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Abstract This paper proposes a method to optimize both the
total cost and order fill rates in a supply chain using the
particle swarm optimization (PSO) method. This method
automatically adjusts the initial inventory levels of all tiers
involved in a supply chain by considering information quality
level (IQL), which is determined by the degree of availability
of lead time history data. Analyses of variance are used to
examine if there are any effects of IQL on the total cost and
order fill rates. The results show that the proposed method
finds better solutions which provide a lower inventory level
while maintaining higher order fill rates than when PSO is not
applied.

Keywords Informationquality level . Initial inventory . Initial
conditions . Particle swarm optimization

1 Introduction

Supply chain management (SCM) is well known as the
management of the processes to minimize the total cost and
to satisfy the customer service level required through a supply
chain. SCM is also described as the systematic method
to manage all participants in a supply chain, including
suppliers, manufacturers, distributors, and retailers for
delivering the right amount of the right product to the
right place at the right time [1]. A supply chain may
have problems about the order process, the lead time,
the batch order, the shortage, the price fluctuations, and
the sales [2]. These problems may cause the bullwhip
effect [3]. Lee et al. [2] explained that “the bullwhip effect or

whiplash effect refers to the phenomenon where orders
to the supplier tend to have larger variance than sales to
the buyer (i.e., demand distortion), and the distortion
propagates upstream in an amplified form (i.e., variance
amplification).”

One of the most effective ways to solve the bullwhip effect
is to share information across participants involved in a supply
chain [4, 5]. Chatfield et al. [4] claimed that the bullwhip
effect may be more intensified by a violent fluctuation in the
order information from the downstream when a participant
fully trusts the information. Based on this claim, it can be
inferred that the information quality level from the
downstream is important to control the bullwhip effect.
However, to the authors' knowledge, no previous studies have
considered the information quality level to control the
bullwhip effect.

The earlier studies have been concentrated on the
effectiveness of information sharing, demand forecasting
methods in the bullwhip effect [6–11], rather than the
strategies to reduce the total cost or increase customer
satisfaction by improving the performance of the whole
supply chain [12, 13]. Lau et al. [8] studied that the inventory
in a supply chain influences the total cost by comparing the
superiority among inventory strategies. However, they did not
consider the initial inventory level needed for a better
operational management. The initial inventory level may not
greatly affect a supply chain if the supply chain has been
stably operated for a long-term period. However, few
manufacturers wants to produce limited types of consumable
electronic goods for a long period, because the demand pattern
for consumable electronic goods nowadays has shown radical
fluctuation [14]. The manufacturer should carefully observe a
change in the demand pattern even for a short-term period and
timely change the type of consumable electronic products in
order to better keep up with the customer demand pattern and
to achieve market competitiveness. Consequently, the supply
chain model for a short-term period is affected by the initial
inventory level.
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Park [5, 12, 13] compared the total inventory cost using the
supply chain model suggested by Strozzi et al. [15] and
Thomson et al. [16], as shown in Fig. 1.

Park [5, 12, 13] investigated if there is a change in the total
inventory cost of each of five supply chain cases, where their
initial inventory levels are differently set. For case 1, the initial
backlog for each tier is 0, the initial inventory is 12, and the
values of other state variables are 4 [15]. For case 2, the values
of all state variables are set to 0. For case 3, the initial
inventory for each tier is 12, and the values of other state
variables are set to 0. For case 4, the initial inventory for each
tier is 12, and the values of other state variables are set to 8.
For case 5, the values of all state variables are set to 12. The
simulation results show that the total inventory cost varies by
the initial condition for each supply chain with the total
inventory cost of Case 2 being the highest where the initial
inventory level for each tier is zero. Thus, as initial inventory
level could affect the efficiency of a supply chain, it is
necessary to carefully consider the initial condition when
building a supply chain model (Fig. 2).

In this paper, we suggest a method using particle swarm
optimization (PSO) for optimizing both the total inventory
cost and order fill rates while reflecting the information quality
level as well as automatically changing the initial inventory
condition for each tier.

We explain the motivation and the objective of this
research in Section 1 and the characteristics of the suggested
model in Section 2. In Section 3, we present an optimal model
for the supply chain. The model is simulated, and the result is
analyzed in Section 4. In Section 5, we conclude this study
and describe the further work.

2 Properties of the proposed model

The main aims of this research are to consider the information
quality level between tiers in a supply chain and to optimize

the initial condition affecting the supply chain. For this
purpose, we have made assumptions and definitions as below.

First, we assume that products are produced for a short-
term period to reflect the change in market conditions due to
the fluctuation in customer demand patterns. Under the short-
term period condition, the performance of the supply chain
may be affected by the initial condition. As shown in Fig. 3,
the initial condition can have a substantial effect on the
inventory level for each tier. Since the bullwhip effect depends
on the initial condition and affects the total inventory cost in
the whole supply chain, it is necessary to optimize the initial
inventory condition [5, 12, 13].

Second, in the current study, the information quality level is
about how much information from the downstream is
available to each upstream tier, rather than whether or not
information is shared across the supply chain [4]. Earlier
studies [7, 8] which tested a supply chain model under two
different conditions—with and without sharing end-customer
information—showed that the bullwhip effect decreases when
the end-customer information gets across to upstream.

Third, PSO, one of meta-heuristic methods, will be used as
an optimization methodology in order to allow for the
information quality level and the initial inventory condition.
It uses primitive and simple mathematical operators and is
known to be highly efficient in memory requirement and
running speed [17, 18]. In addition, it shows superiority to
genetic algorithm (GA) in some application areas [19].

3 Supply chain optimization model

We use the Strozzi et al. [15] model to simulate a supply chain
that consists of a factory, a distributor, a wholesaler, and a
retailer (Fig. 1). The decision variables used in this study are
illustrated as follows:

FEDt The expected demand of a factory at time t
DEDt The expected demand of a distributor at time t

Fig. 1 Supply chain model [15, 16]
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WEDt The expected demand of a wholesaler at time t
REDt The expected demand of a retailer at time t
FOSt The outgoing shipment of a factory at time t
DOSt The outgoing shipment of a distributor at time t
WOSt The outgoing shipment of a wholesaler at time t
ROSt The outgoing shipment of a retailer at time t
FIOt The incoming order of a factory at time t
DIOt The incoming order of a distributor at time t
WIOt The incoming order of a wholesaler at time t
RIOt The incoming order of a retailer at time t
DISt The incoming shipment of a distributor at time t
WISt The incoming shipment of a wholesaler at time t
RISt The incoming shipment of a retailer at time t

CORt The order of a customer at time t
FPRt The production of a factory at time t
DOPt The order placed by a distributor at time t
WOPt The order placed by a wholesaler at time t
ROPt The order placed by a retailer at time t
FBLt The backlog of a factory at time t
DBLt The backlog of a distributor at time t
WBLt The backlog of a wholesaler at time t
RBLt The backlog of a retailer at time t
FINVt The inventory of a factory at time t
DINVt The inventory of a distributor at time t
WINVt The inventory of a wholesaler at time t
RINVt The inventory of a retailer at time t
FPD1t The production and moving delay of a factory at

time t
FPD2t The production delay of a factory at time t
CORt The customer order rate at time t
θ The parameter of expectation rate

It is assumed that the end-customer demand is stochastic,
rather than deterministic, and can be modeled using the
autoregressive AR(1) model of Dt=μ +ρDt −1+εt, |ρ |<1,
whereDt is the demand at time t , μ is a nonnegative constant,
ρ is the first-order autocorrelation coefficient, and εt is the
error term following the normal distribution with the mean of
0 and the variance of σ2. The AR(p ) model is a type of
random process that is used to model various natural
phenomena with the order of p [20]. It predicts customer
demand based on past data. In this paper, the order p is set
to 1. The expected demand for each tier is estimated by
adding the order from the downstream and the expected
demand for the downstream. The expected demand for
each tier is calculated by EDt=θ·IOt −1+(1−θ) ·EDt −1,
where EDt and EDt −1 are the expected demand at time
t and t −1, respectively, and IOt −1 is the order at time t .
θ(0≤θ≤1) is a parameter that controls the rate at which
expectations are updated. θ=0 describes the stationary
expectation, and θ=1 explains a situation in which the
immediately preceding value of received orders is used
as an estimate of future demand. As the θ increases, the
order from the downstream becomes more important,
while the expected demand that involves uncertainty
becomes less important.

It is assumed that the lead time is 1 week for each tier, and
the lead time for a factory is 3 weeks considering the delivery
of raw materials. It is supposed that the production capacity is
infinite, and there is a place for inventory at each tier. It is
assumed that the order cannot be canceled and the remaining
inventory cannot be returned. The total inventory cost is
calculated using the following equation:

Xn

t¼1
BLC ⋅

Xm

i¼1
BLt;i

� �
þ HIC ⋅

Xm

i¼1
INVt;i

� �� �
ð1Þ

Fig. 2 Effects of different initial inventory conditions on the total
inventory cost of a supply chain

(a)

(b)

The bullwhip effect depending on the initial inventory conditions

for Case 3

The bullwhip effect depending on the initial inventory conditions 

for Case 5

Fig. 3 Bullwhip effects influenced by initial inventory conditions
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The total cost is estimated by adding the backlog cost
(BLC) and the inventory holding cost (HIC). The backlog
cost would be estimated higher than the inventory holding
cost because the backlog cost includes loss of sale chance and
credibility. In expression (1), BLt,i is the backlog for tier i at
time t , and INVt,i is the inventory for tier i at time t .

One of the general inventory replenishment strategies is the
order-up-to-level including the order point–order quantity (s ,
Q ) system, the order point–order-up-to-level (s , S ) system,
the periodic review–order-up-to-level (R , S ) system, and (R ,
s , S ) system [21]. In this study, we use the periodic review–
order-up-to-level (R , S ) for the inventory replenishment, and
the inventory is estimated every R period and the order
quantity will be Max (0,S −INVt,i).

We consider two information quality levels (IQL) as
follows:

IQL A: Each tier retains the order history of the

downstream, and can use the average (D ) and standard
deviation (sD) of demand. It knows the average lead time

(L ), but there is no lead time history data available. The
order-up-to-level, S , is expressed as follows ([4; 22]:

S ¼ X þ zsx ð2Þ
where,

X ¼ Lþ R
� �

D ð3Þ

SX ¼ SD⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ R

� �r
ð4Þ

X and sX are the average and standard deviation of

demand during lead time, respectively. D and $$ SD $$ are,
respectively, the average and standard deviation of demand
from the downstream.

IQL B: A tier retains the order history from the

downstream. It, therefore, can use the average (D ) and

variance (VD) of demand. It also has the lead time history

data with an upstream tier, and can use the average (L )
and standard deviation (sL) of lead time. The standard
deviation of the demand during lead time can be expressed as
follows:

sX ¼ VD⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ R

� �r
þ D⋅sL ð5Þ

The optimal supply chain process suggested in this study is
depicted in Fig. 4.

In Fig. 4, the input information in the supply chain includes
initial inventory, the expected demand for each tier, lead time,
and information quality level. Using this input information,
the values of the objective functions with the decision
variables are determined. From the supply chain model, we
get the values of performance measures under a given
condition rather than an optimal value.

The optimal model can get the objective value using the
PSO, and the objective values generate a set of Pareto front
candidates. This paper uses the concept of non-dominated
solution explained as Pareto front because it is impossible to
get the optimal solutions which satisfy all the objectives
simultaneously. A solution is called a non-dominated solution
if it is not dominated by other solutions among all candidate
solutions. The Pareto front is composed of a set of all non-
dominated solutions. The simulation ends when termination
conditions (e.g., the total simulation period) are met.

PSO, introduced by Eberhart and Kennedy [23], is based
on the social behavior pattern of a biological group such as a
flock of birds or a school of fish, whereas GA imitates a
natural evolutionary process. In the PSO method, a decision
variable is regarded as a particle, and the population of
decision variables is considered as a swarm [23–25].

In the PSO method, the decision variable Xn
(t +1) of the

population in a swarm of N particles has the velocity
determining the location of the next generation. Xn

(t +1) is

Fig. 4 The optimal supply chain
process
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the vector value of the n th particle of the t +1th generation.
The location for each particle is estimated as follows [17].

X tþ1ð Þ
n ¼ X tð Þ

n þ V tð Þ
n ð6Þ

Xn tþ1ð Þ ¼ Xn tð Þ þ χVn tð Þ þ ε tð Þ ð7Þ
The expression (6) is generally used for estimating each

particle of the t +1th generation using the location and
velocity of the t th generation. Vn

(t) is the velocity of the n th
particle of the t th generation. The expression (6) can be
replaced with the expression (7) to adjust the location and
the velocity of a particle. The expression (7) includes a
constriction factor, χ (χ ∈[0,1]), and the velocity of a particle
moving to the next generation becomes slow as the value of χ
is near zero. The term of ε (t ) in the expression (7) is a
turbulence factor of the t th generation, a small stochastic
perturbation for searching the decision place to avoid falling
into a local optimum and to search for a global optimum. The
expression (7) can be modified as the expression (8) including
R (t), a special turbulence factor [19, 26].

X tþ1ð Þ
n ¼ R tð Þ þ X tð Þ

n ð8Þ

In the expression (8), R (t) is used for updating the location
of each particle. The turbulence factor is similar in its concept

to the mutation operator used in evolutionary algorithm, and
the next location is calculated by adding a random value to the
current location [19]. The velocity of each particle is estimated
as follows:

v tþ1ð Þ
nk ¼ wv tð Þ

nk þ c1r1 Pnk−x
tð Þ
nk

� �
þ c2r2 Gnk−x

tð Þ
nk

� �
ð9Þ

The velocity of each particle, vnk
(t +1), is updated considering

both the particle optimum, Pnk, and the global optimum,Gnk.
vnk
(t +1) is the velocity of the k th component of the n th particle

of the t +1th generation. Pnk is the particle optimum which is
found by each particle up to the present time, and Gnk is the
global optimum which is found by population to share
information and search the place. r 1 and r 2 are random
variables uniformly distributed on the interval [0, 1], and
c1and c2 are acceleration constants adjusting the effect of
the particle optimum and the effect of the group optimum.

If the velocity of a particle is too high, it might be necessary
to lower its velocity in order to prevent it from being placed
out of the valid place. On the other hand, if its velocity is too
low, the feasible region is less likely sufficiently searched.w is
inertia weight and limits this velocity. A global optimum is
more likely found with a large value for w, whereas a local
optimum is more likely found with a small value for w.

Table 1 The population of decision variables for the supply chain model using PSO

FPD2 FPR FPD1 FINV FBL FED FIO FOS DOP DIS DINV DBL DED DIO DOS WOP

8 8 8 12 0 8 8 8 8 8 12 0 8 8 8 8
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .

WIS WINV WBL WED WIO WOS ROP RIS RINV RBL RED RIO ROS COR θ

8 12 0 8 8 8 8 8 12 0 8 8 0 8 0.25

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Fig. 5 Pareto front using IQL Awithout optimization process Fig. 6 Pareto front using IQL Awith optimization process
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The population of decision variables to perform the PSO
method in this study is summarized in Table 1.

The variables in Table 1 are used to calculate the objectives
during the optimization process of the PSO method. Those
values are randomly chosen or set to 0 when the simulation
begins. The initial values are updated as a better solution is
found through the optimization process and the generation of
Pareto front. Thus, the optimization process is performed with
the information summarized in Fig. 4 and Table 1 to minimize
the total inventory cost and maximize the order fill rate while
considering the information quality level and the initial
inventory condition.

4 Result analysis

The end-customer demand is explained by AR(1) model with
ρ =−0.6 and μ =100, and it is assumed that ε t follows a
normal distribution, with the mean of 0 and the standard
deviation of 10 [9, 11]. The range of inventory for each tier
is [0, 20], and the range of θ for demand forecasting is [0, 1].
The population size is set to 200, and the generation is set to
100. It is assumed that there is no lead time for information
delivery, and the product lead time follows a normal
distribution with the mean of 3 and the standard deviation of

Table 2 The values of decision variables with and without optimization
process

Decision variable Without optimization process With optimization
process using IQL A

θ 0.1 0.005

COR 2 17

ROS 13 15

RIO 16 16

RED 15 7

RBL 6 13

RINV 12 14

RIS 13 17

ROP 11 8

WOS 12 11

WIO 7 11

WED 18 9

WBL 11 15

WINV 17 12

WIS 3 13

WOP 16 15

DOS 18 8

DIO 5 15

DED 10 19

DBL 12 9

DINV 12 6

DIS 20 16

DOP 19 7

FOS 14 9

FIO 7 11

FED 13 10

FBL 16 10

FINV 9 10

FPD1 14 15

FPR 13 17

FPD2 12 10

Fig. 7 Pareto front using IQL B without optimization process

Fig. 8 Pareto front using IQL B with optimization process

Fig. 9 The optimization results based on information quality level
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1 [4]. The total simulation period is 800 weeks. The first
200 weeks are regarded as a warm-up period and are removed
from the analysis.

The review period, R , is 1 week, the service level for order-
up-to-level is 95 %, and safety factor, z , is 1.65 in (R , S )
inventory replenishment strategy (Chatfield 2004; [22]).

The parameters' values can vary by the applied problems.
The parameters' values used in this paper follow Mostaghim
and Teich [19] and Julio et al. [17], where it is assumed that
c1and c2 are 1,w is 0.4, the constriction factor, χ , is 1, and the
turbulence factor, ε (t), is 0. The initial particle of Xn and
velocity of Vn are randomly set within their valid range.

The first experiment is to determine the initial condition
with IQL A, offering the demand history and the average lead
time from the downstream. Figures 5 and 6 are the total
inventory cost and the order fill rate, with and without the
application of the PSO optimization process, respectively.

Without the optimization process, the total cost is [4,735,
607, 16,326,540], and the order fill rate is [0.5225, 0.5525].
The mean of total inventory cost is 10,014,216, and the mean
of order fill rate is 0.536. The result is depicted in Fig. 5. With
the optimization process, the total cost is [590,581, 22,074,
611] and the order fill rate is [0.4950, 0.7775]. The mean of
total inventory cost is 4,267,272, and the mean of order fill
rate is 0.66. The result is depicted in Fig. 6.

Comparing Figs. 5 and 6, the minimum total inventory cost
is 4,735,607 when the optimization process is not considered.
But the minimum total inventory cost is decreased to 590,581
when the optimization process is considered. In terms of the
mean of the total inventory cost, the improved rate of the
optimization process is 57.4 % and it is better than the result
without the optimization process. In the perspective of order
fill rate, the maximum order fill rate is 0.5525 without the
optimal process, but with the optimal process the order fill rate
is enhanced up to 0.7775. Thus, the objective is satisfied by
moving toward the lower total inventory cost and the higher
order fill rate. As shown in Figs. 5 and 6, the ranges of the total

inventory cost and order fill rate are larger in the case with the
optimization process because the Pareto optimization process
generates various solutions by satisfying the multiple
objectives.

The values of the decision variables for the minimum total
inventory cost without the optimization process and those
with the optimization process are summarized in Table 2. As
the value of θ changes, other decision variables also change
accordingly during the optimization process.

Next, the simulation model using IQL B is tested
considering the optimization process. Figure 7 illustrates
the Pareto front without the optimization process, and
Fig. 8 depicts the Pareto front with the optimization
process.

As shown in Fig. 7, the range of the total inventory cost is
[13,379,557, 28,041,558], and the mean is 20,345,131 in the
simulation model using IQL B without the optimal process. In
the simulation model, the range of the order fill rate is [0.525,
0.555], and the mean is 0.536. With the optimal process, the
range of the total inventory cost is [1,306,099, 37,994,506],
and the mean is 8,312,250. The range of the order fill rate is
[0.505, 0.778], and the mean is 0.685 as shown in Fig. 8. The
mean of the total cost with the optimal process is 59 % less
than the mean without the optimal process. The mean of the
fill rate with the optimal process is also 28 % higher than the
mean without the optimal process.

Like IQL A case, while various solutions are generated
without the optimal process, the Pareto optimization process
generates more various and good solutions with the optimal
process. The optimization process, also, moves toward the
lower total inventory cost and the higher order fill rates.

To validate the effect of information quality level, we will
compare the case of IQL A and the case of IQL B. The Pareto
front of the total inventory costs and the order fill rate for 200
populations is depicted in Fig. 9.

With IQL A, the range of total inventory cost is [590,580,
22,074,611], and the range of order fill rate is [0.495, 0.7775].

Table 3 ANOVA test result of
total inventory cost Cause of Variance Sum of Squares df Mean Square F Sig. Pr>F

Treatment 1.64E+15 1 1.64E+15 46.04803 4.2E-11 3.864929

Residual 1.41E+16 398 3.55E+13

Total 1.58E+16 399

Table 4 ANOVA test result of
order fill rate Cause of Variance Sum of Squares df Mean Square F Sig. Pr>F

Treatment 0.062438 1 0.062438 10.14053 0.001565 3.864929

Residual 2.450574 398 0.006157

Total 2.513012 399
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Themean of total inventory cost is 4,267,272, and the mean of
order fill rate is 0.6601. Using IQL B, the range of total
inventory cost is [1,306,099, 37,994,506], and the range of
order fill rate is [0.505, 0.778]. The mean of total inventory
cost is 8,312,250, and the mean of order fill rate is 0.685.

In this paper, analysis of variance (ANOVA) is used to find
whether or not the IQL A and B have an effect on the total
inventory cost and order fill rates. The two information levels
are compared by ANOVA test for 200 populations. The
ANOVA tests are performed at the 0.05 level of significance,
and the results are summarized in Tables 3 and 4.

As shown in Table 3, it is clear that there is a
significant difference between using IQL A and using
IQL B at α =0.05 in terms of total inventory cost. Thus, the
total inventory cost using IQLA is less than the total inventory
cost using IQL B.

As shown in Table 4, there is a significant difference
between using IQL A and using IQL B in terms of order fill
rate. Consequently, the order fill rate using IQL B is higher
than the order fill rate using IQL A.

Table 5 shows that IQL A is good in terms of the total
inventory cost, and IQL B is good in terms of order fill rate.
The values are determined depending on the condition of
objectives, rather than randomly being set to small or large
numbers.

Accordingly, the simulation model with the optimization
method is better than the model without the optimization
method in terms of total inventory cost and order fill rates.
In this study, the suggested optimization process finds the
optimal initial inventory condition values, reducing the total
inventory cost and enhancing order fill rate. Considering
information quality level, using IQL A is better than using

IQL B in the perspective of the total inventory cost, but using
IQL B is better than using IQL A in terms of order fill rate.

5 Conclusions and future work

Supply chain is easily affected by the initial inventory
condition and the information quality level. Most existing
researches have studied how to reduce the bullwhip effect
caused by the initial inventory condition in a supply chain,
but they do not consider the initial inventory condition and the
information quality.

In this study, we suggest a method for optimizing the total
inventory cost and the order fill rate by adjusting the initial
inventory condition, and reflecting information quality level.
We determined the initial inventory condition using the
suggested optimization process. The optimization process
results in better total inventory cost and order fill rate. That
is, the initial inventory condition is determined by the
suggested optimization process, decreasing the total inventory
cost and improving the order fill rate. In terms of information
quality level, the total inventory cost with IQL A is better than
the total inventory cost with IQL B, and the order fill rate with
IQL B is better than the order fill rate with IQL A.

In this study, we determine the initial inventory condition to
optimize the total inventory cost and the order fill rate
considering the demand information from the downstream
and the lead time information from the upstream. To further
generalize the results from this study, it is warranted to
investigate the effects of a different information quality level
for each tier on the supply chain optimization process.

Table 5 The optimal values of
decision variables when total
inventory cost and order fill rate
are best cases

Decision variable IQL A (TIC) IQL B (OFR) Decision variable IQL A (TIC) IQL B (OFR)

θ 0.005 0.001 DOS 8 8

COR 17 14 DIO 15 6

ROS 15 14 DED 19 15

RIO 16 14 DBL 9 7

RED 7 1 DINV 6 7

RBL 13 13 DIS 16 14

RINV 14 4 DOP 7 9

RIS 17 16 FOS 9 15

ROP 8 14 FIO 11 4

WOS 11 7 FED 10 17

WIO 11 10 FBL 10 13

WED 9 13 FINV 10 14

WBL 15 15 FPD1 15 11

WINV 12 15 FPR 17 2

WIS 13 9 FPD2 10 15

WOP 15 9
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