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Abstract Control charts act as the most effective statistical
process control (SPC) tools for the monitoring of
manufacturing processes. In this study, we propose and
investigate a set Shewhart-type variability control chart based
on the utilization of auxiliary information for efficient phase II
process monitoring. The design parameters of the proposals
are derived under correlated setups for the monitoring of
variability parameter. The properties of these charting
structures are evaluated in terms of average run length and
some other related measures. The performance abilities of
these charts are compared with each other and also with some
existing counterparts. The comparisons revealed that the
proposed charts are very efficient at detecting shifts in the
variability parameter and have the ability to perform better
than the competing charts in terms of run length
characteristics. We have also used real datasets to illustrate
the application of the proposed structures in practical
situations.

Keywords Average run length (ARL) . Control charts . Extra
quadratic loss (EQL) . In-control . Out-of-control . Phase II .

Performance Comparison Index (PCI) . Processmonitoring

1 Introduction

Process monitoring had been there in all the eras in one form
or the other in order to differentiate between the two types of
variations in the process output. These variations are classified
in two main types, namely, natural (random) and unnatural
(nonrandom). In the first quarter of the twentieth century,
statistical process control (SPC) formally came into picture
for process monitoring purposes. SPC helps in monitoring
processes for their stability with respect to different
parameters (like location, spread, proportion, and correlation)
using different statistical techniques like control charts, check
sheets, Pareto diagrams, and histograms. These process
monitoring techniques are now referred to as the SPC toolkit.

Control chart is the most important tool in SPC kit that has
wide application in the monitoring of process parameters. One
of the popular categories of control charts is Shewhart’s chart,
which mainly targets larger shifts. The design structures of
these types of charts mainly depend on study variable(s).
Sometimes information is also available on certain auxiliary
variable(s) that are correlated with the study variable. These
variables may be useful to improve the performance ability of
the charting structures. The auxiliary characteristic(s) may be
available in different forms such as a property to be monitored
(cf. Alt [9]), a crude but simple to obtain measurement on the
process (cf. Singh and Mangat [46]), an early measurement in
the process (cf. Shu et al. [43], Riaz and Does [36], Ahmad
et al. [4, 6, 7] and the references therein).

The information on auxiliary variables [along with the
quality characteristic(s) of interest] may be accessible at the
stage of estimation, testing or monitoring. The most popular
styles of taking benefit of auxiliary information are ratio,
product, and regression-type estimators (cf. Fuller [15]). The
estimators based on these approaches are designed such that
they make use of the auxiliary information along with the
study variable (characteristic of interest) that leads to a boost
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in efficiency. There is a wide application of auxiliary
information in different fields including agriculture, business,
industry, health care, etc. In the quality control literature, the
idea of exploiting correlation of the quality characteristic(s) of
interest with some other associated quality characteristic(s)
had been used by different researches.

The cause-selecting, regression-adjusted, and auxiliary
information-based control charts are popular ways to
capitalize the correlation between the study characteristic(s)
and the concomitant characteristic(s). These approaches
establish the dominance of the methods using information
on additional characteristic(s). The literature in this direction
may be seen in Mandel [27], Zhang [54, 55], Hawkins [20,
21], Wade and Woodall [50], Chen and Huang [11], Sheu and
Tai [40], Riaz [33], Eyvazian et al. [13], Riaz [34, 35], Costa
and Machado [12], Riaz and Does [36], Riaz et al. [37],
Ahmad et al. [4, 7], Zhang et al. [56], and the references
therein. This article is planned to propose the design structures
of a set of Shewhart-type variability control chart, namely Gj

charts, based on a correlated environment for phase II
monitoring of variability parameter. We have used the

information on auxiliary characteristic based on ratio,
regression, power ratio, ratio exponential, and some of their
mixed versions.

The organization of the rest of article is as: the design
structures of the proposed control charts are given in
Section 2, Section 3 contains the performance evaluations of
the proposals and their comparisons with each other and with
some existing counterparts using run length-based
performance measures, Section 4 provides illustrative
examples using real datasets showing the application of the
proposed charting structures, and Section 5 summarizes and
concludes the main findings of the study.

2 The proposed control charting structures

Let Y be the quality characteristic (which is the study
variable) that is correlated with an auxiliary variable named
X . The pairs (Yi ,Xi) for i =1, 2, 3,… are assumed to follow
bivariate normal distribution with mean vector μ and
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variance–covariance matrix ∑. Symbolically, we may
write as Y i;X ið Þ∼N2ðμ;∑Þ , where μ and ∑ are defined as

μ ¼ ðμy;μxÞ
0
;Σ ¼ σ2

y σyx

σxy σ2
x

	 

:Here, μ y and μ x are the in-

control population means of Y and X , respectively; σy
2 and σx

2

are the population variances of Y and X respectively; σyx=σxy

is the covariance between Y and X . Moreover, the population
correlation coefficient between Y and X is defined as ρ yx=σyx/
σ yσ x . It is to be mentioned that, in real situations, the
information on the amount of correlation ρ yx between the
study variable Y and auxiliary variableX is generally available
(cf. Garcia and Cebrian [16]); otherwise, we may estimate
following Ahmed [8], Singh and Mangat [46], Yu and Lam
[53], and Singh et al. [45].

Suppose (y1i, x1i), (y2i, x2i),(y3i, x3i), … (where i=1, 2, …,
n) represent a sequence of paired observations of size n taken
from (Y,X). Let y and x represent the samplemeans of Y and X ,
respectively; sy

2 and sx
2 and be the sample variances of Y and X ,

respectively, and byx is the amount of change in Y due to one
unit change in X . Moreover, we assume e y =(s y

2−σ y
2)/

σ y
2 and e x=(s x

2−σ x
2)/σ x

2 then we have E (e y)=E (e x)=0,
E (ey

2)=n−1(μ 40−1),E (ex2)=n−1(μ 04−1) and E (exey)=n
−1

(μ 22−1) and where μpq ¼ ηpqffiffiffiffiffiffiffiffiffi
ηp
20
ηq
02

p and η pq =E (y i −μ y )
p

(xi−μx)
q (cf. Srivastava and Jhajj [48], Singh [47], and Singh

et al. [44]).
Based on these preliminaries, a set of variability

estimators V j (∀ j =u ,r ,g ,pr ,re ,rg ,prg , and reg ) under
simple random sampling (cf. Garcia and Cebrian [16],
Upadhyaya and Singh [49], Kadilar and Cingi [23], and
Ahmad et al. [7]) along with their means (mj) and standard
deviations (d j) up to first order approximation are given in
Table 1.

In order to establish a general structure based on V j

estimators, we define a quantity G as:

Gj ¼ V j=σ
2
y ∀ j ¼ u; r; g; pr; re; rg; prg; and reg: ð1Þ

It is to be mentioned that the distributional behavior of Gj

depends on sample size for the estimator Vu and n and Pyx for
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other estimators. The analytical distributional results of one of
the charting statistic, namely, Gr is provided in the Appendix,
while for the others, one may work on the similar lines
(although for some statistics, it may not be very straight
forward).

Assume that the mean, standard deviation and α th quantile
of generalized Gj charts are denoted by μG j

; σG j ; and Gjα

respectively (cf. Table 1). Based on these quantities, we can
define the K-sigma and probability limits of Gj charts (using
Shewhart’s setup) as:

K�sig limits : LCLK ¼ μ
V j
−KσV j and UCLK ¼ μV j

þ KσV j ∀ j ¼ u; r; g; pr; re; rg; prg and reg

Prob limits : LCLP ¼ V jl ¼ Gjlσ
2
y with F Gj ¼ Gjl

� �
≤αl and UCLP ¼ V ju ¼ Gjuσ

2
y with F Gj ¼ Gju

� �
≥1−αu

)
ð2Þ

where α =α i+αu is probability of false alarm, F represents the
cumulative distribution function and LCL,CL, and UCL refer
to the lower control limit, central line, and upper control limit,
respectively, of Gj(∀ j=μ , r, g , pr, re , rg , prg , and reg) charts.

Now, after defining the control limits using any of the
structure given in Eq. (2) we use Vj (∀j =u ,r,g ,pr,re ,rg ,
prg ,and reg) as the plotting statistic against their respective
control limits. An out-of-control signal is received if any
single point of the statistic Vj falls outside the corresponding
limits given in Eq. (2), for phase II monitoring of process
parameters based on future samples (prospective analysis).

This decision rule is the most commonly used rule termed as
one out of one. The other sensitizing rules (cf. Riaz et al. [38],
Abbas et al. [2, 3], and Mehmood et al. [29]) may also be used
with these proposed charting structures for more improved
detection of process shifts.

It is to be mentioned that the correlated structures defined
in this study may find applications in different fields such as
radar systems, detection of noise signals, smoothing spectral
quantities, etc. (cf. Lawson and Uhlenbeck [26] and
Gerkmann and Martin [17] and the references therein). The
performance abilities of such types of processes may be
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improved with the suggested proposal of the study for an
efficient monitoring of process parameters.

3 Performance evaluations and comparisons

This section evaluates the performance of the proposed Gj

chart and provides some comparisons among each other and
with some existing counterparts meant for the same purposes.
To evaluate the performance ofGj charts for detecting shifts in
phase II monitoring, we have considered the in-control value
of process standard deviation as σy,0 and the out-of-control
value as σy,1 defined as σy,1=λσy,0, where λ represents the
amount of shift. The performance measures used in this study
include average run length (ARL), extra quadratic loss (EQL),
relative average run length (RARL), and performance
comparison index (PCI). The ARL measure is evaluated for
each shift individually, while the other measures (EQL,
RARL, and PCI) are evaluated over the whole range of
λvalues (from the smallest to the largest).

TheARLmeasure is defined as the number of samples before
a false alarm is detected in the process. The measures EQL,

RARL, and PCI are defined as (for the details on these measures
see Wu et al. [51], Ou et al. [32], and Ahmad et al. [4, 7]:

EQL ¼ λmax−λminð Þ−1∫ λmaxλmin
λ2ARL λð Þ dλ; RARL ¼ λmax−λminð Þ−1

∫ λmaxλmin

ARL λð Þ
ARLbmk λð Þ dλ and PCI ¼ EQL

EQLbmk
andwhere bmk refers

to the benchmark chart (Gu chart is considered as benchmark
chart in our study); ARL(λ) and ARLbmk(λ) are the average run
lengths of a particular chart and the benchmark chart,
respectively.

It is generally desirable to have larger values of ARL0 (under
in-control process) and smaller values of ARL1 (under out-of-
control process) for an efficient monitoring of process
parameters. The EQL of an efficient chart attains minimum
value similar to ARL. The measures RARL and PCI are equal
to 1 for the benchmark chart; >1 for the inferior charts and <1 for
superior charts.

To evaluate the performance of Gj charts, we have
computed ARL values considering shifts in the standard
deviation of Y, using probability limit approach given in
Eq. (2), for specified ARL0, n and Pyx. The ARL values are
calculated for n =10 and 15 at some representative values of
Pyx by fixing ARL0=200 and 370 with λ =1 as in-control
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value while λ >1 as out-of-control value. The resulting values
of ARL for Gj charts are compared graphically in the form of
ARL curves in Figs. 1, 2, 3, 4, 5, 6, 7, and 8, where the ARL
values are plotted y -axis versus λ values on x -axis. In order to
evaluate the overall effectiveness of Gj charts, the EQL,
RARL, and PCI values for same choice of ARL0, n and Pyx

are provided in Tables 2 and 3 for ARL=200 and 300,
respectively. Moreover, same performance measures of some
selective efficient control charts are compared with some
existing control charts including NEWMA chart of Shu and
Jiang [42], Improved R (IR) chart of Chen and Huang [11],
synthetic R chart of Khoo and Lim [24], and the classical R

Table 2 EQL, RARL, and PCI comparisons among Gj charts for ARL0=200

Charts EQL RARL PCI EQL RARL PCI EQL RARL PCI EQL RARL PCI
Choices Pyx=0.30 and n =10 Pyx=0.60 and n =10 Pyx=0.90 and n =10 Pyx=0.95 and n =10

Gu 16.42 1.00 1.00 16.51 1.00 1.00 15.83 1.00 1.00 15.36 1.00 1.00

Gr 62.32 4.73 3.80 42.40 2.94 2.57 9.64 0.74 0.61 5.39 0.51 0.35

Gg 16.07 1.01 0.98 13.62 0.86 0.83 5.93 0.51 0.37 4.30 0.44 0.28

Gpr 15.71 0.99 0.96 13.18 0.84 0.80 6.59 0.55 0.42 4.58 0.46 0.30

Gre 22.08 1.40 1.35 14.36 0.91 0.87 5.66 0.49 0.36 4.89 0.46 0.32

Grg 60.75 4.70 3.70 43.65 3.08 2.64 13.06 0.96 0.83 8.73 0.73 0.57

Gprg 16.10 1.02 0.98 15.97 0.98 0.97 10.01 0.75 0.63 7.50 0.64 0.49

Greg 24.14 1.52 1.47 17.42 1.08 1.06 6.54 0.54 0.41 4.71 0.46 0.31

Choices Pyx=0.30 and n =15 Pyx=0.60 and n =15 Pyx=0.90 and n =15 Pyx=0.95 and n =15

Gu 11.93 1.00 1.00 11.89 1.00 1.00 12.20 1.00 1.00 11.96 1.00 1.00

Gr 40.94 3.74 3.43 24.67 2.17 2.08 6.14 0.69 0.50 3.96 0.55 0.33

Gg 12.59 1.04 1.06 10.00 0.88 0.84 4.56 0.57 0.37 3.52 0.51 0.29

Gpr 12.35 1.01 1.03 9.60 0.86 0.81 4.66 0.58 0.38 3.55 0.52 0.30

Gre 16.51 1.34 1.38 10.35 0.92 0.87 4.57 0.56 0.37 4.11 0.54 0.34

Grg 39.95 3.75 3.35 26.71 2.40 2.25 9.60 0.96 0.79 6.80 0.77 0.57

Gprg 12.53 1.04 1.05 11.16 0.97 0.94 7.48 0.77 0.61 6.03 0.70 0.50

Greg 17.10 1.40 1.43 12.46 1.07 1.05 5.26 0.61 0.43 4.02 0.54 0.34

Table 3 EQL, RARL and PCI comparisons among Gj charts for ARL0=371

Charts EQL RARL PCI EQL RARL PCI EQL RARL PCI EQL RARL PCI
Choices Pyx=0.30 and n =10 Pyx=0.60 and n =10 Pyx=0.90 and n =10 Pyx=0.95 and n =10

Gu 23.29 1.00 1.00 21.89 1.00 1.00 22.12 1.00 1.00 22.66 1.00 1.00

Gr 106.49 6.33 4.57 66.71 3.68 3.05 12.66 0.75 0.57 6.43 0.47 0.28

Gg 23.36 1.02 1.00 18.99 0.89 0.87 6.64 0.46 0.30 4.68 0.39 0.21

Gpr 22.93 0.99 0.98 19.04 0.90 0.87 8.04 0.52 0.36 5.16 0.41 0.23

Gre 31.94 1.44 1.37 20.42 0.97 0.93 6.33 0.44 0.29 5.74 0.41 0.25

Grg 103.02 6.21 4.42 68.33 3.84 3.12 17.62 0.99 0.80 10.61 0.67 0.47

Gprg 23.12 1.01 0.99 23.28 1.05 1.06 12.46 0.72 0.56 9.02 0.59 0.40

Greg 32.38 1.50 1.39 26.54 1.20 1.21 7.55 0.49 0.34 5.17 0.40 0.23

Choices Pyx=0.30 and n =15 Pyx=0.60 and n =15 Pyx=0.90 and n=15 Pyx=0.95 and n =15

Gu 16.02 1.00 1.00 16.07 1.00 1.00 15.36 1.00 1.00 16.07 1.00 1.00

Gr 64.65 4.70 4.04 35.50 2.46 2.21 7.81 0.71 0.51 4.62 0.52 0.29

Gg 16.85 1.04 1.05 12.57 0.86 0.78 5.00 0.54 0.33 3.80 0.48 0.24

Gpr 16.57 1.02 1.03 11.98 0.84 0.75 5.46 0.57 0.36 3.97 0.49 0.25

Gre 22.30 1.39 1.39 12.44 0.88 0.77 5.01 0.53 0.33 4.51 0.50 0.28

Grg 63.77 4.80 3.98 38.03 2.71 2.37 12.33 0.99 0.80 8.20 0.74 0.51

Gprg 17.17 1.06 1.07 14.20 0.95 0.88 9.14 0.77 0.60 7.19 0.67 0.45

Greg 25.01 1.54 1.56 15.75 1.05 0.98 6.05 0.59 0.39 4.36 0.50 0.27
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chart (cf. Abbasi and Miller [1]) (cf. Table 4). It is to be
mentioned that the smoothing parameter of NEWMA chart
is taken as 1 for comparison purpose in our study.

It is to be mentioned that the ARL is obtained using
Monte Carlo simulations with 10,000 iterations, while
other measures are obtained by numerical integration
method. Note that Kim [25] and Schaffer and Kim
[39] indicate that even 5,000 replications are enough
for finding ARLs in many control chart settings with
in an acceptable error rate.

Following are the main findings of this study regarding the
understudy Gj charts:

1. It is evident from Figs. 1, 2, 3, 4, 5, 6, 7, and 8 that theGpr

chart exhibited best performance followed by Gg, Gprg,

Greg, and Gre charts for low and moderate Pyx, while the
Gg chart performs better than Gpr chart followed by
Gprg, Greg, and Gre charts for high value of Pyx in
general.

2. As the value of Pyx increases, the performance of the
Gj (∀ j =r ,g ,pr ,re ,rg ,prg ,and reg ) charts gets keeps
improving.

3. The most inferior performance is exhibited byGr andGrg

for low and moderate values of Pyx, while the Grg chart
exhibited relatively lower performance for high values of
Pyx.

4. The performance of proposed charts keep improving with
an increase in the values of Pyx, n , and λ at a fixed ARL0.
Moreover, these structures remain ARL unbiased and
monotonic irrespective of these choices.

Table 4 EQL, RARL, and PCI comparison of Gj charts with NEWMA, IR, Syn R, and classical R for ARL0=371 and n =10

Pyx 0.30 0.60 0.90 0.95

Charts EQL RARL PCI EQL RARL PCI EQL RARL PCI EQL RARL PCI

Gg 24.57 1.02 1.00 19.96 0.89 0.86 6.82 0.46 0.29 4.77 0.39 0.20

Gpr 24.13 0.99 0.99 20.03 0.89 0.87 8.30 0.52 0.36 5.26 0.41 0.22

NEWMA 17.14 0.81 0.70 17.14 0.83 0.74 17.14 0.82 0.74 17.14 0.82 0.72

IR 39.93 25.32 1.63 39.93 25.32 1.73 39.93 25.32 1.71 39.93 25.32 1.68

Syn R 11.40 7.06 0.47 11.40 7.06 0.49 11.40 7.06 0.49 11.40 7.06 0.48

R 22.26 14.01 0.91 22.26 14.01 0.96 22.26 14.01 0.96 22.26 14.01 0.93

Fig. 9 a Control charts display of Gu,Gpr,Gre,and Greg charts at ARL0=200 and n =10. b Control charts display of Gu,Gpr,Gre,and Greg charts at
ARL0=371 and n =10
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5. The performance of proposed control charts keep
improving with an increase in the values of Pyx, n , and
λat a fixed ARL0.

6. The performance of Gj charts in terms ARL is justified
from the EQL, RARL, and PCI values provided in
Tables 2 and 3 for ARL0=200 and 500, respectively.

7. The efficient proposed charting sutures outperform the
other existing counterparts, namely, NEWMA, IR, Syn
R, and R charts particularly for higher correlation
structures (cf. Table 4).

4 Illustrative example

In this section, we provide two examples to illustrate the
practical application of auxiliary information based Gj (∀j=
u ,r,g ,pr,re ,rg ,prg ,and reg) chats. AmongGi charts, we have
considered Gu,Gg,Gpr,Gre,and Greg charts, while the other
charts may be considered in similar lines. The variables Y andX
used for the construction of these charting statistics may be
referred as: (1) to monitor the quality of pharmaceutical
products, the units of pharmaceutical products may be
considered as Y and the temperature in degrees Celsius may
be considered as X ; (2) to monitor the effective life of a cutting
tool, Y: the life of tool, X : the tool angle, etc. Ahmad et al. [4, 5,
7], Riaz et al. [37], and Riaz and Does [36] gave many practical

applications based on the use of auxiliary variables for process
monitoring. The data set used in these examples is based on the
nonisothermal continuous stirred tank chemical reactor model
(namely, CSTR process) that has been widely used as
benchmark by different authors, i.e., Marlin [28], Yoon and
MacGregor [52], and Shi et al. [41].

Example 1: Based on Gu,Gpr,Gre,and Greg charts—In
this example, we consider outlet concentration of the
production (CA, kmol/m3) as Y and flow rate of the solvent
(FS, m

3/min) as X . This bivariate data contains 1,024 values
that have been collected on sampling interval of half minute.
The first 512 values are in in-control state with shift (λ =1) in
σy. For monitoring the process variability, we have introduced
shift (λ =1.5) in σy (as σ1=λσy=1.5σy) of second half of
data, where σ0 and σ1 represent the in-control and out-of-
control standard deviations of Y, respectively. The said data set
is considered in the form of 102 sub-groups each of size n =10
(by making each group after 5 min). The control limits forGu,
Gpr,Gre,and Greg charts have been calculated at ARL0=200
and ARL0=371 The computed values of each charting
statistic are displayed in the form of control charts by
plotting sample number on horizontal axis and values of
charting statistics on vertical axis (cf. Fig. 9a, b),
respectively for ARL0=200 and ARL0=371, where the
solid lines refer to the values of G j (∀ j =u ,pr ,re ,
and reg ) charts, while the dotted lines refer to the upper
and lower control limits.

Fig. 10 a Control charts display of Gu,Gg,Gpr,and Gre charts at ARL0=200 and n =10. b Control charts display of Gu,Gg,Gpr,and Gre charts at
ARL0=371 and n =10
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It is observed that the Gu,Gpr,Gre,and Greg charts have
detected 1, 6, 9, and 3 out-of-control signals, respectively (cf.
Fig. 9a). It shows the superior detection ability Gre chart
followed by Gpr,Greg,and Gu charts, which is in accordance
with the findings of Section 3. Similar type of performance
order of Gu,Gpr,Gre,and Greg charts can be observed in
Fig. 9b.

Example 2: Based on Gu,Gg,Gpr,and Gre charts—In the
example, we considered outlet temperature (T in Kelvin) as Y
and cooling water temperature (TC in Kelvin) as X . The
control limits for Gu ,Gg,Gpr,and Gre charts have been
calculated and the resulting values of Gu,Gg,Gpr,and Gre

charts are displayed in Figs. 3 and 4 for ARL0=200 and
ARL0=371 in the form of control charts.

It is evident from Fig. 10a that Gu,Gg,Gpr,and Gre charts
have detected 2, 4, 8, and 6 out-of-control signals,
respectively. It shows that the best detection ability is offered
by Gpr chart followed by Gu,Gg,and Gre charts. The similar
behavior may be seen in Fig. 10b.

5 Summary, conclusions, and recommendations

Control charts are very effective tools to control and monitor
the performance of any manufacturing or nonmanufacturing
process. They have a range of variants for an improvement in
their design structures in different styles. Auxiliary
information-based control charts are very attractive
alternatives to boost the performance ability of their design
structures. This article presents different efficient control
structures in the form of Gj charts (using different ways of
using auxiliary information, including ratio, power ratio, ratio

exponential, ratio regression, power ration regression, and
ratio exponential regression) for phase II monitoring of the
stability of process variability parameter. It is observed that the
control charts based on regression (Gg) and power ratio (Gpr)
charting statistics exhibited superior performance as compare
to other charts in general. The Grg chart expressed relatively
lower performance as compare to other charting sutures in
general. For the prospective analysis, the said design
structures have the ability to perform better than many other
existing variability charts like NEWMA, IR, Syn R, and R
charts. The implementation of the proposed design structures
with the practical data sets is very simple and attractive in
timely receiving the out-of-control signals.

The scope of the proposal may also be extended by:
incorporating the information on more auxiliary variables,
implementing runs rules, investigating varying sampling
strategies, and giving memory property to the proposed
structures in the form of EWMA and CUSUM frames.
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Appendix

Some distributional results: We define M =sy
2/sx

2 and Q =σy
2/

σx
2; then, the joint probability density function of the random

variables M and Q (the bivariate chi-square distribution
obtained from the bivariate Wishart distribution) is given by:

f M ;Q m; qð Þ ¼ mqð Þ n−3ð Þ=2

2n−1 Γ 2 n−1ð Þ=2ð Þ 1−ρ2ð Þ n−1ð Þ=2exp −
mþ q

2−2ρ2

	 

0F1

n−1
2

;
ρ2mq

2−2ρ2ð Þ2
" #

;

where n >3, −1<ρ <1 and 0F1

n−1
2 ; ρ2mq

2−2ρ2ð Þ2
h i

is the hyper-geometric
function as defined in Omar and Joarder [30]. Some more
details in this regard may be seen in Gradshteyn and Ryzhik
[18], Gunst and Webster [19], and Joarder [22]. For the case

where ρ =0, the abovementioned joint density function of M
and Q may be written as the product of two independent chi-
square variables with n −1 degrees of freedom each. The
probability density function of Gr=M /Q is given as:

f V ρ
grð Þ ¼ 2n−2 1−ρ2ð Þ n−1ð Þ=2

B
1

2
;
n−1
2

	 
 gr
n−3ð Þ=2

1þ grð Þn−1 1−
4ρ2gr
1þ grð Þ2

" #−n=2

; gr > 0:
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where n >3, −1<ρ <1 and B 1
2 ;

n−1
2

� �
represents the well

known beta function. Omar and Joarder [30] named it as
correlated F distribution which may have symbolic

representation as F(n −1,n −1,ρ ). More details in this regard
may be seen in Bose [10] and Finney [14].

The cumulative distribution function (ϒ ) ofGr is given as:

ϒ gr; n−1; n−1; ρð Þ ¼ Γ n−1ð Þ 1−ρ2ð Þ n−1ð Þ=2

Γ 2 n−1ð Þ=2ð ÞΓ n=2ð Þ
X ∞

k¼0
Γ k þ n

2

� �
B

gr
1þ gr

; k þ n−1
2

; k þ n−1
2

	 

4ρ2ð Þk
k!

where Г represents the gamma function, n >3 and −1<ρ <1.
(cf. Omar et al. [31]).

Themedian point of the correlatedF(n−1,n−1,ρ) distribution
given in Eq. (1) turns out to be 0.5 (cf. Omar and Joarder [30]).
Moreover, there are three limiting distributional forms of f Gr

grð Þ
given as: when n→∞ , f Gr

grð Þ→Normal mr; drð Þ ; when
ρ→0, f Gr

grð Þ→F n−1; n−1ð Þ ; when ρ→1, f Gr
grð Þ→tn−1 .

(cf. Omar and Joarder [30]).
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