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Abstract In order to serve the customers' demands in a sup-
ply chain, one of the important decisions is to select some
candidate places as distribution centers (DCs) in the network.
For opening a potential DC and also shipping from the DC to
the customers, there are two types of costs named fixed and
variable costs, respectively. Contrary to previous work, we
consider fuzzy costs and utilize differential evolution (DE)
algorithm for the first time for the given problem. In addition,
some new crossover and mutation operators are proposed in
DE.We also address the problem with genetic algorithm (GA)
and compare the results with the presented DE algorithm. In
the both presented algorithms, Prüfer number representation is
employed. Besides, the Taguchi experimental design method
is employed to study the behavior of the parameters dealing
with the problem. To evaluate the performance of proposed
algorithms, various problem sizes are considered and the
computational results are analyzed. Finally, the impact of the
rise in the problem size on the performance of the algorithms

is investigated. The DE depicts a superior performance over
GA in all problem sizes.

Keywords Allocation .Differential evolution (DE) algorithm .
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1 Introduction

In recent years, the supply chain (SC) design problem has been
gaining importance due to increasing competitiveness intro-
duced by the market globalization [53]. Studies about SC have
grown very rapidly over the last two decades, and an exponential
growth in number of papers in different journals can be viewed.
A supply chain is a combination of facilities and plants as a
network that performs the operation of purchasing and supply,
transformation of row materials into intermediate or finished
products, and the distribution of these products to customers.
Supply chains are generally characterized by numerous activities
and operation among multiple functions and organizations.

One of the most interesting topics in Industrial Engineering
research area has been supply chain management (SCM).
SCM deals with a wide range of subject areas including
procurement, logistics and transportation, behavior, market-
ing, network, strategic management, management information
systems, and operations management. All of these areas have
been cited in the literature dealing with SCM. A complete
survey is available in Chen and Paulraj [16]. Today, SCM is
still largely dominated by logistics and endeavors to observe
the entire scope of the supply chain. Efficient coordination of
material suppliers, manufacturing plants, wholesalers, re-
tailers, warehouses, and distribution centers, to deliver prod-
ucts as scheduled, is the ultimate goal of SCM. In this
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connection, many industrialists and academicians are keen to
develop optimization methodologies and algorithms with ar-
tificial intelligence (AI) techniques that can optimize alloca-
tion problems, transportation policy, etc.

The fixed-charge transportation problem (FCTP) is a prac-
tical interest in business and industry. The FCTP is an extend-
ed case of the first developed transportation model, previously
introduced by Hitchcock [29]. Since Hitchcock [29] first
developed the transportation model (TP), it has been extended
from many numbers of researchers, such as Charnes and
Copper [15], Dantzig [18], Arsham and Khan [5], Arsham
[4], Adlakha and Kowalski [2], Brenner [13], and others.

In a FCTP, fixed cost is incurred for every route that is used
in the solution, along with the variable cost that is proportional
to the amount shipped. The objective is to find the combina-
tion of routes that minimizes the total variable and fixed costs
while satisfying the supply and demand requirements of each
origin and destination.

Consider the m potential distribution centers (DCs) and n
customers with particular demands, and the transportation cost
per unit from DC i to customer j is a trapezoidal fuzzy
number, ecij , also, assumed for opening potential DC i , an

opening cost is a trapezoidal fuzzy number, ef i . In this prob-
lem, the objective is to find the following items, in order to
minimize the total system cost:

& The DCs; the opened candidate places.
& Each customer receives its demand from which DC?

In order to, the mathematical model for this problem is:

Min Z̃ ¼
Xm

i¼1

Xn

j¼1
c̃ ij � xij � bj þ

Xm

i¼1
f̃ i � yi;

S : t :Xm

i¼1
xij ¼ 1 j ¼ 1; 2;…; n;

xij∈ 0; 1f g ;

yi ¼ 0 if
Xn

j¼1
xij ¼ 0;

yi ¼ 1 if
Xn

j¼1
xij > 0:

In this model, bj is the demand of costumer j .

2 Literature review

In this several decades, there have been many researchers who
developed new models or methods to design the supply chain
network that can give the least cost [27]. Supply chain network
(SCN) design is a strategic issue, which aims at selecting the
best combination of a set of facilities to achieve an efficient and
effective management of the supply chain. It not only helps to
achieve the SCN goals, but also it offers a great potential to
reduce costs and to improve service quality. Furthermore, a
main factor that influences on SCN is to decide the number of

distribution centers (DCs). Geoffrion and Graves [24] worked
on two-stage distribution problem for the first time. A new
mathematical formulation to locate a number of production
plants and warehouses and to design distribution network is
presented by Pirkul and Jayaraman in which the total operating
cost can be minimized. Their approach was based on Lagrang-
ian relaxation to solve the problem. Hindi et al. [28] studied a
two-stage distribution-planning problem. They supposed a
single DC to serve all customers. They developed new math-
ematical model as well as a branch and bound algorithm to
solve the problem.

Jawahar and Balaji [30] proposed a genetic algorithm (GA)
to solve a two-stage FCTP, by considering unit transportation
cost, fixed cost associated with each route, and uncapacitated
DCs. Balaji and Jawahar [6] presented a simulated annealing
(SA) based algorithm to solve the two-stage FCTP which is
considered by Jawahar and Balaji [30]. Borisovsky et al. [12]
considered the supply management problem with lower-
bounded demands (SMPLDs), which plans the shipments from
a set of suppliers to a set of customers in order to minimize the
total cost, by considering the given lower and upper bounds on
shipment sizes, lower-bounded consumption and linear costs
(including fixed cost and variable cost) for opened deliveries;
they proposed two variants of GA for SMPLD.

Antony Arokia Durai Raj et al. [3] proposed genetic algo-
rithms to solve a two-stage transportation problem with two
different scenarios. The first scenario considers the per-unit
transportation cost and the fixed cost associated with a route,
coupled with unlimited capacity at every DC. The second
scenario considers the opening cost of a distribution center,
per-unit transportation cost from a given plant to a given DC
and the per-unit transportation cost from the DC to a customer.
Costa et al. [17] presented a GA to minimize the total logistic
cost resulting from the transportation of goods and the loca-
tion and opening of the facilities in a single product three-
stage supply chain network.

Prüfer number encoding is a useful type of tree encoding and
solution representation method in the related works [22, 34,
35]. This method is one of the efficient ways and most used
methods to represent various network problems. The use of the
Prüfer number representation for solving various network prob-
lems was introduced by Gen and Cheng [20]. They employed
the Prüfer number as an efficient way, which uniquely represent
all possible trees in a network graph [21]. They mentioned that
the use of the Prüfer number is more suitable for encoding a
tree, especially for some research areas like; production/
distribution problem [23, 25, 52], some extended transportation
problems [51], and minimum spanning problems [21, 50].

Zhou et al. [59] also used the Prüfer number representation
for allocation of customers to multiple distribution centers in
the supply chain network using genetic algorithm. They for-
mulated the balanced allocation problem as a balanced star-
spanning forest problem. A hybrid genetic algorithm for
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production/distribution problem is proposed by Syarif and
Gen [51]. They represented the solution on each stage by
Prüfer number and utilized a hybrid approach to enhance the
performance of their proposed hybrid GA.

In the recent works, Hajiaghaei-Keshteli [25] considered
the allocation of customer to potential DCs, and addressed
the model by GA and artificial immune algorithm. His
proposed model selects some potential places as distribu-
tion centers in order to supply demands of all customers.
He used Prüfer number representation for the presented
algorithms. In addition, Molla-Alizadeh-Zavardehi et al.
[39] proposed artificial immune and genetic algorithms
with a Prüfer number representation to solve a capacitated
two-stage FCTP, by considering unit transportation cost,
fixed cost associated with each route, fixed cost for open-
ing potential distribution centers (DCs), and capacitated
DCs or warehouses.

In addition, in a recent work, Hajiaghaei-Keshteli
et al. [26] used Prüfer number representation for a type
of transportation problem and developed some novel
mutation and crossover operators. They also improved
the spanning tree-based genetic algorithm by presenting
a pioneer method to design a chromosome that does not
need a repairing procedure for feasibility. Xie and Jia
[54] proposed a genetic algorithm to solve a nonlinear
FCTP, by considering transportation cost depending on
the quadratic of the shipping units shown as a nonlinear
term, and also fixed cost associated with each route.

Generally, it is often difficult to estimate the actual penal-
ties (e.g., transportation cost, delivery time, quantity of goods
delivered, under-used capacity, etc.), demands, availabilities,
the capacities of different modes of transport between origins
and destinations. Depending upon different aspects, these
parameters fluctuate due to uncertainty in judgment, lack of
evidence, insufficient information, etc. Hence, the typical
models, in which all parameters are crisp numbers, fail in
many practical applications. In recent years, the problems
involving uncertainty has become the subject of extensive
research.

The purpose of introducing entropy in transportation
problem is to get better customer service. Bit [9], Bit
et al. [10, 11], and Li and Lai [36] presented the fuzzy
compromise programming approach to multiobjective
transportation problem. Samanta and Roy [48] proposed
an algorithm for solving multiobjective entropy trans-
portation problem under fuzzy environment. Omar and
Samir [44] and Chanas and Kuchta [14] discussed the
solution algorithm for solving the transportation problem
in fuzzy environment. The entropy optimization in
transportation models as well as other models also is
discussed in the book of Kapur and Kesavan [31]. Ojha
et al. [43] discussed a solid transportation problem with
entropy in fuzzy environment. For a further review on

transportation and location problems in SCM, we refer
to Melo et al. [38] and Ko et al. [33].

Problems involving uncertainty has become the subject of
extensive research in the last decade. The typical models, in
which all parameters are crisp numbers, fail in many practical
applications. For most of the real-world processes, some pa-
rameters (e.g., costs) are not precisely known a priori. There
are several approaches to modeling the uncertainty in optimi-
zation. The natural one is to apply the theory of fuzzy.

In this paper, two stages of supply chain network,
distribution centers and customers, are considered. The
customers have particular demands and potential places
are candidate to be selected as distribution centers. All
the potential DCs can send their products to any of the
customers. There are two types of costs: opening cost,
assumed for opening a potential DC plus shipping cost
per unit from DC to the customers. Previous papers are
based upon the condition that all types of costs are
known exactly. However, the costs are often imprecise
in many real-world applications and the imprecision is
critical for the decisions made in supply chain. Hence,
contrary to previous works, the proposed model selects
some potential places as distribution centers in order to
supply demands of all the customers, considering fuzzy
costs.

As can be viewed in the previous works, genetic algorithm
has been successfully employed to such a problem. The DE is
a new metaheuristic, which has great abilities to reach good
approximations of optimal solutions to numerous NP-hard
problems. In this paper, at first, differential evolution (DE)
algorithm is used for the first time in this research area. Then, a
genetic algorithm is presented to compare with the presented
DE. In addition, some novel crossover and mutation operators
are proposed in DE. In both presented algorithms, Prüfer
number representation is employed.

Five sections follow this introduction. The next section
briefly introduced some knowledge of fuzzy costs. Section 3
describes the problem's details and elaborates the mathemat-
ical formulation of our model. The proposed algorithms are
explained in Section 4 and 5. Section 6 describes the Taguchi
experimental design and compares the computational results.
Finally, in Section 7, conclusions are provided and some areas
of further research are then presented.

3 Fuzzy model

Zadeh [58] introduced the theory of the fuzzy set with the
membership function, and then, it has been well developed
and employed in a wide variety of real problems. In the classic
transportation problems, it is usually assumed that the aspects
of the problem in hand are certain. Most existing models
neglect the presence of uncertainty within a transportation
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environment. In many real-world distribution problems,
however, uncertainty and vagueness in required time or cost
often do exist that make the models more complex. This
uncertainty might come about because of delivery problems
(e.g., transportation delay, traffic jam). The more transporta-
tion time, the larger the transportation time becomes. To
describe the uncertainty in the distribution management,
fuzzy logic is appropriate.

In order to measure a fuzzy event, the term fuzzy
variable was introduced by Kaufman [32]. In this sec-
tion, we briefly introduce some basic concepts and
results about fuzzy measure theory initiated by Bellman
and Zadeh [7]. Below, we give definitions and notations
taken from Bezdek [8].

Definition 3.1 If X is a collection of objects denoted ge-
nerically by x , then a fuzzy set in X is a set
of ordered pairs:eA ¼ x;eA xð Þ

���x∈Xn o
, where eA xð Þ is called

the membership function, which associates
with each x ∈X a number in [0,1] indicating
to what degree x is a number.

Definition 3.2 The α level set of eA is the set eAα ¼
x eA xð Þ≥α
���n o

where α ∈[0, 1]. The lower

and upper bounds of any α level set eAα

are represented by finite number inf
x∈eAα

and sup
x∈eAα

.

Definition 3.3 A fuzzy set A is convex if

Ã λxþ 1−λð Þyð Þ≥min Ã xð Þ;Ã yð Þ
n o

∀x; y∈X ;λ∈ 0; 1½ �

Definition 3.4 A convex fuzzy set eA on ℝ is a fuzzy
number if the following conditions hold:

(a) Its membership function is piecewise continuous
function.

(b) There exist three intervals [a ,b ], [b ,c ] and [c ,d ] such
that A is increasing on [a ,b ], equal to 1 on [b ,c ],
decreasing on [c ,d ] and equal to 0 elsewhere.

Definition 3.5 The support of a fuzzy set eA is a set eA is a

set of elements in X for which eA xð Þ is
positive, that is,

suppeA ¼ x ∈ X eA��� xð Þ > 0
n o

Definition 3.6 Let A= (al, au, a , β ) denote the trapezoidal
fuzzy number, where [al, α , au+β ] is the

support of eA and [al, au] its core.

Remark 3.1 In this paper, we denote the set of all fuzzy
numbers by F (ℝ).

We next define arithmetic on trapezoidal fuzzy numbers.
Let ea ¼ al; au;α;β

� �
and eb ¼ bl; bu; γ; θ

� �
be two trap-

ezoidal fuzzy numbers. Define,

x > 0 ; x ∈ R : xã ¼ xal; xau; xα; xβ
� �

;

x < 0 ; x ∈ R : xã ¼ xau; xal;−xβ;−xa
� �

;

ã þ b̃ ¼ al þ bl; au þ bu;αþ γ;β þ θ
� �

;

ã − b̃ ¼ al−bu; au−bl;αþ θ;β þ γ
� �

:

3.1 Ranking function

A convenient method for comparing of the fuzzy numbers is
by use of ranking function [37]. We define a ranking function
ℛ: F(ℝ)→ℝ, which maps each fuzzy number into the real

line. Now, suppose that ea and eb be two trapezoidal fuzzy
numbers. Therefore, we define,

ã ≥ b̃
R

If and only if R ea� �
≥R eb� �

ð1Þ

ã > b̃
R

If and only if R ea� �
> R eb� �

ð2Þ

ã ¼ b̃
R

If and only if R ea� �
¼ R eb� �

ð3Þ

Also we write

ea≤ b̃
R

If and only if b̃ ≥ea
R

:

Since there are many ranking function for comparing fuzzy
numbers, we only apply linear

R keaþeb� �
¼ kR ea� �

þR eb� �
;

For any ea and eb belonging to F(ℝ) and any k ∈ F(ℝ).
Here, we introduce a linear ranking function adopted by

Maleki [37]. For a trapezoidal fuzzy numberea ¼ al; au;α;β
� �

,
we use ranking function as follows:

R ea� �
¼

Z 1

0
infeaα þ supeaα� �

da;

This reduces to

R ea� �
¼ al þ au þ 1

2
β−αð Þ:

Then, for trapezoidal fuzzy numbers ea ¼ al; au;α;β
� �

and eb ¼ bl; bu; γ; θ
� �

, we have
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ea ≥eb if and only if al þ au þ 1
2 β−αð Þ≥bl þ bu þ 1

2 θ−γð Þ:
For an illustration more about of the above model, we solve

an example here. Suppose there are four potential DCs and
seven costumers. The transportation costs and the opening
cost are given in Table 1.

Suppose customers 2 and 4 are served their demands from
DC 1, customers 1, 3, and 7 are served from DC 2 and other
customers received their demands from DC 4, as shown in
Fig. 1. Thus, we suppose that just potential plants 1, 2, and 4
are considered as DCs. Thus,

& The opening cost of DCs f̃ ¼ f̃ 1 þ f̃ 2 þ f̃ 3 þ f̃ 4 ¼
350; 550; 150; 250ð Þ þ 250; 400; 150; 200ð Þþ
700; 900; 500; 100ð Þ þ 200; 450; 100; 250ð Þ ¼
1; 500; 2; 300; 900; 800ð Þ; R f̃

� � ¼ R 1500; 2; 300;ð
900; 800Þ ¼ 3; 750:

& The transportation cost fromDCs to customers is equal to:

B̃ ¼ b1 � c̃21 þ b2 � c̃12 þ b3 � c̃23 þ b4 � c̃14 þ b5 � c̃45

þb6 � c̃46 þ b7 � c̃27

¼ 4; 000� 4; 6; 2; 3ð Þ þ 5; 000� 2; 7; 1; 4ð Þ

þ 1; 700� 4; 10; 1; 5ð Þ þ 2; 800� 3; 8; 1; 5ð Þ

þ 5; 200� 5; 9; 3; 1ð Þ þ 8; 400� 4; 5; 3; 4ð Þ

þ 6; 000� 2; 9; 1; 2ð Þ

¼ 16; 000; 24; 000; 8; 000; 12; 000ð Þ

þ 10; 000; 35; 000; 5; 000; 20; 000ð Þ

þ 6; 800; 17; 000; 1; 700; 8; 500ð Þ

þ 8; 400; 22; 400; 2; 800; 14; 000ð Þ

þ 26; 000; 46; 800; 15; 600; 5; 200ð Þ

þ 33; 600; 42; 000; 25; 200; 33; 600ð Þ

þ 12; 000; 54 000; 6; 000; 12; 000ð Þ

¼ 112; 800; 241; 200; 64; 300; 105; 300ð Þ;

R B̃
� �

¼ R 112; 800; 241; 200; 64; 300; 105; 300ð Þ

¼ 374; 500:

& The objective function value is:

Z̃ ¼ 1; 500; 2; 300; 900; 800ð Þ
þ 112; 800; 241; 200; 64; 300; 105; 300ð Þ

¼ 114; 300; 243; 500; 65; 200; 106; 100ð Þ;
R Z̃
� �

¼ 378; 250 ¼ 3; 750þ 374; 500:

Table 1 The example parameters and costs

Customers 1 2 3 4 5 6 7
bj 4,000 5,000 1,700 2,800 5,200 8,400 6,000

DCs ef i ecij
1 (350,550,150,250) (1,3,2,5) (2,7,1,4) (2,5,1,4) (3,8,1,5) (5,6,2,4) (3,18,1,5) (4,5,2,4)

2 (250,400,150,200) (4,6,2,3) (6,8,5,1) (4,10,1,5) (8,9,5,1) (3,7,1,5) (6,10,1,3) (2,9,1,2)

3 (700,900,500,100) (3,7,2,2) (3,9,1,1) (6,11,1,3) (5,7,3,2) (3,7,2,5) (3,15,2,2) (7,8,4,4)

4 (200,450,100,250) (3,5,1,1) (5,7,3,6) (8,13,2,4) (4,5,1,1) (5,9,3,1) (4,5,3,4) (3,5,2,1)

C1

C4

C3

C2

C5

Plants

Customers

C7

C6

1

2

3

4

Fig. 1 Transportation graph for the example
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4 The proposed GA

GAs are intelligent stochastic optimization techniques based
on the mechanism of natural selection and genetics. GA is one
of the most used metaheuristic approaches for tackling opti-
mization problems. It is based on the idea of “survival of the
fittest,” which repeats evaluation, selection, crossover, and
mutation after initialization until a stopping criterion is satis-
fied. It also has been shown as a robust optimization technique
to solve many real world problems [20, 21].

In a nutshell, GAs work by generating a population of
numeric vectors (called chromosomes), each representing a
possible solution to a problem. They evaluate the individuals
in the population and then generate new solutions for the next
generation. New chromosomes are produced by reproduction,
crossover, or mutation. In other words, these three genetic
operators take the initial population and generate successive
populations that improve over time. Chromosomes are then
appraised according to a fitness (or objective) function, with
the fittest surviving and the less fit being eliminated.

The new population is then evaluated again and the whole
process is repeated. The overall procedure of proposed genetic
algorithm is shown in Fig. 2.

4.1 Representation

The key to find a good solution using a GA lies in developing
a good chromosome representation of solutions to the prob-
lem. A good GA chromosome design should reduce or elim-
inate redundant chromosomes from the population. Solution
representation should be easy to decode to reduce the cost of
the algorithm. The problem discussed in this paper is a net-
work problem, which one of its feasible representation is a tree
topology. Thus, tree-based representation would also appro-
priate for this problem. The use of the Prüfer number repre-
sentation for solving various network problems was used by
Gen and Cheng [20], Hajiaghaei-Keshteli [25], Molla-
Alizadeh-Zavardehi et al. [39], and Hajiaghaei-Keshteli et al.
[26]. They utilized the Prüfer number as it is capable of
equally and uniquely representing all possible trees in a net-
work graph.

Prüfer number encoding procedure:
Repeat the following steps until no edges are left in

network.

Step 1 Let node j be the smallest labeled customer node in
network.

Step 2 Set k to be the first digit in the permutation, if node k
is incident to node j . Herein, we build the permuta-
tion by appending digits to the right so that the
permutation can be built and read from left to right.

Step 3 Remove node j and the edge (j,k ).

It is also possible to generate a unique network from a
Prüfer number via the following decoding procedure:

Prüfer number decoding procedure:
Repeat the following steps until no digits are left in P.

Step 1 Let P be the original Prüfer number and P' the set of
all nodes not included in P.

Step 2 Let j be the node with the smallest label in P' and let
k be the leftmost digit of P. Add the edge from j to k
into the network.

Step 3 Remove j from P' and k from P.

For instance, the Prüfer number for the network graph
explained in example in Section 3, is generated and shown
below:

P = 2 1 2 1 4 4 2 

4.2 Initialization

According to the most of the evolutionary algorithms, we use
a random procedure to generate an initial set of solutions.
Considering the decoding procedure, as explained in
Section 4.1, and having m DC nodes and n customer nodes,
we should represent a permutation of n digits in length in

Start

Set parameters

Generate initial population with proposed method
to generating feasible Prüfer number

Evaluate fitness of initial population

Stopping criterion met?(CT)

Reproduction Selection (Roulette wheel)

Crossover

Mutation

Evaluate fitness of new population

Output the best transportation allocation

YES

NO

Fig. 2 The proposed GA flowchart. CT CPU time
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which all digits are between 1 and m (number of DCs) inclu-
sive and each digit is generated with the probability of 1/m .

4.3 Selection mechanism

The aim is to minimize of total cost, and better solutions are
those results in lower objective function. The greater fitness
value means the better chromosome, so we consider the
following function to calculate each fitness value:

Fitness value ¼ 1

Objective function

Roulette–Wheel selection mechanism is employed to show
that a solution with higher fitness value has more chance to be
selected for the next generation or operation.

4.4 Genetic operators

4.4.1 Reproduction

Chromosomes with higher fitness values are more desirable
than the other, so one of the strategies in GAs is to keep the
pr% of the chromosomes with the greater fitness values.
Hence, they are copied to the next generation.

4.4.2 Crossover

The genetic crossover operators generate new sequence by
operating on two chromosomes at a time and combining both
chromosomes features. The goal is to create better offsprings
after combining the parents. As we assigned pr% of the
chromosomes of generation to reproduction, the (1−pr)%
remaining chromosomes are generated through crossover
operator.

Many different general and specific crossover operators
have been proposed for such a network problem (Gen and
Cheng [20], Hajiaghaei-Keshteli [25], Molla-Alizadeh-
Zavardehi et al. [39], and Hajiaghaei-Keshteli et al. [26]). In
this paper, we employ the following operators:

& One-point crossover : one point is randomly selected for
dividing both parents to two parts, and then, the opposite
parts of parents are combined together.

& Two-point crossover: at first, two crossover points are
randomly selected. The digits between randomly selected
points are inherited from one parent to the offspring. The
other symbols are placed in the order they appeared in the
other parent. After changing the roles of parents, the same
procedure is applied to produce the second offspring. This
operator is proposed by Murata and Ishibuchi [40].

& Uniform crossover: a random crossover mask is generated
and then relative genes between parents in accordance
with the mask are exchanged.

4.4.3 Mutation

For each selected chromosome, we present following five
mutation operators:

& Swap mutation : swapping the content of two random
adjacent genes.

& Big swap mutation : two genes are randomly selected and
swapped.

& Inversion mutation : two positions are selected, and the
sub string is inverted between them.

& Displacement mutation : a substring is selected and
inserted in a position.

& Perturbation mutation : a gene is randomly selected and
replaced by randomly generated another root–node.

5 The proposed DE algorithm

The DE is a population-based and stochastic global evo-
lution algorithm, created by Storn and Price [49], whose
main objective is functions optimization. It is one strategy
based on evolutionary algorithms with some specific char-
acteristics. The prime idea of DE is to adapt the search
during the evolutionary process [55]. The theoretical
framework of DE is very simple and DE is computation-
ally inexpensive in terms of memory requirements and
CPU times. Thus, nowadays, DE has gained much atten-
tion and wide application in a variety of fields [46]. Due
to its simplicity, easy implementation, fast convergence,
and robustness, DE is effective for solving various opti-
mization problems with nonsmooth and nonconvex char-
acteristics. The programming and operation of DE are also
quite easy because it requires the settings of only three
control parameters: population size, scaling factor, and
crossover constant rate (CR) in crossover operator. These
advantages facilitate the wide usage of DE.

DE starts with a number of populations of NP candidate
solutions, so-called individuals. The DE's main strategy is to
generate new individuals by calculating vector differences
between other randomly selected individuals of the popula-
tion. The subsequent generations in DE are denoted by G =0,
1,…,Gmax. It is usual to denote each individual as aD-dimen-
sional vector Xi,G=Xi ,G

1 ,…, Xi ,G
D }, i =1,2,…,NP, called a

target vector. The key idea behind DE is a scheme for gener-
ating trial vectors. The main operation is founded on the
differences of randomly sampled pairs of solutions in the
population. The main difference between traditional evolu-
tionary algorithms and DE is that in traditional evolutionary
algorithms, mutation results in small perturbations to the
genes of an individual, while in DE, the mutation is an
arithmetic combination of individuals [19]. The main steps
of the DE are shown in Fig. 3.
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5.1 Representation

Since DE works in continues space, and we want to show a
network by a vector as a solution, a procedure is developed to
represent the feasible solutions in this paper. By explaining an
example, we show that how we can create a feasible vector.

Remember the example explained in Section 3. In that
example, we had four DCs and the digits in the Prüfer number
could be one of the following numbers: 1, 2, 3, 4. Since plant 2
is not selected as a DC, number 2 does not exist in the Prüfer
number. Here, we want to depict that how this Prüfer number
can be obtained and represented.

For four potential DCs and seven customers, as mentioned
above, the Prüfer number should have seven integer digits
between 1 and 4. At first, we create seven random numbers
that can be real numbers in continues space. Then, these digits
should be modified in a way that all seven random digits
change to seven integer digits between 1 and 4. Because of

shortening the explanation of modification procedure, we
depict the example shown in Fig. 4, which consider all possi-
ble states that can be occurred. As shown, at first seven
random real digits are considered, then digits <1, and more
than 4 are changed to 1 and 4, respectively. Other real digits
are altered to first integer digit that is equal or more than the
random digit.

5.2 Initial population

Like other evolutionary algorithms, DE works with a popula-
tion of individuals (candidate solutions) and the number of
population never changes during the optimization process.
Normally, the initial population is randomly generated, and
the population will be improved by the algorithm iteratively,
through the mutation, crossover, and selection operators. As
will be explained in the types and operation of mutation
operators in the next section, some of digits may go less than
zero or more than the number of DCs. In this occasion, we
must use the modification procedure explained in Section 5.1
and Fig. 4.

5.3 Mutation operator

According to the DE, after initialization, it employs the
mutation operator. The mutation in DE is a distinct inno-
vation. It is based on the difference of different individuals
(solutions), to produce a mutant vector Vi,G with respect
to each individual Xi,G, in the current population. This
main operation is founded on the differences of randomly
sampled pairs of solutions in the population. For each
target vector Xi,G, i =1, 2,…, NP, a mutant vector Vi,G

can be made by the following mutation operators. In all
types, the scale factor F is a positive control parameter for
scaling the difference vector. The following operators
mostly used in the related papers:

Mutation type 1, Storn and Price [49]:

V i;G ¼ X r1;G þ F X r2;G−X r3;G

� �
;

Mutation type 2, Qin and Suganthan [47]:

V i;G ¼ X best;G þ F X r1;G−X r2;G

� �
;

Mutation type 3, Qin and Suganthan [47]:

V i;G ¼ Xi;G þ F X best;G−X i;G

� �þ F Xr1;G−Xr2;G

� �
;

Random real digits: 1.73 -0.5 1.56 0.25 3.66 4.79 2

Modification 1.73 1 1.56 0.25 3.66 4 2

Representation 2 1 2 1 4 4 2

Fig. 4 Representation an example for DE

Start

Set parameters

Generate initial population with proposed method 
to generating feasible Prüfer number

Evaluate fitness of initial population 

Stopping criterion met?(CT)

Crossover

Mutation

Output the best transportation allocation

YES

NO

Evaluate

Selection

Fig. 3 The proposed DE Algorithm
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Mutation type 4, Storn and Price [49] andAbbass et al. [1]:

V i;G ¼ X best;G þ F X r1;G−X r2;G

� �þ F X r3;G−X r4;G

� �
;

Mutation type 5, Qin and Suganthan [47]:

V i;G ¼ X r1;G þ F X r2;G−X r3;G

� �þ F X r4;G−X r5;G

� �
;

Mutation type 6, Qin and Suganthan [47]:

V i;G ¼ X r1;G þ F X best;G−X r2;G

� �þ F X r3;G−X r4;G

� �
;

Mutation type 7, Qin and Suganthan [47]:

V i;G ¼ X i;G þ F X r1;G−X r2;G

� �þ F X r3;G−X r4;G

� �
;

Mutation type 8, Nearchou [41]:

V i;G ¼ kX best;G þ 1−kð ÞX r1;G þ F X r2;G þ X r3;G−X r4;G−X r5;G

� �
;

Mutation type 9, Nearchou [42]:

V i;G ¼ tX r1;G þ 1−tð ÞX r2;G þ F X r3;G−X r4;G

� �
;

The indices r1,r2,r3,r4,r5 are mutually exclusive integers
randomly generated within the range [1, NP], The scale factor
F is a positive control parameter for scaling the difference
vector, t ∈(0,1) is chosen randomly. Xbest is the solution with
the best performance among individuals of the population at
generation G . k is a coefficient for convex combination be-
tween the best element Xbest,G of the current population and
randomly selected element Xr1,G.

Since the main difference between GA and DE algorithms
is the operation of mutation operator, we develop new nine
mutation operators for the first time in this paper. These new
nine mutation operators plus above nine mutation operators
(18 operators) will be used in parameter tuning to calibrate the
operator. The new mutation operators are as follows:

Mutation type 10:

V i;G ¼ X r1;G þ F X best−X i;G

� �
;

Mutation type 11:

V i;G ¼ X r1;G þ F X best;G−X r2;G

� �
;

Mutation type 12:

V i;G ¼ X r1;G þ F X i;G−X r1

� �
;

Mutation type 13:

V i;G ¼ X r1;G þ F X best;G−X i;G

� �þ F X r2;G−X r3;G

� �
;

Mutation type 14:

V i;G ¼ X r1;G þ F X i;G−X r1;G

� �þ F X r2;G−X r3;G

� �
;

Mutation type 15:

V i;G ¼ X r1;G þ F X best;G−X r2;G

� �þ F X best;G−X i;G

� �
;

Mutation type 16:

V i;G ¼ X r1;G þ F X i;G−X r1;G

� �þ F X best;G−X r1;G

� �
;

Mutation type 17:

V i;G ¼ X r1;G þ F X best;G þ X r2;G

� �þ F X best;G−X r3;G

� �
;

Mutation type 18:

V i;G ¼ X r1;G þ F X i;G−X r2;G

� �þ F X i;G−X r3;G

� �
;

5.4 Crossover operator

In order to increase the diversity of the perturbed parameter
vectors, crossover is introduced after the mutation operation.
Crossover operation is employed to generate a temporary
or trial vector by replacing certain parameters of the target
vector by the corresponding parameters of a randomly
generated donor vector. To get each individual's trial vec-
tor, Ui ,G +1, crossover operation is performed between
each individual and its corresponding mutant vector. We
propose four types of crossover operators for DE. To the
best of our knowledge, crossovers type 2 and 3, have not
been employed in DE yet. We also develop crossover type
4 for the first time in this paper. The proposed crossover
operators are as follows:

& Crossover type 1, Storn and Price [49]:

Ui; j;Gþ1 ¼ vi; j;Gþ1 if rand jð Þ≤CR or j ¼ randn ið Þ;
xi; j;Gþ1 if rand jð Þ > CRand j ≠ randn ið Þ;

�

where rand(j ) is the j th evaluation of a random number
uniformly distributed in the range of [0, 1], and randn(i ) is a
randomly chosen index from the set {1, 2,…, N}. CR∈[0, 1]
is a crossover constant rate that controls the diversity of the
population. Themore the value of CR, the less the influence of
the parent will be.

& Crossover type 2, one-point crossover:
In this operator, one point is randomly selected for

dividing a vector and its mutant to two parts, and then,
the two random opposite parts of them are combined
together to generate a new vector.

& Crossover type 3, two-point crossover:
At first, two crossover points are randomly selected in a

vector. The digits between randomly selected points in the
vector are inherited from the mutant of the vector and the
other digits are placed in the order they appeared in the
original vector.
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& Crossover type 4, new crossover:
As one can see in the last three types of crossover

operators, there is no control on the rate of changes in the
original vector. For example, in two point crossover, the
two points may be selected after the first digit and before
the last digit, respectively, and hence, the new vector in-
herits most of its digits from the mutant vector. Because of
these uncontrollable types of operators, we propose a meth-
od to manage the changes will occur in the new vector by
ourselves. In crossover type 1, we have, CR∈[0, 1], which
is a constant crossover rate that controls the diversity of the
population. We use this term and multiple it with the n ,
number of customers or number of digits in vector. This
product gives us a number between 1 and n . the more the
CR, the more the product will be. Therefore, we can control
the number of digits that must change in new vector. By the
example shown in Fig. 5, the procedure of this type of
crossover is explained clearly.

In this example, we have 15 customers, eight plants, and
the CR supposed to be two numbers 0.3 and 0.7, to consider
both high and low CR, and its effect on the changes in the
produced vectors by the crossover. The products of these
parameters will be 4.5 and 10.5. We round these numbers to
5 and 11. Thus, the numbers of digits that must be inserted
from the mutant vector to new vectors are 5 and 11, respec-
tively. For the former, the crossover point can be selected
between 1 and 10, and for the latter, the point can be selected
between 1 and 4. The 5 and 11 digits after the points must be
inherited from mutant vector, respectively, to create two new
vectors for two constant crossover rates.

5.5 Selection operator

To generate the new individual for the next generation, selec-
tion operation is performed between each individual and its
corresponding trial vector by the following greedy selection
criterion:

X i;Gþ1 ¼ Ui;Gþ1 if f Ui;Gþ1 < f X i;G

� �� �
;

X i;G otherwise ;

�

where f is the objective function, and Xi,G+ 1 is the individual
of the new population.

6 Experimental design

6.1 Taguchi parameter design

Because of the dependency of the metaheuristic algorithms on
the correct selection of parameters and operators, we are to
study the behavior of the different parameters and operators of
the proposed algorithms. In order to calibrate the parameters
and operators of algorithms, there are several ways to statisti-
cally design experimental investigation. One of the present
methods that often used in the most researches is the full
factorial design method. But, because it examines all possible
combinations of factors, it does not cost-effective waywhen the
number of factors increases meaningfully. The more the num-
ber of required experiments for tuning, the more the time and
cost will be spent. As it would be explained clearly later, for the
GA, there are 28 test problems, four 3-level factors, and one 5-
level factor in our case that each of which should be run three
times. Therefore, the total number of running the problem in
GA is 28×34×51×3, which is equal to 34,020. In the DE, there
are 28 test problems, three 3-level factors, one 18-level factor,
and one 4-level factor in our case that each of which should be
run three times. Hence, the total number of running the problem
in DE is 28×33×181×41×3, which is equal to 163,296.

In the related works, to be economic, several experimental
designs have been proposed to decrease the number of experi-
ments. Among several experimental design techniques, the
Taguchi experimental design method has been successfully
employed for a systematic approach for optimization [45, 56,
57]. In Taguchi method, the orthogonal arrays are used to
analyze a large number of decision variables with a small
number of experiments. Taguchi separates the factors into two
main groups: controllable and noise factors. Controllable factors
will be placed in inner orthogonal array and noise factors in the
outer orthogonal array. Due to unpractical and often impossible
omission of the noise factors, the Taguchi tends to bothminimize
the impact of noise and also find the best level of the influential
controllable factors on the basis of robustness. Moreover,
Taguchi determines the relative importance of each factor with
respect to its main impacts on the performance of the algorithm.

Taguchi has created a transformation of the repetition data
to another value, which is the measure of variation. The
transformation is the signal-to-noise (S/N) ratio, which ex-
plains why this type of parameter design is called robust
design [45]. Here, the term “signal” denotes the desirable
value (mean response variable), and “noise” denotes the

Original vector 2.4 5.1 1.1 1.8 8.7 4.3 -2.5 2 7.3 2.4 4.5 4.9 3.1 2.2 0.8

Mutant vector 0.2 1.7 0.1 20.4 -9.5 -0.5 1.6 16.3 3.6 6.79 2.9 3.1 7.8 9.9 4.9

New vector if CR=0.3 2.4 5.1 1.1 1.8 8.7 4.3 -2.5 2 3.6 6.79 2.9 3.1 7.8 2.2 0.8

New vector if CR=0.7 2.4 5.1 1.1 20.4 -9.5 -0.5 1.6 16.3 3.6 6.79 2.9 3.1 7.8 9.9 0.8

Fig. 5 Examples of operating
new crossover
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undesirable value (standard deviation). Thus, the S/N ratio
indicates the amount of variation present in the response
variable. The aim is to maximize the signal-to-noise ratio. In
the Taguchi method, the S/N ratio of the minimization objec-
tives is as such [39]:

S=Nratio ¼ −10log10 objective functionð Þ2

In this paper, we applied the Taguchi method in parameter
setting to achieve better robustness of the proposed algo-
rithms. The control factors of presented GA are population
size, crossover percentage, mutation probability, type of cross-
over, and type of mutation, and for the proposed DE, the
factors are population size, crossover CR, scale factor (F ),
type of mutation, and type of crossover. Levels of these factors
are illustrated in Table 2.

For the GA, to select the appropriate orthogonal array, it is
necessary to calculate the total degree of freedom. The proper
array should contain a degree of freedom for the total mean,
two degrees of freedom for each factor with three levels
(2×4=8), and four degrees of freedom for the only factor
with five levels. Thus, the sum of the required degrees of
freedom is 1+2×4+4=11. Therefore, the appropriate array
must have at least 11 rows.

The selected orthogonal array should be able to accommo-
date the factor level combinations in the experiment. From

Table 3 The modified
orthogonal array L18 for
GA

Trial A B C D E

1 1 1 1 1 1

2 1 1 2 2 2

3 1 2 1 3 3

4 1 2 3 1 4

5 1 3 2 3 5

6 1 3 3 2 5

7 2 1 1 3 5

8 2 1 3 1 5

9 2 2 2 2 1

10 2 2 3 3 2

11 2 3 1 2 4

12 2 3 2 1 3

13 3 1 2 3 4

14 3 1 3 2 3

15 3 2 1 2 5

16 3 2 2 1 5

17 3 3 1 1 2

18 3 3 3 3 1

Table 2 Factors and their levels
Factors GA

symbols
DE
symbols

GA levels DE levels

Population size A A A(1)—40 A(1)—85

A(2)—45 A(2)—90

A(3)—50 A(3)—95

Crossover percentage B – B(1)—55 % –

B(2)—65 % –

B(3)—75 % –

Scale factor (F) – B – B(1)—0.7

– B(2)—0.8

– B(3)—0.9

Mutation probability C – C(1)—0.25 –

C(2)—0.3 –

C(3)—0.35 –

Crossover constant
rate (CR)

– C – C(1)—0.4

– C(2)—0.45

– C(3)—0.5

Type of crossover D D D(1)—one-point crossover D(1)—crossover type 1

D(2)—two-point crossover D(2)—crossover type 2

D(3)—uniform crossover D(3)—crossover type 3

D(4)—crossover type 4

Type of mutation E E E(1)—swap E(1) to E(18): mutation
types 1–18E(2)—big swap

E(3)—Inversion

E(4)—Displacement

E(5)—perturbation mutation
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standard table of orthogonal arrays, the L18 is selected as the
fittest orthogonal array design, which fulfills our all minimum
requirements. However, this orthogonal array still entails
some modifications to adapt itself to our experimental design.
The modified orthogonal array L18 is presented in Table 3,
where control factors are assigned to the columns of the
orthogonal array and the corresponding integers in these col-
umns indicate the actual levels of these factors. The experi-
ments on the parameters of the GA are based on the L18

orthogonal array; therefore, 18 different combinations of con-
trol factors (trials) are considered.

In the DE, two degrees of freedom for each factor with
three levels (2×3=6), 17 degrees of freedom for the only
factor with 18 levels and three degrees of freedom for the only

factor with four levels. Thus, the sum of the required degrees
of freedom is 1+2×3+17+3=27. Therefore, the appropriate
arraymust have at least 27 rows. Considering this, L80 (4

10, 201)
is an appropriate array that satisfies these conditions. As there
are three factors with three levels and a factor with 18 levels,
and this scheme offers factors with four and 20 levels, we
should adjust this array to the problem by means of adjustment
techniques. Using the dummy level technique, we convert three
4-level column into three 3-level column and a 20-level column
into an 18-level column. To assign the three-level factor to the
four-level column from the orthogonal array L80 (410, 201), one
of these levels are required to be replicated twice. Fourth level is
chosen to be replicated twice. Similarly to assign the 18-level
factor to the 20-level column, two levels are required to be

Table 5 Test problems characteristics

Problem size Total
Demand

Problem
type

Range of variable costs Range of fixed costs

al al–bl α β al al–bl α β

10×10 10,000 A U(3, 7) U(0, 1) U(0.25, 1) U(0.25, 1) U(1,000, 4,000) U(0, 500) U(100, 500) U(100, 500)

10×20 15,000 B U(3, 7) U(0, 1) U(0.25, 1) U(0.25, 1) U(2,000, 8,000) U(0, 1,000) U(200, 1,000) U(200, 1,000)

15×15 15,000 C U(3, 7) U(0, 1) U(0.25, 1) U(0.25, 1) U(4,000, 16,000) U(0, 2,000) U(400, 2,000) U(400, 2,000)

10×30 15,000 D U(3, 7) U(0, 1) U(0.25, 1) U(0.25, 1) U(8,000, 32,000) U(0, 4,000) U(800, 4,000) U(800, 4,000)

50×50 50,000

30×100 30,000

50×200 50,000

Table 4 The modified orthogonal array L80 for DE

Trial A B C D E Trial A B C D E Trial A B C D E Trial A B C D E

1 1 1 1 1 1 21 2 1 2 1 6 41 3 1 1 3 14 61 3 1 1 1 18

2 1 1 1 4 2 22 2 1 2 1 7 42 3 1 2 2 15 62 3 1 1 3 17

3 1 1 2 3 3 23 2 1 3 1 10 43 3 1 3 2 11 63 3 1 2 4 18

4 1 1 3 4 4 24 2 1 3 2 8 44 3 1 3 3 12 64 3 1 3 2 17

5 1 1 3 3 5 25 2 1 3 4 9 45 3 1 3 4 13 65 3 1 3 2 16

6 1 2 1 2 6 26 2 2 1 4 3 46 3 2 1 3 18 66 3 2 1 1 15

7 1 2 1 2 7 27 2 2 2 2 1 47 3 2 2 2 18 67 3 2 2 4 14

8 1 2 3 1 8 28 2 2 2 3 2 48 3 2 2 4 17 68 3 2 3 3 13

9 1 2 3 3 9 29 2 2 3 4 5 49 3 2 3 1 16 69 3 2 3 4 12

10 1 2 3 2 10 30 2 2 3 3 4 50 3 2 3 1 17 70 3 2 3 1 11

11 1 3 1 4 11 31 2 3 1 4 17 51 3 3 1 2 4 71 3 3 1 3 10

12 1 3 2 1 12 32 2 3 1 4 16 52 3 3 2 1 5 72 3 3 2 2 9

13 1 3 2 2 13 33 2 3 3 1 17 53 3 3 3 2 2 73 3 3 2 4 8

14 1 3 3 1 14 34 2 3 3 3 18 54 3 3 3 3 1 74 3 3 3 3 7

15 1 3 3 4 15 35 2 3 3 2 18 55 3 3 3 1 3 75 3 3 3 3 6

16 1 3 2 3 16 36 2 3 1 1 13 56 3 3 1 1 9 76 3 3 1 2 5

17 1 3 2 3 17 37 2 3 1 2 12 57 3 3 1 3 8 77 3 3 2 1 4

18 1 3 3 1 18 38 2 3 2 3 11 58 3 3 2 4 10 78 3 3 3 2 3

19 1 3 3 2 17 39 2 3 3 3 15 59 3 3 3 4 7 79 3 3 3 1 2

20 1 3 3 4 18 40 2 3 3 2 14 60 3 3 3 4 6 80 3 3 3 4 1
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replicated twice. Nineteenth and 20th levels are chosen to be
replicated twice. Additionally, since there are three 3-level
factors and one 4-level factor in our work, according to Taguchi
experimental design procedure, we can keep six columns emp-
ty. It is essential to notice that, after applying these techniques,
the obtained array remains orthogonal. Furthermore, the accu-
racy of these levels that are replicated twice is twice the accu-
racy of the other level. The modified orthogonal array L80 is
presented in Table 4.

6.2 Data generation

In order to present the efficiency of the proposed algorithms
for solving the problem, a plan is utilized to generate test data.
Following Hajiaghaei-Keshteli [25], the data required for a
problem consists of the number of DCs and customers, total
demand, and range of variable costs and fixed costs. For
running the algorithms, 28 problem sets were generated at
random in which seven size of problem are implemented for
experimental study. The problem size is determined by the
number of DCs and customers. The lower and upper bounds
of variable costs are 2 and 9, such that al, au–al, α and β are
made from a uniform distribution ofU(3, 7),U(0, 1),U(0.25, 1),
andU(0.25, 1).Within each problem size, four problem types A,
B, C, and D are considered. For each problem size, problem
types are different in range of fuzzy fixed cost numbers, which

increases according to the alphabetic order of the problem types.
Variable costs are uniformly generated in the small interval,
while the lower and upper bounds of fixed costs are generated
in larger interval. The problem sizes, types, DCs/customers, and
fixed costs ranges are shown in Table 5.

6.3 Parameter tuning

Twenty-eight test problems, with different sizes and specifi-
cations, are generated and solved to evaluate the performance
of the presented algorithms. The experiments on the GA and
DE were based on the L18 and L80 orthogonal arrays; there-
fore, 18 different combinations of control factors were con-
sidered. To yield more reliable information and due to having
stochastic nature of the algorithms, we tackle each test prob-
lem three times. The algorithms are coded and run via C++
language. After obtaining the results of the test problems in
different trial, results of each trial are transformed into S/N
ratio. The S/N ratios of trials are averaged in each level, and its
value is plotted against each control factor in Fig. 6. In GA,
better robustness of the GA is happened when parameters of
factors A, B, C, D, and E are obviously 2, 2, 2, 3, and 5,
respectively, as depicted in Fig. 6. Besides, for DE, as illus-
trated in Fig. 7, all the best parameters are defined as 2, 2, 2, 4,
and 10, respectively, according to their alphabetical order.

-12.8

-12.76

-12.72

-12.68

-12.64

-12.6

A B C D E

S/N

Fig. 7 Mean S/N ratio plot for each level of the factors in DE

-15

-14.9

-14.8

-14.7

-14.6

-14.5

A B C D E

S/N

Fig. 6 Mean S/N ratio plot for each level of the factors in GA
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6.4 Experimental results

We set searching time to be identical for both algorithms
which is equal to 0.25×n ×m milliseconds. Hence, this crite-
rion is affected by both n andm . The more the number of DCs
or number of customers, the more the rise of searching time
increases. Twenty instances for each of the seven problem
sizes, i.e., totally 140 instances are generated which are dif-
ferent from the ones used for calibration to avoid bias in the
results. Each instance is run three times. Because the scale of
objective functions in each instance is different, they could not
be used directly. To solve this problem, the relative percentage
deviation (RPD) is used for each instance. The RPD is obtain-
ed by the following formula:

RPD ¼ Algsol−Minsol
Minsol

� 100

where Algsol and Minsol are the obtained objective value
and minimum objective value found from both proposed

algorithms for each instance, respectively. Considering 20
instances for each of the seven problem sizes, for both
algorithms, the instances have been run three times, and
hence, using the RPD, we deal with 60 data for each
algorithm. The averages of these data for each algorithm
and each instance are shown in Fig. 9.

In order to verify the statistical validity of the results, we
have performed an analysis of variance (ANOVA) to accu-
rately analyze the results.

The point that can be concluded from the results is that
there is a clear statistically meaningful difference between
performances of the algorithms. The means plot and LSD
intervals (at the 95 % confidence level) for two algorithms
are shown in Fig. 8. Since, we are to appraise the robust-
ness of the algorithms in different circumstances, the
effects of the problem sizes on the performance of both
algorithms are analyzed. The reciprocal between the capa-
bility of the algorithms and the size of problems is illus-
trated in Fig. 9. As it is shown, DE exhibits robust
performance; meanwhile, the problem size increases. It

0
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1

1.5
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2.5

3

10×10 10×20 15×15 10×30 50×50 30×100 50×200

GA

DE

Fig. 9 Means plot for the
interaction between each
algorithm and problem size

R
PD

DEGA

2.5

2.0

1.5

1.0
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Fig. 8 Means plot and LSD
intervals for the algorithms
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also shows remarkable performance improvements of DE
in large size problems versus GA.

7 Conclusion and future works

The proposed model minimizes the total cost with selecting
some potential places as distribution centers in order to supply
demands of all customers in two stages of supply chain
network and fuzzy environment. In order to solve the given
problem, two algorithms (GA and DE) are presented. Various
operators were employed in the algorithms, in which some of
them are newly presented in this paper. In order to tune the
parameters of the proposed algorithms, the Taguchi parameter
design method was used. Applying this method decreases the
original massive experiment to only 18 levels (due to Taguchi
standard L18 orthogonal array) for the GA and 80 levels for
the DE. Computational results showed the superiority of the
newly proposed operators in comparison with the existing
ones. They also demonstrate the efficiency of DE to solve
the problem and superior performance over GA in all problem
sizes. There still exist rich opportunities for researchers to
further study in this area.

The future work is to extend our approach to the case
of generalized trapezoidal fuzzy costs for solving real-life
distribution problems. Another work is to represents all the
parameters (cost, availability, and demand) by fuzzy num-
bers. In addition, single-echelon single commodity, and
multiechelon multicommodities are the areas where the
algorithms can be employed. Another direction is to work
on other metaheuristics, such as ant colony optimization,
scatter search and artificial immune algorithms.
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