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Abstract This paper discusses how to improve the po-
sition precision of a semi-closed loop servo system. A
support vector regression algorithm is chosen to model
and predict position error. The predicted error is then
fed back to the input entry to compensate the error.
Fuzzy PID control is introduced to adjust the controlling
rule of the PID controller in the semi-closed loop servo
system so as to improve the dynamic response charac-
teristics of the servo system and reach a high degree of
position precision. A case study is implemented. The
simulation and experimental results show that combin-
ing the improved fuzzy control with predicted position
error feedback ensures a high degree of position preci-
s ion and a high degree of dynamic response
characteristics.
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1 Introduction

Servo systems of CNC machine tools are generally classified
into three types, that is, open loop system, semi-closed loop
system, and closed loop system. Semi-closed loop systems
have a higher control precision compared with the open loop
systems and are much cheaper than the closed loop systems
[1]. For this reason, semi-closed loop systems have been
widely adopted in CNC machines tools, especially in P. R.
China. However, the errors of the mechanical transmission
system in CNC machine tools, possibly resulting from wear,
are unable to be fed back by the semi-closed loop servo
system. This seriously affects the machining precision and
stability of CNC machine tools. Therefore, a position error
compensation of semi-closed loop systems has been paid
special attention to.

It is known that error compensation basically involves a
study of methods to compensate for the various sources of
errors in machine tools. The errors in the machine tools are
measured and suitably compensated for in various ways.
Ramesh et al. [2] reviewed the works done in reducing the
errors of machine tools, which were divided into two catego-
ries, namely error avoidance and error compensation. Therein
error compensation was considered the primary method of
error elimination. It could further be divided into two catego-
ries namely precalibrated error compensation and active error
compensation. Artificial neural network method was adopted
in [3–5] to compute the mapping of position errors, and the
errors were reduced by introducing suitable compensation into
the control loop. However, a large number of training sets
required by this method is very difficult to be obtained in
industry. A general approach for real-time error compensation
technique was proposed by Yuan and Ni [6] to compensate for
volumetric errors caused by geometric, thermal, and cutting
force-induced errors. However, robust error models used in
the error compensation technique have still some major
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obstacles for better application of the technique. A new sliding
model was proposed by Xie et al. [7] to improve the tracking
precision of a laser beam positioning system. Compared with
a conventional control method, the control model had higher
tracking precision when it tracked different shapes of parts.
An adaptive fuzzy logic controller for precision contour ma-
chining was proposed by Jee and Koren [8] to improve the
contouring accuracy by simultaneously adjusting both input
and output membership functions based on the performance
of each control rule. The combination of fuzzy Proportion
Integration Differentiation (PID) control and simplified BP
neural network brought self-adaptive control of electric motor
into effect [9–13]. Compared to the conventional controllers,
the fuzzy PID controllers can improve the performance of
machines tools which have variable friction in the guide-
way, large variations in load, and deflection of the lead
screw. In addition, the contour errors especially the nonlin-
ear contours that can also be improved for the fuzzy PID
controllers are not sensitive to feedrate changes. For semi-
closed loop servo system, the dynamic characteristics of the
mechanical structure and servo motor obviously affected
the position accuracy. So there have been many researches
on the servo parameters tuning in order to match the
changes. A novel initial value compensation was imple-
mented by Hirose et al. [14] using an additional input for
semi-closed control systems. A feedforward-compensator
design technique was presented by Goto and Nakamura
[15] to improve dynamic characteristics of servo system
by modifying the input signals. To sum up, there is a
shortage of effective methods to deal with the error com-
pensation of the semi-closed loop servo system considering
the time-varying tendency of position errors and the dy-
namic response characteristics of servo system, although a
considerable volume of research work has been reported in
the area.

The objective of this research is to develop new error
compensation methods for improving the position accuracy
of semi-closed loop servo systems. In order to obtain the
required compensation value in advance, the authors propose
the position error prediction method using support vector
regression algorithm. According to the predicted variation
tendency of the position error, the compensation value is fed
back to the input dictate of the servo system. Furthermore,

fuzzy PID control is adopted to adjust the controlling rule in
the servo system in order to compensate the position error
caused by the debasement of the dynamic characteristics of
the servo system.

The details of our work are presented as follows. The
principle and method of the position error compensation for
a semi-closed loop servo system is briefly described in Sect. 2.
The position error prediction based on the support vector
regression algorithm is discussed in Sect. 3. The position error
compensation based on the fuzzy PID control is presented in
Sect. 4. A case study is implemented in Sect. 5. Finally, the
conclusions are given in Sect. 6.

2 Position error compensation of a semi-closed loop servo
system

The semi-closed loop servo system studied in this paper
mainly contains a servo driving device, servo motor, angular
rotation monitor, mechanical transmission system (including
couplings, bearings, ball screw, and nuts), and an executive
component such as a workbench. Its structure is described in
Fig. 1. The semi-closed loop servo system has the complicated
controlling principle with two control loops, a position control
loop and a velocity control loop, as shown in Fig. 2. The
mechanical transmission system is not included in the control
loops. The rotating angle of the ball screw is measured by the
rotary encoder and then is fed back to the input dictate. Many
factors such as vibration, friction, heat distortion from the
transmission system, as well as wear from the screw nut pairs
will increase the transmission error and hence decrease the
dynamic response properties. Moreover, it is known that the
position error is a comprehensive precision index of the CNC
machine tool. The position error can reflect different errors
such as location error, dynamic error, and dead zone error
when the machine tool is no load running. Therefore, position
error compensation is one of the ways to improve the position
precision and the machining performance of the machine tool
in engineering practice. A two-step position error compensa-
tion method is proposed in this paper through using support
vector regression and fuzzy PID control.

As shown in Fig. 3, the first step of the position error
compensation is to predict the position error according to the

Servo Motor

Input
dictate

Driving
device

Workbench

Angular rotation monitor
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Ball screw
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Fig. 1 Structure of a semi-closed
loop servo system
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collected error data and then feedback the compensated
error into the position control loop. Thus, it can be seen
that error measurement is the premise for the position
error compensation. Once error values at a period of
time are obtained, a support vector regression algorithm
will be adopted to build the degradation model of the
position error. This is because the support vector regres-
sion algorithm has very excellent learning capacity and
generalization capability with a small amount of sam-
ples. The degradation level and tendency of the position
error will be reduced by the training and prediction of
the degradation model. The required compensated values
will be counted and fed back to the input dictate of the
servo system in order to compensate the position error.
This is called feedback position error compensation.

The second step of the position error compensation is to
adjust the controlling rule of PID in the servo system. It is
known that the decrease of the position accuracy is followed
by the falling-off of the dynamic characteristics of the servo
system when performance degradation happens. The debase-
ment of the dynamic characteristics will further cause the
increment of the position error in the servo system. Therefore,
the main goal of the second step of the position error com-
pensation is to improve the dynamic characteristics of the
servo system. However, the servo system has nonlinear and
time-varying characteristics. Outside perturbation and
control parameter variety have a strong effect on the
performance of the servo system. Although fuzzy

control may efficiently diminish the influence from the
nonlinear and time-varying characteristics of the servo
system, it is not able to eliminate the steady-state error.
It is found that PID control may efficiently decrease the
steady-state error of the servo system. So the combination of
fuzzy control and PID control is adopted to change the con-
trolling rule of PID. A fuzzy PID controller is designed to
compensate the position error.

3 Position error prediction based on support vector
regression algorithm

Position error prediction needs plenty of error data if tradi-
tional methods such as neural networks are used. However,
the number of the measuring points of the servo system is
usually less than ten, and there is a relatively slow degradation
rate among servo systems. Thus, the obtained degradation
sample data of the positioning error is often rare in engineer-
ing practice.

Support vector regression originally proposed by Vapnik
and his co-workers is a newmachine learning algorithm based
on the statistical learning theory [16–18]. It implements the
rule of structural risk minimization to obtain a very good
generalization on a limited number of learning patterns. For
this reason, support vector regression algorithm is introduced
in this paper to model position error regression and predict the
tendency of the position error.

Servo driving
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motor

NC system

Mechanical transmission system
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monitor

Position error
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position error
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The second step of compensation The first step of compensation
Fig. 3 The two-step position
error compensation
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3.1 Support vector regression algorithm

Given a measurement dataset {(x i ,y i)|x i∈Rn,y i∈R , i =1,
2,⋯, l} with input data x i and output data y i , which,
respectively, indicate measurement time point and posi-
tion error, and l is the number of samples. The goal of
the support vector regression algorithm is to identify the
following nonlinear representation in a so-called high-
dimensional feature space:

yi ¼ w ⋅ y xið Þ þ bþ ei ð1Þ

where w is the weight vector and b is the bias term. ψ (•):
Rn→R is the nonlinear mapping function by which a nonlin-
ear regression in input space is converted into linear regression
in high-dimensional feature space. e i is the vector of error
terms which is assumed to have random distributions with
zero mean and constant variance. According to the theory of

support vector machines [19], the nonlinear representation can
be identified via minimizing the following cost function:

min
w;ξi;ξ

*
i

1

2
wTwþ C εþ 1

l

X
i¼1

l

ξi þ ξ*i
� � !

subject to −ε−ξ*i ≤ w ⋅ y xið Þð Þ−b−yi≤ ε þ ξi
ξi; ξ*i ≥ 0 ; i ¼ 1 ; 2 ; ⋯ ; l

8>>><
>>>:

ð2Þ

where C is the regularization parameter determining the
tradeoff between minimizing the training error and the model
complexity. ξ i and ξ i

∗ are penalty terms to measure the cost of
errors on the upper and lower constrains of the training points.
By applying the Lagrange multiplier method and Wolfe dual,
the solution to the nonlinear representation is transformed to
the following dual optimization problem:
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Fig. 4 Model parameter selection
based on the two-stage searching
method
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Here, the sequential minimal optimization algorithm
is used to solve the dual optimization problem [20], and
the Lagrange multipliers α i and α i

∗ will be obtained.
Furthermore, the bias term b is reduced according to

the following equation: b ¼ yi−ε−∑
i¼1

l

α*
i − αi

� �
K xi; x j
� �

.

Finally, the optimal nonlinear regression function is
acquired for curve fitting and prediction of the position
error, which is expressed as follows:

y xð Þ ¼
X
i¼1

l

α*
i − αi

� �
K xi; xð Þ þ b ð4Þ

where K (x i,x ) is a nonlinear kernel function satisfying the
Mercer's condition. The selection of kernel function is a vital
problem to minimize the generalization error of the support
vector regression algorithm. Compared with other feasible
kernel functions, the radial basis function (RBF) kernel can
reduce computational complexity of the training process and
improve generalization performance of the support vector
regression algorithm. Therefore, RBF kernel is selected as
the kernel function in the paper, which is formulated as
follows:

K x; xið Þ ¼ exp − x − xið Þ2=σ2
h i

ð5Þ

where σ2 is the scale factor for tuning.

3.2 Model parameter selection for position error prediction

The regularization parameter C and RBF kernel param-
eter σ 2 play an important role in the results of the
position error prediction. So these parameters in the
regression algorithm have to be tuned before being
applied to fuzzy PID position error compensation. There
are different parameter optimization methods such as the
grid-search and cross-validation arithmetic to search for
optimal parameters [21–23]. Most current researchers try
to balance searching speed and accuracy. However, it is
revealed in our research that the error between the
forecasted value and the true value was much bigger
when using the optimal parameters to train the remain-
ing dataset. By analyzing the parameter optimization
process, it was found that the selection of original scope
of parameters and the sample step in the support vector
regression algorithm depend very much on experience.
The obvious limitation is that if the scope and step are
too small or too big, the optimal parameters may either
be missed or need too much time to be found. Due to
the limitations of the current parameter-searching
methods, the performance of the support vector regres-
sion algorithm is still unsatisfactory. For this reason, a
novel two-stage searching method is proposed in the
paper to improve the parameter optimization process.
The method includes a domain searching stage and a
parameter searching stage. The detailed steps involved
are illustrated in Fig. 4.

0 2 4 6-2-4-6

NB NM NS ZO PS PM PB

Membership

Fuzzy domain

Membership function

Fuzzy set
1

0.5

Fig. 5 Membership functions of
normalized fuzzy variables

Table 1 Control effects of PID parameters

Parameter Effects Increase parameter Decrease parameter

Kp Accelerate response speed; improve
adjusting accuracy

Fast response speed; high adjusting accuracy; overshoots
and instability

Low response speed; decrease adjusting
accuracy; long regulation time

Ki Eliminate steady-state deviation Eliminate deviation quickly; integral saturation in initial
stage of response and a high overshoots

Can not eliminate deviation and reduce
the adjusting accuracy

Kd Improve dynamic property; prevent
deviation from happening.

Brake the response advanced; a long adjusting time and a
bad anti-disturbance

Cause a large error and a low dynamic
property
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First of all, the measurement dataset should be normalized to
limit numeric ranges and numerical difficulties during the
calculation. An original domain of parameters such as
C ∈[100,1020] and σ2∈[10−10,1010] is confined, and the do-
main should be as large as possible in order that the optimal
parameters may not be missed. Then, the cycle index n is
defined. The center and scope of the optimization in each cycle
are changed according to the result of the last cycle. The smaller
the scope is, the more satisfactory the result is. After the n
cycles are run, n sets of the parameters will be obtained. And
the parameters (C, σ2) with the smallest error are selected.

In the parameter searching stage, parameters are tuned
automatically to identify optimal parameters. The center of
the optimization is defined by the parameters (C, σ2) obtained
in the domain searching stage, and the scope of the optimiza-
tion is defined as [C−5, C+5; σ2−5, σ2+5]. Meanwhile, the
threshold values of the optimization precision are confined.
Once the threshold values are overrun, the cycle will end. The
optimal parameters are finally found.

4 Position error compensation based on fuzzy PID control

4.1 Fuzzy PID control

Fuzzy control is a specific type of knowledge-based control
method having roots in the fuzzy set theory, where the expe-
rience and knowledge available from experts such as
process operators may be captured and implemented.
Fuzzy PID control, combines the traditional PID and

the fuzzy control algorithm, and has shown excellent
control effects on many engineering problems such as
position control of slider crank mechanism and speed
control for high-performance brushless servo drives
[24–33].

A fuzzy PID controller usually includes fuzzification,
control rules, fuzzy logic inference, and defuzzification
procedure. It has two input variables: the control error e
and the error change rate ec , and has one output vari-
able U . They are defined using the fuzzy sets. Here, the
linguistic labels used to describe the fuzzy sets are as
follows: negative big (NB), negative medium (NM),
negative small (NS), nearly zero (ZO), positive small
(PS), positive medium (PM), and positive big (PB). In
Fig. 5, triangular-shaped membership functions are cho-
sen to make the fuzzy sets.

According to the control conditions and operations,
fuzzy PID control will use control error and the error
change rate to set the PID parameters automatically. Kp,
Ki , and Kd are the control parameters of PID. The
servo system would have a good dynamic response
property if the values of those three parameters are
appropriate. The control effects of PID parameters are
shown in Table 1.

4.2 Position error compensation and fuzzy control
improvement

As shown in Fig. 6, a position error compensation based on
fuzzy PID control is proposed in this paper. The original

Error prediction and feedback compensation based on support vector regression

fuzzy
control

servo drive
system

mechanical
transmission system

detection and feedback device

T

-

+ +

R e0
e

d/dt ec

ΔKp
ΔKi

ΔKd

PID
control

Fuzzy PID controlep

+

Fig. 6 Error compensation based
on fuzzy PID control

Fig. 7 Step response of the servo system

Table 2 Fuzzy control rule matrix of ΔKp

e ec

NB NM NS ZO PS PM PB

NB PB PB PM PM PS ZO ZO

NM PB PB PM PS PS ZO NS

NS PM PM PM PS ZO NS NS

ZO PM PM PS ZO NS NM NM

PS PS PS ZO NS NS NM NM

PM PS ZO NS NM NM NM NB

PB ZO ZO NM NM NM NB NB
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control error e0 is expressed as e0=T −R , where T represents
the input instruction and R represents the feedback instruction
from the detection and feedback device. The control error e is
expressed as e =e0+ep, where ep represents the predicted
position error from the degradation model based on support
vector regression algorithm. The control error e and the error
change rate ec are input to the fuzzy controller, and the PID
control parameters Kp, Ki, and Kd will be adjusted according
to the input variables. The fuzzy domain and fuzzy
subset of those variables should be designed by rules.
Taking the real domain of the variables into consider-
ation, the fuzzy domain of e and ec are designed to be
[−3, 3], the fuzzy domain of ΔK p is [−6, 6], the fuzzy
domain of ΔKi is [−1.5, 1.5], and the fuzzy domain of
ΔKd is [−0.25, 0.25]. The fuzzy subset [NB, NM, NS,
ZO, PS, PM, PB] is chosen for all variables.

The typical step response of the servo system is shown in
Fig. 7. Curved line I is the system step response line without
position error and curved line II is the system step response
line with position error. The line A represents the theoretical
steady state of system response without position error, and the
line B represents real steady state of system response. The
range Δ between the line A and B is the position error of the
system. The rectangle part described at the lower right of
Fig. 7 is the enlarged view of the response line around point

b. In the enlarged view, the triangular symbol represents the
fuzzy set of e =ZO . According to the error change rate, there
are e =ZO , ec =PS in the upper half of the triangular, e =ZO ,
ec =ZO around the midline, and e =ZO , ec =NS in the lower
half. It is found from Fig. 7 that both the position precision and
dynamic response property have declined after degradation.
Without the position error, the fuzzy control rules of ΔKp,

ΔKi, and ΔKd can be designed according to Table 1 and the

simulated fuzzy control rules are shown in Tables 2, 3, and 4.

For example, at point a, the fuzzy control should be

e =NB , ec =ZO . In order to reach higher response

speed, the system should have a larger Kp, smaller Ki and

Kd. So the control rules around point a should beΔKp=PM ,

ΔKi=NM , ΔKd=NB .
In order to improve the dynamic response and reduce the

range between the line A and B, the fuzzy control rules should
bemodified as follows: (a) when e and ec , respectively, is equal
to ZO and NS , the response line does not reach the line A. So
Kp should be increased, Ki and Kd should be decreased. The

control rule has no need to be changed. (b) When e and ec ,
respectively, is equal to ZO and ZO ,Ki should be increased and
Kd should be reduced to stabilize the response line around the
line A. So the control rule should be changed fromΔKp=ZO ,

ΔKi=ZO , ΔKd=NS to ΔKp=ZO , ΔKi=PS , ΔKd=NS . (c)
When e and ec , respectively, is equal to ZO and PS ,Kd should
be increased and Kp and Ki should be decreased to stabilize
response line around the line A. So the control rules should be

changed from ΔKp=NS , ΔKi=PS , ΔKd=NS to ΔKp=NS ,
ΔKi=NS , ΔKd=PS . According to the above analysis, the
improved fuzzy control rules are shown in Table 5.

Table 3 Fuzzy control rule matrix of ΔKi

e ec

NB NM NS ZO PS PM PB

NB PB PB PM PM PS ZO ZO

NM PB PB PM PS PS ZO NS

NS PM PM PM PS ZO NS NS

ZO PM PM PS ZO NS NM NM

PS PS PS ZO NS NS NM NM

PM PS ZO NS NM NM NM NB

PB ZO ZO NM NM NM NB NB

Table 4 Fuzzy control rule matrix of ΔKd

e ec

NB NM NS ZO PS PM PB

NB PS NS NB NB NB NM PS

NM PS NS NB NM NM NS ZO

NS ZO NS NM NM NS NS ZO

ZO ZO NS NS NS NS NS ZO

PS ZO ZO ZO ZO ZO ZO ZO

PM PB NS PS PS PS PS PB

PB PB PM PM PM PS PS PB

Table 5 Improved fuzzy
control rules e ec ΔKp ΔKi ΔKd

ZO NS PS NS NS

ZO ZO PS NS

PS NS NS PS

workbench

servo motor

mechanical
transmission system

KGM182 plane raster

Fig. 8 The feed servo system worktable
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5 Case study

An experiment about position error compensation was carried
out on a feed servo worktable made by Huazhong Numerical
Control Corporation. As shown in Fig. 8, the GK6081-6AF61
servo motor was a power supply to drive the worktable. And
the ball screw was a mechanical actuator to translate the
rotational motion of the servo motor to the linear motion of
the worktable with little friction. The maximum motion dis-
tance of the worktable was designed to be 750 mm. The
positioning accuracy of the worktable was required to be
±0.05 mm. Ten points of the measurement which were evenly
located on the x -axis were selected as x =40, 80, 120, 160,
200, 240, 280, 320, 360, and 400 mm. Each position error was

obtained using precise measuring system-KGM182 planar
grid encoder made by Heidenhain. The worktable continuous-
ly operated 400 h, and the measurement was executed at 20-h
intervals. The 20 group of the test data at these measurement
points were eventually acquired, of which four measurement
points shown in Table 6 were picked up. At the same time, the
simulation on the worktable was carried out to evaluate the
effect of the position error compensation and fuzzy control
improvement. The SIMULINK tools and ADAMS software
were used to build the simulation model of the worktable [34].
In the simulation model, the back-emf coefficient, viscous
damping coefficient, and rotary inertia of the servo motor
are, respectively, 0.0386 V s/rad, 380 N s/m, and
1.35 kg m2. The viscous damping coefficient, rotary inertia,

Table 6 Measured and fitted data
of the position error Serial Position (mm)

40 160 280 400

Measured
value

Fitted
value

Measured
value

Fitted
value

Measured
value

Fitted
value

Measured
value

Fitted
value

1 0.0031 0.0030 0.0307 0.0306 0.0464 0.0464 0.0544 0.0543

2 0.0038 0.0038 0.0316 0.0316 0.0475 0.0476 0.0558 0.0558

3 0.0047 0.0046 0.0326 0.0326 0.0487 0.0488 0.0573 0.0573

4 0.0057 0.0055 0.0338 0.0337 0.0501 0.0501 0.0590 0.0589

5 0.0068 0.0066 0.0350 0.0350 0.0515 0.0516 0.0607 0.0607

6 0.0079 0.0076 0.0363 0.0362 0.0529 0.0530 0.0625 0.0624

7 0.0091 0.0088 0.0376 0.0376 0.0545 0.0546 0.0643 0.0643

8 0.0104 0.0100 0.0390 0.0390 0.0560 0.0562 0.0662 0.0662

9 0.0117 0.0113 0.0405 0.0405 0.0577 0.0579 0.0682 0.0682

10 0.0130 0.0127 0.0420 0.0420 0.0594 0.0596 0.0702 0.0702

11 0.0144 0.0140 0.0435 0.0436 0.0611 0.0614 0.0723 0.0723

12 0.0159 0.0154 0.0451 0.0452 0.0629 0.0632 0.0744 0.0744

13 0.0174 0.0169 0.0468 0.0469 0.0647 0.0651 0.0765 0.0766

14 0.0189 0.0184 0.0485 0.0486 0.0666 0.0670 0.0788 0.0788

15 0.0205 0.0200 0.0503 0.0504 0.0686 0.0690 0.0810 0.0810

16 17 18
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time point serial

po
si

tio
n 

er
ro

r 
/ m

m

measured value with x=40
predicted value with x=40
measured value with x=160
predicted value with x=160
measured value with x=280
predicted value with x=280
measured value with x=400
predicted value with x=400

Fig. 9 Measured curve and
predicted curve of the position
error
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and screw lead of the ball screw are, respectively, 380 N s/m,
0.37 kg m2, and 5 mm/rad.

As shown in Table 6, the measured position errors of the 1
to 15 time points from the selected four measurement loca-
tions were used to train the position error regression model
based on the support vector regression algorithm. Then, these
fitted values were deduced from the obtained position error
regression model. It was found that the maximum of the
relative deviation between the measured values and fitted
values is 0.03797. So the position error regression model
was satisfactory.

Now, the position error of the next five time points could be
predicted using the position error regression model. The mea-
sured values and predicted values are shown in Fig. 9 with the
four points as follows: x =40, 160, 280, and 400 mm. It
was found from Fig. 9 that the deviations between the
measured and prediction values of the position errors
were very small, and the built position error regression
model is feasible.

As shown in Fig. 10, the simulation model of the position
error compensation method based on fuzzy PID control is

built using the SIMULINK tools. Given the compensation
position point x =400 mm and the compensation time point
t =16. Step signal is the signal source while the step value is
80. Theoretical output value is 80*L=80*5=400 mm, where
L is screw lead. The initial PID control parameters are given as
follows: Kp=50, Ki=−0.0105, and Kd=−0.0026. By simula-
tion, the simulated position error is 0.083321 mm and the
measured position error is 0.083323 mm. So it means that
the simulation model is reasonable to simulate the dynamic
performance of the feed servo worktable. There are three
modes to compensate the position error of the servo system,
that is, error compensation with support vector regression,
error compensation combined support vector regression with
fuzzy control, and error compensation combined support vec-
tor regression with improved fuzzy PID control. Figure 11
shows the step response with the original system. In the
original system, there has no error compensation for the
worktable. Figures 12, 13, and 14 show the system step
response under the three modes.

The dynamic response index in different compensation
modes are given in Table 7. It can be concluded from these

Servo driving system

Mechanical transmission system

Error prediction & compensation based on support vector regression

Fuzzy PID contro

Fig. 10 Simulation model of position error compensation method based on fuzzy control
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Fig. 12 System error compensation with support vector regression
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simulation results that the system error compensation module
with support vector regression can reduce position error (from
0.083321 to 0.017755 mm) and increase position precision,
but the dynamic response property (from 12.97296 to
13.24606) has a little decline. One of the reasons is that the
servo system is in the degradation phase, the position error is
increasing, and position accuracy is decreasing. And the de-
cline of dynamic response characteristics makes position error
increasing. Another reason is that the predicted position error
feeding back to the system input is superimposed with the

original error. They control the servo control system directly,
which cause the control quantity increasing, overshoot in-
creasing, and regulating time longer.

Comparing to system error compensation, the system error
compensation module combining support vector regression
and fuzzy PID control can improve the dynamic response
property (from 12.97296 to 4.02482) but enlarge position
error (from 0.083321 to 0.050682). The fuzzy control rules
is based on the steady-state current system response value of
zero position, therefore the fuzzy rules in traditional fuzzy
control make the dynamic response characteristics improving.
On the other hand, the position error causes the difference
between the value and the ideal value (at zero position) of the
steady-state response. The fuzzy control let the position accu-
racy decline.

The system error compensation module, combining the
support vector regression and improved fuzzy PID control,
has good control effectiveness in both position precision (from
0.083321 to 0.011208) and dynamic response property (from
12.97296 to 4.02481), even better than the system error com-
pensation module with support vector regression, of which the
position error is 0.01775. Therefore, by comparing with the
other compensation model, the combination model of the
support vector regression and improved fuzzy PID control
makes the position error minimum. It means that the position
precision is the highest after the two-step position error
compensation.

Finally, let the compensation time point t =20. Using the
method of two-step position error compensation to com-
pensate all the measured ten points located on the x -axis.
According to the position error e and the change scope of
error change rate ec , the real domain of each variable in
fuzzy control was adjusted while compensating, respective-
ly, for each point. The position errors before and after
compensation and the dynamic response properties are
shown in Table 8. It can be concluded from Table 8 that
the position errors and overshoots after the compensation
have improved notably. And the peak time and settling
time after the compensation have increased compared to
those before the compensation.

The result of the position error compensation, shown as
Fig. 15, demonstrated that the error compensation module
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Fig. 13 System error compensation with support vector regression and
fuzzy PID control
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Fig. 14 System error compensation with support vector and improved
fuzzy PID control

Table 7 Dynamic response index in the different compensation modes

Mode Position error (mm) Overshoots (%) Peak time (s) Settling time (s)

Original system 0.083321 12.97296 0.06319 0.09478

System error compensation module with support vector regression 0.017755 13.24606 0.06239 0.09725

System error compensation module combining with support vector
regression and fuzzy PID control

0.050682 4.02482 0.10621 0.13322

System error compensation module combining support vector
regression and improved fuzzy PID control

0.011208 4.02481 0.10621 0.13322
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combining the support vector regression and improved fuzzy
PID control can improve the position accuracy. The position
errors before compensation at points x =160, 200, 240, 280,
320, 360, and 400 mm exceed the given positioning accuracy
of the worktable. The position errors have dropped to a
satisfying range after the errors have been compensated.
However, a phenomenon of overcompensation will arise
when the point coordinate is small. This is because when
the point coordinate is small, the position error of the
servo system is also small. After the feedback position
error compensation, the position precision is higher, but
after the improved position error compensation by fuzzy
control, the theoretical steady-state line of system re-
sponse is upgraded, which results in the phenomenon
of overcompensation.

6 Conclusion

A two-step position error compensation method for a semi-
closed loop servo system is proposed in this paper. The

position error can be well predicted by the position error
regression model based on the support vector regression al-
gorithm. The servo system with the error compensation mod-
ule can compensate for the error well, but lowers the dynamic
response property. In order to have a high position precision
and a high dynamic response property simultaneously, mod-
ified fuzzy PID control is chosen to compensate position error.
The simulation results on the case study indicate that compre-
hensive compensationmethodwhich combines support vector
regression algorithm with modified fuzzy control cannot only
increase position precision but also improve dynamic re-
sponse property.
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