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Abstract Component tolerances have important influence on
the cost and performance of products. In order to obtain
suitable component tolerances, multi-objective tolerance
optimization model is studied, in which the combined
polynomial and exponential functions are used to model
manufacturing cost. In this paper, analytical methods are
proposed to solve the multi-objective optimization model. In
this model, the objective function is not a monotone function,
and it is possible that the assembly tolerance constraint,
including worst-case method and root sum square method, is
inactive. Therefore, two closed-form solutions are proposed
for each component tolerance in terms of the Lambert W
function. When the assembly tolerance constraint is not
considered, the component tolerances are obtained and named
as the initial closed-form solutions. If the initial solutions
satisfy assembly tolerance constraint, it is the final value of
optimal tolerances. Otherwise, constrained optimization
model is established and Lagrange multiplier method is
applied to obtain the new closed-form solution of component
tolerances as the final value of optimal tolerances. Several
simulation examples are used to demonstrate the proposed
method.
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1 Introduction

As an important part of product development, tolerance design
affects many aspects of product lifecycle. In recent years,

tolerance design has received the attention of many
researchers.

Firstly, tolerance specifications have important influence
on manufacturing cost. Tight tolerances can result in
complicated manufacturing process, while low tolerances
may mean low manufacturing cost and poor product
performance. Therefore, there are close relationship between
manufacturing cost and tolerance, which should be
established. In the past decades, many manufacturing cost-
tolerance models have been proposed [1–3]. These models
can be divided into four categories. The first categories of
manufacturing cost-tolerance models are reciprocal power
functions. The second categories are exponential functions.
The third categories are polynomial functions. The fourth
categories are hybrid models, such as combined reciprocal
power and exponential function, combined polynomial and
exponential function, reciprocal power and exponential hybrid
function, etc.

In earlier years, only manufacturing cost was included in
the objective function [1–5]. But in recent years, quality loss
has received the attention of many researchers and become a
part of objective function [6–15]. Sivakumar et al. [6]
proposed two evolutionary optimization techniques, which
were elitist nondominated sorting genetic algorithm (NSGA-
II) and multi-objective particle swarm optimization
(MOPSO), to solve a multi-objective tolerance allocation
model, in which the assembly tolerance, manufacturing cost,
and quality loss were all included in the objective function.
Geetha et al. [7] applied genetic algorithm to solve a multi-
objective tolerance optimization problem, which
simultaneously considered the following objective functions:
manufacturing cost, quality loss, machining time, and
machine overhead/idle time cost.

After tolerance optimization models are established, proper
methods should be employed to solve the optimization
models. In the past years, various numerical optimization
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methods have been proposed to determine optimal tolerance,
including genetic algorithm [4–8], particle swarm
optimization [8], nonlinear programming method [9–11],
simulated annealing [12], ants colony algorithm [13], game
theoretic approach [14], etc.

Although numerical methods are widely used to obtain
optimal tolerance, the Lagrange multiplier method, as a
classical method for constrained optimal problem, should be
the first choice as it can yield the closed-form solution [16].
Because of its high efficiency and accuracy, Lagrange
multiplier method has been applied by a few researchers to
calculate optimal tolerance [1, 2, 5, 16–21]. Using Lagrange
multiplier method, the nonlinear equations are established,
and it is possible to obtain closed-form solutions. If the
closed-form solutions can be established, the optimal
tolerances can be calculated quickly and accurately. Whether
the closed-form solutions can be established depends on the
following aspects: (1) manufacturing cost-tolerance model,
(2) quality loss cost, and (3) assembly tolerance model. Some
of the researches about optimal tolerance based on the
Lagrange multiplier method are collected in Table 1. Chase
et al. [2], Singh et al. [16], and Kumar et al. [17] studied
reciprocal power manufacturing cost-tolerance models. Singh
et al. [5] and Kumar et al. [18] researched exponential cost
function and worst-case assembly constraint. Although the
closed-form solution of optimal worst-case tolerances with
exponential cost function can be calculated using general
method, optimal statistical tolerance allocation with
exponential cost function is a tough problem since a
transcendental equation with exponential coefficient need to
be calculated [19]. In fact, the exponential functions appear in
many fields and can be solved using the Lambert W function
[22]. But there are few researches about the application of the
Lambert W function on tolerance allocation. Employing the
Lambert W function, Cheng et al. [19, 20] solved statistical
tolerance allocation with exponential cost function and
obtained the closed-form solution of optimal tolerances. But
in Cheng’s studies, only manufacturing cost was considered
and quality loss was not included in the objective function.

Although Govindaluri et al. [23] and Shin et al. [24]
considered quality loss and applied Lambert W function to
obtain the optimal tolerances, assembly constraint was not
considered. Liu et al. [21] applied the Lagrange multiplier
method and Lambert W function to obtain closed-form
optimal tolerance.

In this paper, the Lagrange multiplier method is applied to
solve multi-objective tolerance allocation models, and unified
closed-form solutions of optimal tolerances are established. In
the models, the combined polynomial and exponential
functions, which have less modeling errors than exponential
functions, are used to model manufacturing cost. Both
manufacturing cost and quality loss are included in the
objective function.

2 Problem definition

2.1 Assembly tolerance constraint

Two most widely used tolerance analysis methods, including
worst-case method and root-sum-square method, are
considered in this paper. Based on the worst-case criteria,
the assembly tolerance for nonlinear assembly can be
represented as:

X
i¼1

n

ξiti≤ t0 ð1Þ

where ξ i=|∂Y /∂x i |, Y is the assembly function, n is the
number of component tolerances, t i is the tolerance of
component i , and t0 is the specified functional tolerance.
Based on the root-sum-square method, the assembly tolerance
for nonlinear assembly is established as:

X
i¼1

n

ξ2i t
2
i ≤ t

2
0 ð2Þ

Table 1 Closed-form solution to optimal tolerance allocation based on the Lagrange multiplier method

Researches Cost-tolerance function Quality loss Assembly constraint Closed-form solution

Chase [2] Reciprocal power function Not included Root-sum-square Obtained

Singh [5] Exponential function Not included Worst-case Obtained

Singh [16] Reciprocal power function Not included Worst-case, root-sum-square Obtained

Kumar [17] Reciprocal power function Not included Worst-case Obtained

Kumar [18] Exponential function Not included Worst-case (complex assembly) Not obtained

Cheng [19] Exponential function Not included Root-sum-square Obtained

Cheng [20] Reciprocal power function, Exponential function Not included Worst-case, root-sum-square Obtained

Liu [21] Exponential function Included Worst-case, root-sum-square Obtained
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2.2 Manufacturing cost

In this paper, the combined polynomial and exponential
functions is studied, and the total manufacturing cost for the
assembly may be expressed as follows:

cM1
¼ ∑

i¼1

n
ai þ bie−mitið Þ (Exponential functions) (3)

cM2
¼ ∑

i¼1

n
ai þ bit þ cie−mitið Þ (Combined linear and

exponential functions) (4)

cM3
¼ ∑

i¼1

n
ai þ biti þ cit2i þ die−miti
� �

( C o m b i n e d

squared and exponential functions) (5)

where a i , b i , c i , d i , and mi are manufacturing cost
coefficients for the component i .

2.3 Quality loss

According to Taguchi’s standpoints, the expected quality loss
cost for normal distribution can be calculated as follows:

CL ¼ A

9T 2

X
i¼1

n

t2i ð6Þ

Where A is quality loss coefficient and T is the single side
functional tolerance stack up limit for the assembly
dimension.

3 Problem formulation

In the tolerance optimization model, the manufacturing cost
and quality loss are included in the objective function, which
can be written as follows:

CT1
¼ CM1 þ CL ¼

X
i¼1

n

ai þ bie
−mitið Þ þ A

9T2

X
i¼1

n

t2i ð7Þ

CT2
¼ CM2 þ CL ¼

X
i¼1

n

ai þ bit þ cie
−mitið Þ

þ A

9T2

X
i¼1

n

t2i

ð8Þ

CT3
¼ CM3 þ CL ¼

X
i¼1

n

ai þ biti þ cit
2
i þ die

−miti
� �

þ A

9T 2

X
i¼1

n

t2i

ð9Þ

The upper objective functions can be rewritten in the
following unified form:

CT ¼
X
i¼1

n

Ai þ Biti þ Cit
2
i þ Die

−miti
� � ð10Þ

4 Calculation of optimal tolerances

In this paper, analytical method is applied to solve the
tolerance optimization model, and the following procedure is
proposed.

4.1 Unconstrained optimal solution

Because the objective function shown in Eq. 10 is not a
monotone function, the assembly tolerance constraint is firstly
neglected and unconstrained optimization model is
established to calculate optimal tolerance. The objective
function is minimized by setting the first derivative of
Eq. 10 equal to zero:

Bi þ 2Citi−miDie
−miti ¼ 0 i ¼ 1; 2;⋯; n ð11Þ

The solution of Eq. 11 is calculated as follows:

t�i ¼ ri þ 1

mi
lambertw mie

−miri=lið Þ i ¼ 1; 2;⋯; n ð12Þ

where

ri ¼ −
Bi

2Ci

li ¼ 2Ci

miDi

lambertw is the Lambert W function [22], which is
involved in many mathematical software packages.

Although t i
∗ is obtained, it is not necessary that t i

∗ satisfy
assembly tolerance constraint. If t i

∗ (i =1,2,⋯,n ) cannot
satisfy assembly tolerance constraint, constrained
optimization model should be established and solved as
follows.

4.2 Constrained optimal solution

4.2.1 Worst-case tolerance constraint

The Lagrange multiplier method is adopted and the following
equation is established by combining Eqs. 1 and 10:

X
i¼1

n

Ai þ Biti þ Cit
2
i þ Die

−miti
� �þ λ

X
i¼1

n

ξiti−t0

" #
ð13Þ

where λ is the Lagrangemultiplier. Setting the first derivatives
of Eq. 13 equal to zero:
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Bi þ 2Citi−miDie
−miti þ λξi ¼ 0 i ¼ 1; 2;⋯; n ð14Þ

λ can be eliminated from Eq. 14 and the following
relationship between t1 and other tolerances is obtained:

e−miti ¼ 2Ci

miDi
ti −

2ξiC1t1 þ ξiB1−ξim1D1e−m1t1−ξ1Bi

ξ1miDi
i ¼ 2;⋯; n

ð15Þ
The solution of Eq. 15 is

ti ¼ Ri þ 1

mi
lambertw mie

−miRi=Li
� �

i ¼ 2;⋯; n ð16Þ

where

Ri ¼ 2ξiC1t1 þ ξiB1−ξim1D1e−m1t1−ξ1Bi

2ξ1Ci

Li ¼ 2Ci

miDi

Substituting Eq. 16 into the worst-case tolerance constraint,
the following equation is obtained:

ξ1t1 þ
X
i¼2

n

ξi Ri þ 1

mi
lambertw mie

−miRi=Li
� �� �

¼ t0 ð17Þ

In Eq. 17, t1 is the only unknown variable and can be
calculated iteratively. After t1 is obtained, other component
tolerances t i can be calculated using Eq. 16.

4.2.2 Root-sum-square tolerance constraint

Combining Eqs. 2 and 10, the following augmented equation
is established:

X
i¼1

n

Ai þ Biti þ Cit
2
i þ Die

−miti
� �þ λ

X
i¼1

n

ξ2i t
2
i −t

2
0

" #
ð18Þ

where λ is the Lagrange multiplier. Letting the first
derivatives of Eq. 18 equal to zero:

Bi þ 2Citi−miDie
−miti þ 2λξ2i ti ¼ 0 i ¼ 1; 2;⋯; n ð19Þ

λ can be eliminated from Eq. 19 and the following
equation is derived:

e−miti ¼ ξ2i m1D1e−m1t1 þ 2ξ21Cit1−2ξ2i C1t1−ξ2i B1

ξ21miDit1
ti þ Bi

miDi
i ¼ 2;⋯; n

ð20Þ
The solution of Eq. 20 is

ti ¼ Ri þ 1

mi
lambertw mie

−miRi=Li
� �

i ¼ 2;⋯; n ð21Þ

where

Ri ¼ −
ξ21Bit1

ξ2i m1D1e−m1t1 þ 2ξ21Cit1−2ξ2i C1t1−ξ2i B1

Li ¼ ξ2i m1D1e−m1t1 þ 2ξ21Cit1−2ξ2i C1t1−ξ2i B1

ξ21miDit1

Substituting Eq. 21 into the root-sum-square tolerance
constraint, the following equation is obtained:

ξ21t
2
1 þ

X
i¼2

n

ξ2
i

Ri þ 1

mi
lambertw mie

−miRi=Li
� �� �2

¼ t20 ð22Þ

Solving Eq. 22, t1 can be obtained, and other component
tolerances t i can be calculated using Eq. 21.

4.3 Determining the optimal component tolerances

In order to obtain the optimal component tolerances, the
following optimization process is proposed: Firstly, Eq. 12 is
used to obtain the initial component tolerances t i

∗ (i=1,2,⋯,n).
If t i

∗ satisfy the assembly tolerance constraint, it is the
optimal component tolerances. If t i

∗ do not satisfy the
constraint, Lagrange multiplier method is adopted, and
Eqs. 16 and 17 are solved to obtain optimal worst-case

X1 X2 X3

YFig. 1 Example A

Table 2 Cost-tolerance data for example A

Dimensions Process Parameters of cost function

a b c

X1 1 5.0 34.2245 765

2 4.7 39.9819 782

3 4.36 45.0974 790

X2 1 6.05 53.1921 975

2 5.62 60.0065 995

3 5.29 149.5845 986

X3 1 5.38 72.6260 1,386

2 5.31 96.5270 1,412

3 5.22 82.8130 1,400
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tolerances, or Eqs. 21 and 22 are solved to obtain statistical
tolerances.

5 Numerical examples

The examples proposed by Sivakumar et al. [6] are applied to
demonstrate the effectiveness of the method proposed in this
paper. In [6], a multi-objective tolerance optimization models
is proposed, which has three objectives, including worst-case
assembly tolerance ( f1), manufacturing cost of the assembly
( f2), and quality loss ( f3). Then, the following combined
objective function ( f c) can be established:

min : f c ¼
W 1

N 1
f 1 þ

W 2

N2
f 2 þ

W 3

N 3
f 3 ð23Þ

where

f 1 ¼
X
i¼1

n

ξiti

f 2 ¼
X
i¼1

n

ai þ bie
−mitið Þ

f 3 ¼
A

9T 2

X
i¼1

n

t2i

W1, W2, and W3 are weight coefficients of f1, f2, and f3,
respectively. The equal weights are given and three weight
coefficients are W1=W2=W3=0.333. N1, N2, and N3 are
normalized parameters for f1, f2, and f3, respectively. In these
examples, the selection of manufacturing process from the
alternatives for each component is also considered.

5.1 Example A

As shown in Fig. 1, the assembly function of example A is
expressed as:

Y ¼ X 1 þ X 2 þ X 3

The assembly tolerance constraint is as follows:

t1 þ t2 þ t3≤0:005

Table 3 Comparison of
calculating results for example A Techniques Dimensions Process Tolerance Objective function

f1 f2 f3 fc

Analytical method X1 1 0.0014490 0.005 43.337016 0.0373588 1.734027

X2 1 0.0018015

X3 1 0.0017495

NSGA-II [6] X1 1 0.001500 0.005 40.856503 0.042082 1.677145

X2 1 0.001900

X3 1 0.001900

MOPSO [6] X1 1 0.001424 0.005 43.3628 0.0374 1.735023

X2 1 0.001828

X3 1 0.001745

Fig. 2 Gearbox assembly

Table 4 Cost-tolerance data for example B (gearbox assembly)

Dimensions Process Parameters of cost function

a b c

X1, X2 1 18.50 71.25 214.56

2 20.82 68.44 208.68

3 19.05 69.32 211.05

4 18.32 73.56 220.73

X3 1 42.50 30.254 82.566

2 39.20 33.443 86.688

3 38.05 34.322 79.005

X4, X5 1 32.50 28.25 82.45

2 29.20 30.43 86.70

3 28.05 31.42 80.05

4 29.32 34.16 78.82
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The cost-tolerance data for exampleA are shown inTable 2.
The combined objective function is as follows:

f c ¼
W 1

N 1
f 1 þ

W 2

N2
f 2 þ

W 3

N 3
f 3

whereW1=W2=W3=0.333, N1=0.01, N2=10, and N3=0.10
[6].

The optimal tolerances are obtained by the analytical
method proposed in this paper and compared with those
obtained by NSGA-II and MOPSO [6], which are given in
Table 3. In order to obtain the optimal tolerance, firstly, Eq. 12
is used, and the initial optimal tolerances are calculated as
follows: t1

∗=0.0026764 , t2
*=0.0027748, and t3

∗=0.0024860.
Because t1

∗+t2
∗+t3

∗>0.005, the initial optimal tolerances do
not satisfy assembly tolerance constraint. Then, Eqs. 16 and
17 are used to obtain the optimal component tolerances: t1=
0.0014490, t2=0.0018015, and t3=0.0017495.

Table 3 demonstrates that the optimal component
tolerances obtained by NSGA-II method, which are
0.001500, 0.001900, and 0.001900, violate the constraint.
Both analytical method and MOPSO method obtain valid
calculating results. Table 3 shows that the results of the
analytical method are reasonable, and the combined objective
function f c is minimized.

5.2 Example B (gearbox assembly)

Example B is gearbox assembly shown in Fig. 2, and the
assembly function is expressed as:

Y ¼ X 1 þ X 2−X 3−X 4−X 5

The assembly tolerance constraint is as follows:

t1 þ t2 þ t3 þ t4 þ t5≤0:26

The cost-tolerance data for the gearbox assembly are
shown in Table 4, and the combined objective function is as
follows:

f c ¼
W 1

N 1
f 1 þ

W 2

N2
f 2 þ

W 3

N 3
f 3

whereW1=W2=W3=0.333, N1=1.0, N2=100, and N3=0.01
[6].

Table 5 Comparison of
calculating results for example B
(gearbox assembly)

Techniques Dimensions Process Tolerance Objective function

f1 f2 f3 fc

Analytical
method

X1, X2 4 0.014995 0.081223 161.061371 0.002178 0.635905

X3 3 0.017559

X4, X5 3 0.016837

NSGA-II [6] X1, X2 4 0.015138 0.085751 159.019974 0.002518 0.641941

X3 3 0.024135

X4, X5 3 0.01567

MOPSO [6] X1, X2 4 0.014416 0.0863 158.5301 0.0025 0.639893

X3 3 0.024018

X4, X5 3 0.016713

Fig. 3 Shaft and housing assembly

Table 6 Tolerance cost data for example C (shaft and housing assembly)

Dimensions Process Parameters of cost function

a b c

X1 Vendor supplied (fixed tolerance t1=0.0381; C1=5.00)

X2 1 5.34 66.43 2.738

2 5.12 62.22 2.340

X3, X7 Vendor supplied (fixed tolerance t3=0.0635; C3=50.00)

X4, X6 1 15.34 69.43 2.728

2 15.12 65.22 2.340

3 14.85 66.87 2.112

X5 1 11.34 72.43 2.738

2 11.12 68.22 2.340

3 10.85 69.87 2.112
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The optimal tolerances are calculated by analytical method
and given in Table 5. Firstly, using Eq. 12, the initial optimal
tolerances are calculated as follows: t 1

∗=0.014995 , t 2
∗=

0.014995 , t3
*=0.017559, and t4

∗=0.016837, t5
∗=0.016837.

Because t1
∗+t2

∗+t3
∗+t4

∗+t5
∗<0.26, the initial optimal tolerances

satisfy assembly tolerance constraint. Therefore, the optimal
component tolerances are obtained and Eqs. 16 and 17 do not
need to be solved. Table 5 indicates that an improvement of
combined objective function is obtained by the analytical
method proposed in this paper.

5.3 Example C (shaft and housing assembly)

Example C is shaft and housing assembly shown in Fig. 3, and
assembly function is expressed as:

Y ¼ −X 1 þ X 2−X 3 þ X 4−X 5 þ X 6−X 7

The assembly tolerance constraint is as follows:

t1 þ t2 þ t3 þ t4 þ t5 þ t6 þ t7≤0:3831

The cost-tolerance data for example C are shown in Table 6.
Example C involves a few vendor supplied components, such
as X1, X3, and X7, the tolerances of which are predetermined.
Therefore, only t2, t4, t5, and t6 need to be determined.

The combined objective function is as follows:

f c ¼
W 1

N 1
f 1 þ

W 2

N2
f 2 þ

W 3

N 3
f 3

where W1=W2=W3=0.333, N1=1.0, N2=100, and N3=0.10
[6].

The optimal tolerances are obtained using analytical
method proposed in this paper and given in Table 7. Firstly,
Eq. 12 is used to obtain the initial optimal tolerances: t2

∗=
0.024710 , t4

∗=0.028292 , t5
∗=0.028292, and t6

*=0.031820.
Because the initial optimal tolerances satisfy assembly
tolerance constraint, the optimal component tolerances are
determined. Table 7 indicates that a smaller combined
objective function value is obtained using the method
proposed in this paper.

6 Conclusion

Multi-objective tolerance allocation is researched, and
analytical method is applied to obtain the closed-form
solutions for the optimal tolerance in order to minimize the
combined objective function. Because the objective function
is not a monotonic function, the assembly constraint is not
necessarily active. In this paper, the Lambert W function is
applied and two forms of closed-form solutions are obtained.
Comparing with other method, the proposed method has
lower computation complexity, and can be applied easily by
scholars and engineers.
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Table 7 Comparison of
calculating results for example C
(shaft and housing assembly)

Techniques Dimensions Process Tolerance Objective function

f1 f2 f3 fc

Analytical
method

X1 0.0381 0.278216 395.613180 0.009645 1.442156

X2 2 0.024710

X3, X7 0.0635

X4, X6 2 0.028292

X5 2 0.031820

NSGA-II [6] X1 0.0381 0.291699 393.666779 0.010314 1.442392

X2 2 0.026594

X3, X7 0.0635

X4, X6 2 0.03

X5 2 0.040005

MOPSO [6] X1 0.0381 0.2894 393.9548 0.0103 1.442539

X2 2 0.020013

X3, X7 0.0635

X4, X6 2 0.030171

X5 2 0.043949
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