with
the objective of minimizing the makespan (Sect. 3). The main
purpose is to produce good quality and applicable schedules
very quickly. It can also be used to improve the quality of the
initial feasible solution of metaheuristics applied to solve the
problem, since the choice of a good initial solution is an
important aspect of the performance of the algorithms in terms
of computation time and solution quality [8, 22, 27]. In order

M. Ziaee (*)
Department of Industrial Engineering, University of Bojnord,
94531-55111, Bojnord, Iran
e-mail: ziaee@iust.ac.ir

Int J Adv Manuf Technol (2014) 71:519–528
DOI 10.1007/s00170-013-5510-z

to evaluate the performance of the proposed heuristic, it is
implemented using several well-known benchmark problems,
and the results of the computational experiments are presented
(Sect. 4). The results show that our novel method can produce
good solutions in a very short time. Concluding remarks are
given in the last section.

Other assumptions considered in this paper are as follows:

1. Jobs are independent of each other.
2. Machines are independent of each other.
3. Setup and transportation times are negligible.
4. An operation cannot be performed by more than one

machine at the same time.
5. All jobs have equal priorities.
6. All jobs are available at time zero.

The notations used throughout the paper are as follows:

n Number of jobs
m Number of machines
i , z Index of jobs; i , z =1,…,n
Ji Number of operations of job i
maxJ Maximum number of operations per job (i.e.,

maxJ =maxi J i)
j Index of operations; j =1,…, J i
k , y Index of machines; k , y =1,…,m
tijy Processing time of operation j of job i on machine y
c ij Completion time of operation j of job i

2 Literature review

During the past two decades, the FJSP has captured the
interest of many researchers. Exact methods based on a dis-
junctive graph representation of the problem have been devel-
oped, but they are not efficient for instances with more than 20
jobs and 10 machines [25]. However, many approximation
algorithms, mainly metaheuristics, have been successfully
applied to the FJSP. Dauzere-Peres and Paulli [7] presented
a tabu search (TS) algorithm based on a new neighborhood

structure for the FJSP. Mastrolilli and Gambardella [21] im-
proved Dauzere-Peres’ TS algorithm and developed two
neighborhood functions. These two researches are well-
known studies in the literature on the FJSP. Wang et al. [28]
presented a bi-population based estimation of distribution
algorithm (BEDA) to solve the FJSP. They investigated the
influence of parameter setting on the performance of the
algorithm by using the design of experiment based testing
and used simulation tests to demonstrate the effectiveness of
the BEDA in solving the FJSP. Wang et al. [29] proposed an
artificial bee colony (ABC) algorithm for solving the FJSP. In
this method, they developed a new local search based on
critical path to perform local exploitation effectively. Ho
et al. [14] presented an architecture for learning and evolving
flexible job shop schedules called learnable genetic architec-
ture in which the knowledge extracted from previous genera-
tion by its schemata learning module is used to influence the
diversity and quality of offsprings, unlike the canonical evo-
lution algorithm, where random elitist selection and mutation-
al genetics are assumed. Zhang et al. [35] also developed a
genetic algorithm (GA) to schedule the jobs in the flexible job
shop. Bozejko et al. [3] solved the FJSP using two double-
level parallel metaheuristic algorithms called meta2heuristics
including two major modules: machine selection and opera-
tions scheduling. On the machine selection module, two
metaheuristics, tabu search and population-based approach,
are applied to determine an assignment of operations to ma-
chines. An insertion algorithm and tabu search is used as
operations scheduling module to solve the problem after having
assigned operations to machines. They also presented an ap-
proximation algorithm based on the tabu search metaheuristic
which includes a new neighborhood structure called “golf
neighborhood” to solve the problem [4]. Bagheri et al. [1]
proposed an artificial immune algorithm (AIA) to solve the
FJSP. An approach based on a combination of the ant colony
optimization (ACO) and tabu search algorithms was presented
by Liouane et al. [20]. Rossi and Dini [26] also presented a
metaheuristic approach based on the ACO to solve the FJSP.
Their method was designed for a real environment and is
capable of solving more general cases of the problem where

Fig. 1 General outline of the
proposed heuristic algorithm

520 Int J Adv Manuf Technol (2014) 71:519–528

there are sequence-dependent setup times and transportation
times. Girish and Jawahar [11] presented two metaheuristic

algorithms, a GA and an ACO to solve the problem. Ennigrou
and Ghédira [9] developed two multi-agent approaches based

Fig. 2 Pseudo-code of the proposed heuristic method

Int J Adv Manuf Technol (2014) 71:519–528 521

on the tabu search algorithm for solving the problem. Yazdani
et al. [32] suggested a parallel variable neighborhood search
algorithm which uses multiple independent searches increasing
the exploration in the search space. Li et al. [18] presented a
hybridization of tabu search algorithm and a fast public critical
block neighborhood structure (called TSPCB) to solve the
problem. An approach based on an integration of ACO and
knowledge model called knowledge-based ant colony optimi-
zation (KBACO) algorithm was presented by Xing et al. [30].
Pezzella et al. [24] presented a GA for the FJSP in which
different strategies for generating the initial population, selecting
the individuals for reproduction, and reproducing new individ-
uals are integrated. They showed that the integration of more
strategies in a genetic framework leads to better results, with
respect to other GAs. Gutiérrez and García-Magariño [12]
presented a hybrid method which combines GAs with repair
heuristics. The algorithm first uses two GAs to find a non-
optimal schedule, which does not satisfy all constraints of the
problem. It then applies repair heuristics to refine the solution,
instead of inserting this knowledge into the GAs. Hmida et al.
[13] presented a new discrepancy-based method, called
ClimbingDepth-boundedDiscrepancy Search to solve the prob-
lem, and presented various neighborhood structures related to
assignment and sequencing problems using the concept of
discrepancy to expand the search tree. Li et al. [19] presented
a hybridization of particle swarm optimization (PSO) and TS
algorithms to solve the problem. In the sequencing stage of the
proposed hybrid algorithm, the PSO is used to produce a swarm
of high-quality candidate solutions, and in the machine assign-
ment stage of the algorithm, the TS is applied to find a near
optimal solution around given good solutions. Chiang and Lin
[6] investigated themulti-objective FJSPwith themakespan, the
total workload, and the maximum workload as objectives, and
developed an evolutionary algorithm to generate set of Pareto
solutions. Yuan et al. [34] proposed a hybrid harmony search
(HHS) algorithm for solving the FJSP. They also presented
hybrid differential evolution (HDE) algorithms to solve the
problem [33]. They developed a new conversion mechanism to
make the differential evolution algorithm that works on the
continuous domain applicable to solve the discrete FJSP; and
in the local search phase of the method, they presented a speed-
up method for finding an acceptable schedule within the

neighborhood more quickly. Huang et al. [15] consider the FJSP
with the due window and the sequence-dependent setup times
and developed a two pheromone ant colony optimization to
solve the problem. Xiong et al. [31] address the FJSP with
random machine breakdowns and present a multi-objective
evolutionary algorithm to solve the problem.

3 Proposed heuristic approach

In this section, we present an efficient heuristic algorithm to
solve the FJSP. This approach is motivated by the idea of
developing a constructive heuristic that considers simultaneous-
ly many factors affecting the solution quality and intelligently
balances their effects, in the process of schedule generation, and
the observation that it can lead to good results in some prelim-
inary computational experiments on a wide range of difficult
scheduling problems. This algorithm has a simple structure and
great flexibility, is easy to implement, and requires very little
computational effort, whichmakes it preferable over other more
complex and time-consuming approaches, even if its results for
benchmark instances are so weakly dominated the lower
bounds in the literature. Some notations that will be used in
the algorithm are defined as follows:

Aij Set of machines which are capable to execute operation
j of job i

Nij Number of members of the set Aij

s ′ij Mean processing time of operation j of job i over the
machines belonging to the set Aij (i.e.,

s
0
ij ¼ ∑

y∈Aij

tijy

 !
=Nij)

sj i
total mean processing time of job i (i.e., sj i= ∑

j¼1

Ji
s
0
ij)

sky Total weighted processing time on machine y which is

calculated as follows: sky= ∑
i¼1

n

∑
j¼1

if y∈Aij

Ji
tijy
s
0
ij

;

M A large number

Table 1 Parameter settings for the heuristic

Parameter Value Parameter Value Parameter Value

w1 2 L_x1 1 U_x1 4

w2 1 L_x2 0 U_x2 1

w3 1 L_x3 −1 U_x3 0

w4 2 L_x4 −3 U_x4 −1
w5 1 L_x5 −1 U_x5 0

w6 1 L_x6 −1 U_x6 0

Table 2 Recent
algorithms to solve
the FJSP

Name Reference NumRuns

TSPCB [18] 50

AIA [1] 10

KBACO [30] 10

HHS [34] 30

TS3 [4] –

HDE-N2 [33] 50

BEDA [28] 50

ABC [29] 50

522 Int J Adv Manuf Technol (2014) 71:519–528

T
ab

le
3

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
th
e
B
ra
nd
im

ar
te
be
nc
hm

ar
k
in
st
an
ce
s

T
SP

C
B

A
IA

K
B
A
C
O

H
H
S

T
S3

H
D
E
-N

2

N
am

e
n
×
m

L
B

B
C
m
ax

A
V

(C
m
ax
)

T
im

e
R
PD

B
C
m
ax

T
im

e
R
PD

B
C
m
ax

A
V

(C
m
ax
)

T
im

e
R
PD

B
C
m
ax

A
V
(C
m
ax
)

T
im

e
R
PD

B
C
m
ax

T
im

e
R
PD

B
C
m
ax

M
K
01

10
×
6

36
40

40
.3

14
0

11
.1
1

40
97
2.
1

11
.1
1

39
39
.8

4,
69
2

8.
33

40
40

2.
1

11
.1
11

41
47
.8
7

13
.8
89

40
M
K
02

10
×
6

24
26

26
.5

96
5.
5

8.
33

26
1,
03
4.
6

8.
33

29
29
.1

5,
92
2

20
.8
3

26
26
.6
3

22
.2

8.
33
33

30
36
.1
2

25
26

M
K
03

15
×
8

20
4

20
4

20
4

49
0.
00

20
4

2,
47
3.
7

0.
00

20
4

20
4

45
,5
52

0.
00

20
4

20
4

0.
3

0
20
4

33
0.
1

0
20
4

M
K
04

15
×
8

48
62

64
.8
8

2,
04
1

29
.1
7

60
1,
52
0.
7

25
.0
0

65
66
.1

12
,2
46

35
.4
2

60
60
.0
3

31
.2

25
65

11
5.
22

35
.4
17

60
M
K
05

15
×
4

16
8

17
2

17
2.
9

1,
01
1.
5

2.
38

17
3

1,
71
9.
5

2.
98

17
3

17
3.
8

9,
73
2

2.
98

17
2

17
2.
8

22
4.
1

2.
38
1

17
4

10
6.
12

3.
57
14

17
2

M
K
06

10
×
15

33
65

67
.3
8

1,
35
9

96
.9
7

63
2,
45
6.
2

90
.9
1

67
69
.1

24
,1
26

10
3.
03

58
59
.1
3

1,
82
1.
9

75
.7
58

71
2,
11
9.
53

11
5.
15

57
M
K
07

20
×
5

13
3

14
0

14
2.
21

1,
76
4.
5

5.
26

14
0

1,
61
9.
2

5.
26

14
4

14
5.
4

17
,1
18

8.
27

13
9

13
9.
57

31
7.
7

4.
51
13

14
8

11
2.
2

11
.2
78

13
9

M
K
08

20
×
10

52
3

52
3

52
3

23
2.
5

0.
00

52
3

3,
92
2.
5

0.
00

52
3

52
3

52
,4
46

0.
00

52
3

52
3

0.
6

0
55
1

98
8.
05

5.
35
37

52
3

M
K
09

20
×
10

29
9

31
0

31
1.
29

3,
51
9

3.
68

31
2

3,
89
7.
1

4.
35

31
1

31
2.
2

47
,0
16

4.
01

30
7

30
7

11
.7

2.
67
56

41
0

1,
28
6.
91

37
.1
24

30
7

M
K
10

20
×
15

16
5

21
4

21
9.
15

4,
49
1.
5

29
.7
0

21
4

3,
84
5.
4

29
.7
0

22
9

23
3.
7

74
,9
40

38
.7
9

20
5

21
1.
13

11
,1
90
.3

24
.2
42

26
7

1,
34
9.
4

61
.8
18

19
8

A
ve
ra
ge

1,
55
7.
35

18
.6
6

2,
34
6.
10

17
.7
6

29
,3
79
.0
0

22
.1
7

1,
36
2.
21

15
.4
0

64
9.
15

30
.8
6

T
SP

C
B

H
D
E
-N

2
B
E
D
A

A
B
C

H
eu
ri
st
ic

N
am

e
A
V
(C
m
ax
)

T
im

e
R
PD

B
C
m
ax

A
V
(C
m
ax
)

T
im

e
R
PD

B
C
m
ax

A
V
(C
m
ax
)

T
im

e
R
PD

B
C
m
ax

T
im

e
x1

x2
x3

x4
x5

x6
x7

x8
R
PD

M
K
01

40
20
0.
5

11
.1
11

40
41
.0
2

54
.5

11
.1
11

40
40

16
1.
5

11
.1
11

42
0.
09

3
0

0
−3

0
0

0
1

16
.6
7

M
K
02

26
30
4.
5

8.
33
33

26
27
.2
5

10
8

8.
33
33

26
26
.5

17
81
.5

8.
33
33

28
0.
17

2
0

−1
−1

−1
0

1
0

16
.6
7

M
K
03

20
4

1,
53
5

0
20
4

20
4

10
9

0
20
4

20
4

59
.5

0
20
4

0.
52

3
0

−1
−1

−1
−1

0
0

0.
00

M
K
04

60
62
9

25
60

63
.6
9

45
1

25
60

61
.2
2

1,
94
7

25
75

0.
20

4
0

−1
−1

0
−1

0
0

56
.2
5

M
K
05

17
2.
82

1,
89
4.
5

2.
38
1

17
2

17
3.
38

35
5

2.
38
1

17
2

17
2.
98

96
4.
5

2.
38
1

17
9

0.
20

4
0

0
−2

−1
0

0
1

6.
55

M
K
06

58
.6
4

4,
91
6

72
.7
27

60
62
.8
3

1,
51
0.
5

81
.8
18

60
64
.4
8

3,
33
0.
5

81
.8
18

69
0.
45

3
1

-1
-1

-1
0

0
0

10
9.
09

M
K
07

13
9.
42

1,
31
9

4.
51
13

13
9

14
1.
55

85
3.
5

4.
51
13

13
9

14
1.
42

6,
59
2

4.
51
13

14
9

0.
39

2
0

−1
−1

−1
0

0
1

12
.0
3

M
K
08

52
3

9,
47
0.
5

0
52
3

52
3

21
5

0
52
3

52
3

11
6.
5

0
55
5

0.
66

3
0

−1
−3

−1
−1

0
0

6.
12

M
K
09

30
7

6,
14
3.
5

2.
67
56

30
7

31
0.
35

4,
59
9.
5

2.
67
56

30
7

30
8.
76

4,
56
0.
5

2.
67
56

34
2

0.
94

4
0

0
−3

−1
0

0
0

14
.3
8

M
K
10

20
1.
52

13
,2
90

20
20
6

21
1.
92

9,
50
5.
5

24
.8
48

20
8

21
2.
84

11
,8
55
.5

26
.0
61

24
2

1.
20

2
0

−1
−1

0
0

1
0

46
.6
7

A
ve
ra
ge

3,
97
0.
25

14
.6
7

1,
77
6.
15

16
.0
7

3,
13
6.
90

16
.1
9

0.
48

3
0.
1

−0
.7

−1
.7

−0
.7

−0
.3

0.
2

0.
3

28
.4
4

Int J Adv Manuf Technol (2014) 71:519–528 523

An outline of the proposed heuristic algorithm is given in
Fig. 1.

The pseudo-code of the heuristic is shown in Fig. 2. In this
algorithm, each unscheduled operation (i , j) (operation j of
job i) to be scheduled on machine y is evaluated by the
following criterion, and the unscheduled operation with
minimum TC is selected for scheduling.

TC ¼ ∑
r¼1

6

wr:xr:Cr

such that,

C1 max (Cmaxy, c i ,j-1) + t ijy
C2 max (0, (c i,j-1 − Cmaxy))
C3 max (0, (Cmaxy − c i,j-1))
C4 t ijy
C5 sj i
C6 sky

TC is weighted sum of some criteria which are established
based on the factors affecting the objective function value.
Minimization of TC in the process of schedule generation
leads to improvement in solution quality. wr (r =1, 2,…, 6)
are constants and xr (r =1, 2,…, 6) are integer variables used
to increase the flexibility and effectiveness of criterion TC and
have a significant impact on the performance of the algorithm.
The constant weights (wr) are preliminary estimated weights
assigned to criteria according to their importance, and the
coefficients xr are variables bounded in a given range and
used to refine the TC. Cmaxy is the maximum completion
time across all the operations scheduled on machine y ;
that is, Cmaxy is equal to the completion time of the
operation situated just before operation j of job i on
machine y. C 1, C 2, and C 3 are applied to decrease Cmaxy,
idle times, and flowtime of jobs, respectively; clearly, all
these three objectives affect the main objective function,
i.e., Cmax . For assigning operations to a machine, their
processing time is also taken into account byC4. According to
C5, the jobs with larger sj i are scheduled sooner. C6 is used
for taking into account the total weighted processing time of
machines.

Other notations used in the pseudo-code of the heuristic are
as follows:

TC*: denotes the best value of TC . After each operation
is scheduled, TC* is reset to M.
L_xr (r =1, 2,…, 6): lower limit of xr
U_xr (r =1, 2,…, 6): upper limit of xr

The algorithm starts by scheduling the first operation
of all jobs, then the second operation of them, and so on.
For each j (j =1, 2,.., maxJ), the algorithm sorts the jobs
in increasing (decreasing) order of their sj i and, for each
job i taken in this order, evaluates its j th operation (if j ≤
J i and operation j of job i is an unscheduled operation).

Therefore, if two unscheduled operations belonging to
two different jobs have the same value of TC , then ac-
cording to this sorting of the jobs, the operation of job
with smaller (greater) sj i is selected for scheduling sooner
than the other operation. Binary variable x 7 is applied for
setting the order of the sorting (i.e., either increasing order
or decreasing order); it takes a value of 1 for increasing
order and 0 for decreasing one. For evaluating operation j
of job i , similarly the algorithm first sorts the machines in
increasing (decreasing) order of their sk y and, for each
machine y taken in this order, evaluates this operation to
be scheduled on machine y (if machine y is capable of
processing this operation, i.e., y ∈Aij). Binary variable x8
is applied for setting the order of the sorting; it takes a
value of 1 for increasing order and 0 for decreasing one.
Sorting the jobs and the machines, described above and
done before evaluating them for scheduling, may lead to better
solutions. Indeed, in our preliminary computational experiments,
we used these sortings of the jobs and machines instead of
randomly selecting them, and interestingly observed that these
sortings can lead to better solutions. xr

*(r=1, 2,…, 8) are the
best values of variables xr (i.e., the values corresponding to the
best solutions). Indeed, for various values of xr (r=1, 2,…, 8),
the algorithm of Fig. 1 is run and a complete schedule is
generated. Among all these schedules, the one with minimum
makespan is reported as the final solution. The values of
variables x r for this best solution are also reported and
denoted by x r

*.
As mentioned earlier, the evaluation of the operations for

scheduling them is done using the criterion TC , i.e., the
unscheduled operation with minimum TC is selected for
scheduling.

Table 4 Results of one-way ANOVA for the nine methods of Table 3

Source DF SS MS F P

Factor 8 2,802 350 0.43 0.898

Error 81 65,510 809

Total 89 68,312

0

20

40

60

80

100

120

M
K01

M
K02

M
K03

M
K04

M
K05

M
K06

M
K07

M
K08

M
K09

MK10

Instance Name

R
P

D

TSPCB

AIA

KBACO

HHS

TS3

HDE-N2

BEDA

ABC

Heuristic

Fig 3 Comparison of the RPD values of the methods of Table 3 for
different instances

524 Int J Adv Manuf Technol (2014) 71:519–528

4 Computational results

This section describes the computational experiments per-
formed in order to evaluate the performance of the proposed
heuristic method. First, some preliminary experiments have
been conducted for the parameter settings. Regarding the test
on various values for the parameters of the algorithm and
considering the computational results, we used the settings
of Table 1 for benchmarking the presented algorithm. The
algorithm was coded in C language and run on a Pentium
IV, 2.2 GHz and 2.0 GB RAM PC. The benchmark problems
used were the set of ten instances taken from Brandimarte [5]
(BRdata) and five problem instances taken from Kacem et al.
[16, 17]. These well-known test problems have been used by
many papers in the literature to benchmark the proposed
methods. We compared the results of our algorithm with those
of some most recent algorithms in the literature listed in
Table 2. The column “NumRuns” shows the number of runs
of the algorithm to solve the benchmark instances. Table 3
shows comparison of the running time and makespan results
obtained by our algorithm and the methods of Table 2. The
first and second columns indicate the name and size of each
problem instance, respectively. LB refers to the best-known
lower bound [21]. BCmax , AV (Cmax), and Time stand for the
best makespan, the average makespan, and the total compu-
tational time regarding the number of runs in seconds, respec-
tively. The results obtained by our algorithm are shown in the
last 11 columns. BCmax and Time represent the makespan
and the computational time for each instance, respectively.
The best values of variables xr (i.e., xr

*), r =1, 2,…, 8 have
also reported in Table 3. The average value of each variable xr,
r =1, 2,…, 6 can be considered as the relative effect of the
corresponding criterion on the quality of solutions. For exam-
ple, all x2 values but one are zero that means idle times have
almost no effect on Cmax. The values of other variables (i.e.,
xr, r =1, 3, 4, 5, 6) have relatively high variance as it can be
seen in the table, meaning that they are strongly dependent on
the specifications of problem instance under consideration and

on the values of other variables xr. The proposed algorithm
selects for each instance the best combination of xr values
leading to the best result. Average values of x3, x4, x5, and x6
are negative that means they have adverse effect on Cmax.
Average values of variables x7 and x8 are nearer 0 than 1. It is
because the jobs with larger sj i which are firstly selected for
scheduling have more sensibility and effect on the objective
value. In other words, the schedule of these jobs determines
the performance of overall schedule of the problem. Similarly,
the machines with larger sky which are firstly selected for
scheduling havemore sensibility and a determinative effect on
Cmax. Indeed, sorting the jobs and the machines before eval-
uating them for scheduling helps to keep balanced distribution
of the operations among the machines. RPD is the relative
percentage deviation to LB and calculated as follows:

RPD ¼ Cmaxalg−LB
LB

� 100;

Where Cmaxalg is the best makespan obtained by the
algorithm. As shown in the table, TSPCB, AIA, KBACO,
HHS, TS3, HDE-N2, BEDA, ABC, and our algorithm have
average RPD values of 18.67, 17.76, 22.17, 15.40, 30.86,
22.17, 14.67, 16.07, 16.19, and 28.44, respectively. To see
the differences between the nine algorithms, we investigate
them graphically. Figure 3 shows a graphical comparison of
the RPD values of the methods for different instances.

Herein, the heuristic is statistically compared with the
other eight methods. A one-way analysis of variance
(ANOVA) [23] is performed to test the null hypothesis
that the means of the nine methods are equal. The results
of this ANOVA are presented in Table 4. As can be seen,
the difference between the methods is not meaningful at a
significance level of 5 %. The methods are also compared
via Tukey’s pairwise comparisons test [23]. The results
presented in Fig. 4 show the interesting observation that
there is no significant difference between the proposed
algorithm and the other eight algorithms. However, as

__
Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons

Individual confidence level = 99.80%

Proposed Heuristic subtracted from:

Lower Center Upper ---------+---------+---------+---------+
TSPCB -50.34 -9.78 30.78 (-------------*------------)
AIA -51.24 -10.68 29.88 (------------*-------------)
KBACO -46.83 -6.28 34.28 (-------------*------------)
HHS -53.60 -13.04 27.52 (-------------*------------)
TS3 -38.14 2.42 42.98 (-------------*------------)
HDE-N2 -54.33 -13.77 26.79 (------------*-------------)
BEDA -52.93 -12.37 28.19 (-------------*------------)
ABC -52.81 -12.25 28.31 (-------------*------------)

---------+---------+---------+---------+
-30 0 30 60

__

Fig. 4 Results of Tukey’s
pairwise comparisons test for the
methods of Table 3

Int J Adv Manuf Technol (2014) 71:519–528 525

T
ab

le
5

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
th
e
K
ac
em

be
nc
hm

ar
k
in
st
an
ce
s

T
S
P
C
B

H
D
E
-N

2
K
B
A
C
O

B
E
D
A

N
am

e
n
×
m

L
B

B
C
m
ax

A
V
(C
m
ax
)

T
im

e
R
P
D

B
C
m
ax

A
V
(C
m
ax
)

T
im

e
R
PD

B
C
m
ax

A
V
(C
m
ax
)

T
im

e
R
P
D

B
C
m
ax

A
V
(C
m
ax
)

T
im

e

C
as
e
1

4
×
5

11
11

11
2.
5

0
11

11
4.
5

0
11

11
90
0

0
11

11
0.
5

C
as
e
2

8
×
8

14
14

14
.2

23
4

0
14

14
15
.5

0
14

14
.3

3,
88
2

0
14

14
11
.5

C
as
e
3

10
×
7

11
11

11
26
0.
5

0
11

11
23

0
11

11
3,
96
6

0
11

11
15

C
as
e
4

10
×
10

7
7

7.
1

86
0

7
7

18
.5

0
7

7.
4

6,
64
2

0
7

7
21

C
as
e
5

15
×
10

11
11

11
.7

49
1

0
11

11
10
9.
5

0
11

11
.3

9,
50
4

0
11

11
74
4

A
ve
ra
ge

21
4.
80

0
34
.2
0

0
4,
97
8.
80

0
15
8.
40

T
S
P
C
B

B
E
D
A

A
B
C

H
eu
ri
st
ic

N
am

e
R
PD

B
C
m
ax

A
V
(C
m
ax
)

T
im

e
R
P
D

B
C
m
ax

T
im

e
x1

x6
x7

x8
R
P
D

C
as
e
1

0
11

11
2

0
11

0.
01
5

4
0

0
0

0.
00

C
as
e
2

0
14

14
14
.5

0
15

0.
09
4

3
0

0
0

7.
14

C
as
e
3

0
11

11
79

0
13

0.
14
1

3
−1

0
1

18
.1
8

C
as
e
4

0
7

7
22
.5

0
7

0.
21
8

4
−1

0
0

0.
00

C
as
e
5

0
11

11
26
9.
5

0
12

0.
53
2

4
0

0
0

9.
09

A
ve
ra
ge

0
77
.5
0

0
0.
20

3.
6

−0
.4

0
0.
2

6.
88

526 Int J Adv Manuf Technol (2014) 71:519–528

shown in Table 3, the average computational time for the
heuristic is very low, and only 0.5 s (on a 2.2 GHz CPU
and 2.0 GB RAM) compared to 1,557.35 s (on a 1.6 GHz
CPU and 512 MB RAM) for TSPCB, 2,346.10 s (on a
2.0 GHz CPU and 256 MB RAM) for AIA, 29,379.00 s
(on a 2.4 GHz CPU and 1 GB RAM) for KBACO,
1,362.21 s (on a 2.83 GHz CPU and 15.9 GB RAM) for
HHS, 649.15 s (on a 1.0 GHz CPU and 8 GB RAM) for
TS3, 3,970.25 s (on a 2.83 GHz CPU and 15.9 GB RAM)
for HDE-N2, 1,776.15 s (on a 3.2 GHz CPU) for BEDA,
and 3,136.90 s (on a 2.83 GHz CPU and 3.21 GB RAM)
for ABC. Differences in the computers applied for run-
ning the programs make the direct comparison among the
running times difficult. However, even accounting for
relative differences in the speed between the processors
involved, the heuristic is significantly faster than the other
eight algorithms.

Similarly, the computational experiments were per-
formed on the Kacem benchmark instances and the results
are reported in Table 5. The first and second columns
indicate the name and size of each problem instance, re-
spectively. LB is the best makespan value found so far.
BCmax , AV (Cmax), and Time stand for the best makespan,
the average makespan, and the total computational time
regarding the number of runs in seconds, respectively.
The results obtained by our algorithm are shown in the last
11 columns. As shown in the table, the proposed heuristic
algorithm has an average RPD value of 6.88 compared to
zero for the other algorithms. We similarly performed
ANOVA and Tukey’s pairwise comparisons tests to statis-
tically compare RPDs of the methods, and observed that the
difference between the methods is not meaningful at a
significance level of 5 %. However, as shown in Table 3,
the average computational time for the heuristic is very low,
and only 0.2 s compared to 214.80 s for TSPCB, 34.20 s for
HDE-N2, 4,978.80 s for KBACO, 158.40 s for BEDA, and
77.50 s for ABC. Therefore, the proposed algorithm is an
efficient method for the problem and can obtain good solutions
in very short and nearly zero time showing that the method is
very promising for practical problems.

5 Conclusion

This paper investigates the FJSP with the objective of mini-
mizing makespan. A simple and easily extendable heuristic
based on a constructive procedure is presented. This heuristic
algorithm uses an accurate, relatively comprehensive, and
flexible criterion for scheduling job operations and construct-
ing a feasible high-quality solution. In this criterion, several
factors affecting the quality of solutions are used and to each
of these factors, two weights (including a constant weight and
a variable weight) are assigned. By setting different values to

the variable weights, different solutions are generated and
evaluated. The proposed heuristic is tested on benchmark
instances from the literature in order to evaluate its perfor-
mance. The computational results show that the approach can
yield good quality solutions with very little computational
effort. Since the proposed method is a heuristic, its results
cannot be compared in a meaningful way with those of the
methods evaluated as they are metaheuristic-based algorithms.
Nevertheless, the results of ANOVA tests show that the dif-
ference between the proposed heuristic and the metaheuristic
methods evaluated is not meaningful at a significance level of
5 %. However, among the methods, the proposed heuristic is
the most efficient method with the least average computation-
al time, and it produces very good solutions in a fraction of a
second on average. The procedure can be very useful in
applications that deal with real-time systems and that involve
the generation of initial schedules for local search and
metaheuristic algorithms. Further research needs to be con-
ducted in applying other criteria in the TC in order to improve
the solution quality and to adapt the approach to other objec-
tives and process constraints. Moreover, the performance of
the method proposed in this paper can be even better by doing
a detailed study on the impact of different values of L_xr,
U_xr, and wr on the quality of solutions and considering
other combinations of values of these variables that is left as a
future research.

References

1. Bagheri A, Zandieh M, Mahdavi I, Yazdani M (2010) An artificial
immune algorithm for the flexible job-shop scheduling problem.
Futur Gener Comput Syst 26:533–541

2. Baker K (1974) Introduction to sequencing and scheduling. Wiley,
NewYork

3. Bozejko W, Uchronski M, Wodecki M (2010) Parallel hybrid
metaheuristics for the flexible job shop problem. Comput Ind Eng
59:323–333

4. Bozejko W, Uchronski M, Wodecki M (2010) The new golf neigh-
borhood for the flexible job shop problem. Procedia Comput Sci 1:
289–296

5. Brandimarte P (1993) Routing and scheduling in a flexible job shop
by tabu search. Ann Oper Res 41:157–183

6. Chiang T-C, Lin H-J (2013) A simple and effective evolutionary
algorithm for multiobjective flexible job shop scheduling. Int J
Prod Econ 141:87–98

7. Dauzere-Peres S, Paulli J (1997) An integrated approach for
modeling and solving the general multiprocessor job-shop
scheduling problem using tabu search. Ann Oper Res 70:
281–306

8. Dell’Amico M, Trubian M (1993) Applying tabu-search to the job-
shop scheduling problem. Ann Oper Res 4:231–252

9. Ennigrou M, Ghédira K (2008) New local diversification techniques
for flexible job shop scheduling problem with a multi-agent ap-
proach. Auton Agent Multi-Agent Syst 17:270–287

10. GareyMR, Johnson DS, Sethi R (1976) The complexity of flow shop
and job-shop scheduling. Math Oper Res 1(2):117–129

Int J Adv Manuf Technol (2014) 71:519–528 527

11. Girish BS, Jawahar N (2009) Scheduling job shop associated with
multiple routings with genetic and ant colony heuristics. Int J Prod
Res 47(14):3891–3917

12. Gutiérrez C, García-Magariño I (2011) Modular design of a hybrid
genetic algorithm for a flexible job-shop scheduling problem. Knowl-
Based Syst 24(1):102–112

13. Hmida AB, Haouari M, Huguet M-J, Lopez P (2010) Discrepancy
search for the flexible job shop scheduling problem. Comput Oper
Res 37:2192–2201

14. Ho NB, Tay JC, Lai EM-K (2007) An effective architecture for
learning and evolving flexible job-shop schedules. Eur J Oper Res
179:316–333

15. Huang R-H, Yang C-L, Cheng W-C (2013) Flexible job shop sched-
uling with due window: a two-pheromone ant colony approach. Int J
Prod Econ 141:685–697

16. Kacem I, Hammadi S, Borne P (2002) Approach by localization
and multiobjective evolutionary optimization for flexible job-
shop scheduling problems. IEEE Trans Syst Man Cybern Part C
32(1):1–13

17. Kacem I, Hammadi S, Borne P (2002) Pareto-optimality approach for
flexible job-shop scheduling problems: hybridization of evolutionary
algorithms and fuzzy logic. Math Comput Simul 60:245–276

18. Li J-Q, Pan Q-K, Suganthan PN, Chua TJ (2010) A hybrid tabu
search algorithm with an efficient neighborhood structure for the
flexible job shop scheduling problem. Int J Adv Manuf Technol
52(5–8):683–697

19. Li J-Q, Pan Q-K, Xie S-X, Jia B-X, Wang Y-T (2010) A hybrid
particle swarm optimization and tabu search algorithm for flexible
job-shop scheduling problem, International Journal of Computer
Theory and. Engineering 2(2):1793–8201

20. Liouane N, Saad I, Hammadi S, Borne P (2007) Ant systems and
local search optimization for flexible job shop scheduling production.
Int J Comput Commun Control 2(2):174–184

21. Mastrolilli M, Gambardella LM (2000) Effective neighborhood func-
tions for the flexible job shop problem. J Sched 3(1):3–20

22. Matsuo H, Suh C, Sullivan R (1988) A controlled search simulated
annealingmethod for the general job-shop scheduling problem, Tech.

Rep. 03-04-88, Dept. of Management, The University of Texas,
Austin

23. Montgomery DC (2000) Design and analysis of experiments, 5th
edn. John Wiley & Sons, NewYork

24. Pezzella F, Morganti G, Ciaschetti G (2008) A genetic algorithm for
the flexible job-shop scheduling problem. Comput Oper Res 35:
3202–3212

25. Pinedo M (2002) Scheduling: theory, algorithms, and systems.
Prentice-Hall, Englewood cliffs

26. Rossi A, Dini G (2007) Flexible job-shop scheduling with routing
flexibility and separable setup times using ant colony optimisation
method. Robot Comput Integr Manuf 23:503–516

27. Van Laarhoven P, Aarts E, Lenstra J (1992) Job shop scheduling by
simulated annealing. Oper Res 40:113–125

28. Wang L, Wang S, Xu Y, Zhou G, Liu M (2012) A bi-population
based estimation of distribution algorithm for the flexible job-shop
scheduling problem. Comput Ind Eng 62:917–926

29. Wang L, Zhou G, Xu Y, Wang S, Liu M (2012) An effective artificial
bee colony algorithm for the flexible job-shop scheduling problem.
Int J Adv Manuf Technol 60:03–315

30. Xing L-N, Chen Y-W, Wang P, Zhao Q-S, Xiong J (2010) A
knowledge-based ant colony optimization for flexible job shop
scheduling problems. Appl Soft Comput 10:888–896

31. Xiong J, Xing L-N, Chen Y-W (2013) Robust scheduling for multi-
objective flexible job-shop problems with random machine break-
downs. Int J Prod Econ 141:112–126

32. Yazdani M, Amiri M, Zandieh M (2010) Flexible job-shop schedul-
ing with parallel variable neighborhood search algorithm. Expert Syst
Appl 37:678–687

33. Yuan Y, Xu H (2013) Flexible job shop scheduling using hybrid
differential evolution algorithms. Comput Ind Eng 65:246–260

34. Yuan Y, Xu H, Yang J (2013) A hybrid harmony search algorithm for
the flexible job shop scheduling problem. Appl Soft Comput 13:
3259–3272

35. Zhang G, Gao L, Shi Y (2011) An effective genetic algorithm for
the flexible job-shop scheduling problem. Expert Syst Appl
38(4):3563–3573

528 Int J Adv Manuf Technol (2014) 71:519–528

	A heuristic algorithm for solving flexible job shop scheduling problem
	Abstract
	Introduction
	Literature review
	Proposed heuristic approach
	Computational results
	Conclusion
	References

