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Abstract S-03 is a novel special stainless steel, which is
widely used in precision aerospace parts and electrical dis-
charge machining technology has the merit of high-accuracy
machining. This paper aims to combine gray relational anal-
ysis and orthogonal experimental to optimize electrical dis-
charge high-accuracy machining parameters. The four process
parameters of gap voltage, peak discharge current, pulse
width, and pulse interval are required to optimize in the fewest
experiment times. The material removal rate and surface
roughness are the objective parameters. The experiment were
carried out based on Taguchi L9 orthogonal array, then we
carried out the gray relational analysis to optimize the multi-
objective machining parameter, finally, we verified the results
through a confirmation experiment. The sequence of machin-
ing parameters from primary to secondary are as follows:
discharge current 7A, pulse interval 100 μs, pulse width
50 μs, and gap voltage 70 V. Using the above machining
parameters, we can obtain good surface roughness
Ra1.7 μm, and material removal rate 13.3 mm3/min. The
machined work piece almost has no surface modification
layer. The results show that combining orthogonal experiment
and gray relational analysis can further optimize machining
parameters, the material removal rate increased by 23.8 %,
and the surface roughness almost has no change.

Keywords Electrical dischargemachining (EDM) .Material
removal rate (MRR) . Surface roughness (SR) . Taguchi
method . Gray relational analysis . Special stainless steel

1 Introduction

Electrical dischargemachining (EDM) is an important process
because it is often referred to as a ‘non-contact’ machining
process via the thermomechanical effect regardless of the
hardness of the work piece material [1–3]. EDM technology
is a valuable and viable process method in molds, automobile,
aerospace, and surgical industry fields. The work piece
and the tool electrode submerged in electrical discharge
dielectric liquid that are separated by a tiny gap. The
local temperature within the discharge channel is sharp-
ly increased to more than 10,000 °C, which can make
the tool electrode and work piece melt and vaporize as
the point of discharge takes place. The melted material
is flushed away by the working fluid. Therefore, it can
make machining hard, high-strength, geometrically com-
plex, and temperature-resistant materials.

EDM is a reliable, affordable, and accurate method, and it
is used for processing intricate and complex parts. It mainly
uses graphite or copper electrodes to erode the desired shape.
The work piece does not get deformed through EDMmachin-
ing; the finished product will not have burrs [4, 5].

Much research has been conducted in an attempt to im-
prove material removal rate (MRR), reduce the surface rough-
ness (SR) value and electrode wear rate (EWR), and make
parameters optimization. Murray et al. have proposed using
EDM technology machining single-crystal silicon through
transmission electron microscopy [6]. Cryogenically cooled
electrode has been researched on the machining characteristics
in EDM [7–9]. Patel et al. have researched the role of weight
percentage and size of silicon carbide particulate on EDM of
aluminum-based composites [10]. Beri et al. have shown that
powder metallurgy-processed electrodes can improve the
EDM performance [11]. The EDM parameters on surface
integrity, MRR, EWR, andmulti-objective optimizationmeth-
od were studied by researchers [12–19]. The EDM debris was
studied bymany researchers [20–22]. Lee et al. have proposed
using high purity germanium as wire electrical discharge
machining electrode [23]. Gu et al. have proposed using
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bundled electrical discharge electrode machining Ti6Al4V
[24]. Kellens et al. studied the environmental assessment of
EDM [25]. Zhang et al. adopted water-in-oil emulsion as
EDM dielectric and researched the recast layer of the work
piece surface [26]. Srivastava and Pandey researched the
ultrasonic-assisted cryogenically cooled electrical discharge
machining [27]. Kumar and Batra did the surface modification
study by EDM method [28]. Electrochemical machining
(ECM) technology has the merit of economical and high
efficiency capabilities of manufacturing titanium and nickel-
based alloys [29].

Before we began this work, we have researched on com-
posite electrolyte ECM S-03 special steel; the results demon-
strated that the NaClO3 and NaNO3 electrolyte composition
yielded better results than single-component NaNO3 electro-
lyte [30]. Since the ECM technology is affect by electric field,
flow field, magnetic field, and temperature field, it’s difficult
to acquire the desired geometrical precision. But, using ECM
technology can improve machining efficiency in complex
parts, which are manufactured by S-03 material. So we decide
to adopt the EDM method to carry out the work piece’s final
fine machining.

However, there is no literature studied on EDM machining
of S-03 stainless steel. The aim of this paper is to carry out
EDM fundamental experiment research on S-03 special stain-
less steel. The experiments were designed using Taguchi L9
orthogonal array. Gap voltage, discharge current, pulse width,
and pulse interval were the process parameters in this study.
Moreover, the experimental data of SR and MRR were trans-
ferred to gray relational grade and were assessed to obtain the
optimal machining parameters. Most of the application of
Taguchi method is concentrated on the optimization of single
response problem. However, the gray relational analysis based
on gray system theory can be used for solving the complicated
interrelationships among the multi responses. A gray relation-
al grade is obtained to evaluate the multiple responses. As a
result, optimization of themultiple responses can be converted
into optimization of a single relational grade [31–40]. In short,
there is an ample scope of applying the proposedmethodology
of gray relational analysis and Taguchi method with the or-
thogonal test and multi-objective parameters optimization.
The goal is finding out suitable machining parameters for
EDM high-accuracy machining S-03 special stainless steel.

2 Experimental work

As a novel material, S-03 is a special stainless steel, which is
designed for new-type airplane engine turbine disk. It will be
widely used in high-pressure liquid oxygen pump, high-
pressure gas generator, and other important aerospace parts.
Its composition is shown in Table 1. It takes into consideration
the requirements of high and low temperatures. At low temper-
atures, its toughness is improved mainly by strengthening of
martensite and the solid solution, and retaining a certain amount
of austenite and sufficient Ni element. At high temperatures, it
uses the intermetallic compounds to improve its strength.
Owing to the special composition and structure, it not only
improves the temperature usage range to between −253 and
500 °C, but also improves its toughness.

Table 1 Chemical com-
position of S-03 special
steel (wt.%)

Element Percentages

Carbon ≤0.03
Silicon ≤0.15
Manganese ≤0.15
Sulfur ≤0.01
Phosphorus ≤0.01
Aluminum ≤0.20
Chromium 11.5 to 12.5

Nickel 9.0 to 10.3

Molybdenum 0.5 to 0.8

Titanium 0.15 to 0.25

Ferrum Balance

Fig. 1 The EDM machine and
experiment setup
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The material of work piece was S-03 with a dimension of
100×50×8 mm. The specimens were milled and ground to
ensure parallelism before carrying out the experiments. In this
study, the CNC ActSpark EDM machine is used and the
experimental setup is shown in Fig. 1. A red copper rod with
the diameter of 12mm and the height of 100mmwas used as a
tool electrode in this study. In addition, kerosene oil was
employed as a dielectric fluid in this investigation.

However, there are several machining parameters that
should be considered in the EDM process. Before the high-
accuracy process S-03 material, we did the S-03 material
rough finish experiment. The fastest speed machining param-
eters are as follows: gap voltage 55 V, peak discharge current
50 A, pulse width 420 μs, pulse interval 180 μs, open-circuit
voltage 100 V, and electrode lifting height 2 mm. The work
piece is connected to the negative terminal of the power. The
depth of every experiment is 5 mm and each experiment was
done three times, then, we calculated the average value to ensure
the authenticity of our experiment results. From the scanning
electron microscope, the micro-cracks are obvious, which is
shown in Fig. 2. The surface roughness is only Ra 10.5 μm.

In order to satisfy the demand of complex parts and im-
prove the lifetime of aerospace components, we must reduce
the process micro-cracks and improve surface roughness. So,
we did the Taguchi experimental design and did the multi-
objective parameters optimization. Through the experiment,
we found that the process parameters such as gap voltage,

peak discharge current, pulse width, and pulse interval have an
obvious effect on S-03 steel. Table 2 presents the four process
parameters and the levels of the machining parameters de-
signed in the experiments.

The Taguchi experimental design of L9 (34) orthogonal
array with four columns and nine rows and the results of
experiments were shown in Table 3.

The MRR and the SR of the machined surface are the
performance characteristics to evaluate the high-accuracy ma-
chining quality in this study. To measure the volume of the
worn electrode and work piece removal, a precision balance
(NL5003, China) was used. The surface roughness of the
machined work piece was measured by a surface roughness
tester (Form Taylor Hobson-μltra, UK). The machined holes
are shown in Fig. 3.

3 Results and discussion

The gray analysis was first proposed by Dr. Deng in1982.
Gray analysis has been broadly applied in evaluating or judg-
ing the performance of a complex project. It can be used for
solving the complicated interrelationships among the multi
responses. However, Taguchi method concentrated on the
optimization of single-objective problems. A gray relational
grade is obtained to evaluate the multiple responses. As a
result, optimization of themultiple responses can be converted
into optimization of a single relational grade [41]. The relation

Table 2 Experimental levels of machining parameters

Symbol Control parameters Level 1 Level 2 Level 3

A Gap voltage (V) 60 70 80

B Discharge current (A) 4 7 10

C Pulse width (μs) 25 50 75

D Pulse interval (μs) 20 60 100

Table 3 L9(3
4) orthogonal array, control parameters, and observed

values

No. Control factors Observed values

A B C D Ra (μm) MRR (mm3/min)

1 1 1 1 1 2.4 8.5

2 1 2 2 2 2.2 10.7

3 1 3 3 3 3.5 13.8

4 2 1 2 3 1.6 10.5

5 2 2 3 1 2.0 11.9

6 2 3 1 2 3.7 12.6

7 3 1 3 2 1.8 10.3

8 3 2 1 3 1.9 11.6

9 3 3 2 1 4.2 13.4

Fig. 3 The machined work piece with EDM

Fig. 2 The SEM of the EDM rough finish work piece
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between the optimal objective and the machining parameters
can be determined through the gray relational analysis. Based
on this theory, the gray relational grade can be acquired to
evaluate multiple performance characteristics, adopting dis-
crete value to evaluate and find the relationship of these data.
The sequences can be categorized into two types in this paper
as follows:

For the-lower-the-better quality characteristics, the data
preprocessing is calculated by

x�i kð Þ ¼ max x 0ð Þ
i kð Þ−x 0ð Þ

i kð Þ
max x 0ð Þ

i kð Þ−min x 0ð Þ
i kð Þ

ð1Þ

For the-higher-the-better quality characteristics, data pre-
processing is calculated by

x�i kð Þ ¼ x 0ð Þ
i kð Þ−min x 0ð Þ

i kð Þ
max x 0ð Þ

i kð Þ−min x 0ð Þ
i kð Þ

ð2Þ

Where x i
*(k ) is obtained from gray relational analysis; max

x i
(0)(k ) is the maximum value of sequence x i

(0)(k ); minx i
(0)(k )

is the minimum value of the sequence x i
(0)(k ); x (0) is the

expectation value. Table 4 shows the data preprocessing
results.

The gray relational coefficient can be calculated as:

γ x0 kð Þ; x�i kð Þ� � ¼
min

i
min

j
x0 kð Þ−x�j kð Þ
���

���þ ζmax
i

max
j

x0 kð Þ−x�j kð Þ
���

���

x0 kð Þ−x�i kð Þ�� ��þ ζmax
i

max
j

x0 kð Þ−x�j kð Þ
���

���

ð3Þ

Where x0(k ) is the ideal sequence;
Δ0i(k )=|x0(k )−x i*(k )| is the difference of the absolute

value between x0(k ) and x i
*(k );

Δmax=∀jmax∈i ∀kmax|x0(k )−x j*(k )| is the largest value
of Δ0i;

Δmin=∀jmin∈i ∀kmin|x0(k )−x j*(k )| is the smallest value
of Δ0i;

ζ is a distinguishing coefficient that is defined in the range
between 0 and 1.

Δv ¼ 1

nm

X

i¼1

m X

j¼1

n 1

n
x0 kð Þ−x j� kð Þ�� �� ¼ 0:4261 ð4Þ

εΔ ¼ Δv

Δmax
¼ 0:4261 ð5Þ

Δmax≤3Δv ð6Þ

1:5εΔ < ζ≤2εΔ ð7Þ

Table 5 Grey relational coefficients and grades

Number Gray relational coefficient Grey relational grades

SR MRR Average value Rank

1 0.72 0.44 0.58 9

2 0.78 0.58 0.68 7

3 0.52 1 0.76 4

4 1 0.58 0.79 1

5 0.84 0.69 0.78 2

6 0.50 0.78 0.64 8

7 0.91 0.54 0.73 5

8 0.87 0.66 0.77 3

9 0.47 0.91 0.69 6

0.70

0.72

0.74

0.76

0.68

0.66

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3

A B C D

Fig. 4 Process parameters effects on grey relational grade

Table 6 Results of the confirmation experiment

Observer values Orthogonal array Optimal combination levels of
machining parameters

Prediction Experiment

Level A2B1C2D3 A2B2C2D3 A2B2C2D3

SR (μm) 1.6 – 1.7

MRR (mm3/min) 10.5 – 13.3

Grey relational grade 0.79 0.81 0.82

Table 4 Grey relational
generating of MRR and
SR

Number SR MRR
Ideal sequence

1 1

1 0.69 0

2 0.77 0.42

3 0.27 1

4 1 0.38

5 0.85 0.64

6 0.19 0.77

7 0.92 0.34

8 0.88 0.58

9 0 0.92
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In this paper, we selected ζ as 0.8. The gray relation
coefficients of each performance characteristic are calculated
using Formula (3), the results and gray relational grade are
shown in Table 5. Experiment 4 shows the highest gray
relational grade, indicating the optimal process parameter set
of A2B1C2D3 has the best multiple performance characteris-
tics among the nine experiments.

Since the experimental design is orthogonal, it is possible
to separate the effects of each process parameter at different
levels. For example, the mean of gray relational grade for the
application voltage at level 1, 2 and 3 can be calculated by
taking the average of the gray relational grade for the
experiments1-3, 4–6 and 7–9, respectively. The mean of the
gray relational grade for each level of other machining param-
eters can be computed in the similar method. Figure 4 shows
the influence of process parameters on machining character-
istics. It shows that the predicted optimal process parameter

set is A2B2C2D3 based on the gray relational analysis. The
mean value of the gray relational grade is 0.70. The process
parameters sequenced in order of relative importance are as
follows: peak discharge current, pulse interval, gap voltage,
and pulse width.

Since the optimal EDM process parameter set is obtained,
the confirmation tests are processed to verify the performance
characteristics improvement. The results of the confirmation
experiment are compared with the outcome of the orthogonal
array and gray theory prediction of the design operating
parameters. The estimated gray relational grade is calculated
according to reference [32]. Table 6 shows the comparison of
the experimental results between orthogonal array
(A2B1C2D3) and gray theory prediction (A2B2C2D3) EDM
parameters. The reason why the MRR from 10.5 to
13.3 mm3/min improved by 23.8 % is that from A2B1C2D3

to A2B2C2D3, the peak current increased from 4A to 7A, the

Fig. 5 The micrographs of work
piece. a A2B1C2D3; b A2B2C2D3

Fig. 6 Energy-dispersive x-ray
spectroscopy of S-03 A2B2C2D3
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discharge energy is more and more larger. That is to say, the
single discharge energy is changing too big, so the material
removal rate becomes larger. Since the single discharge ener-
gy becomes larger, the single crater becomes bigger. So, the
surface roughness value is becoming larger. Fortunately, using
both A2B1C2D3 and A2B2C2D3 machining parameters, the SR
value almost has no change. One reason can explain this
phenomenon. The material was flushed away by melt or
evaporation. If the discharge energy is small, a little material
can be melted. But, if the discharge energy is large, most
of the energy lost in material evaporation, there is only
little energy used in the material melt. Another reason
may also explain this phenomenon. With the develop-
ment of discharge energy, more and more tool electrode
material melted or evaporated, but it flushed into the work
piece surface. So, the work piece surface roughness almost has
no change.

The SEM micrograph in Fig. 5a shows the EDM surface
topography with the orthogonal array parameters (A2B1C2D3)
and the optimal gray theory prediction design (A2B2C2D3) is
shown in Fig. 5b. Compared with Fig. 2, we can see that there
are almost no micro-cracks in Fig. 4. Surface defects such as
globules debris and melted drops are shown in Fig. 4. There
are manymicro-voids existed on the surface of the work piece.

In addition, energy-dispersive x-ray spectroscopy of S-03
of A2B2C2D3 is shown in Fig. 6. It indicates that Cu and O
elements occurred when S-03 is machined using copper elec-
trode with kerosene dielectric fluid. This can be attributed to
the decomposition of the kerosene in the discharge gap due to
the discharge energy. As we know, during the EDM process,
both the tool electrode and work piece are melted and vapor-
ized at the discharge point. Most of the melted material is
flushed away by the working fluid, but there are some debris
that went into another electrode surface. So, we can see Cu
element on the work piece surface.

The sole crater machined by EDM is measured by confocal
laser scanning microscope (Olympus OLS3000); we can see
that the surface roughness A2B1C2D3 is almost the same as the
A2B2C2D3, which is shown in Fig. 7. From Fig. 8a, we can see
the cross-sectional side wall micrograph of samples machined
with the orthogonal array parameters (A2B1C2D3) has much
molten metal stuck in the side wall, but in Fig. 8b, there are
almost no molten metal in the side wall in A2B2C2D3. So, the
side surface roughness of A2B2C2D3 is better than A2B1C2D3.
We also found that using A2B1C2D3 parameters machined
hole is larger than using A2B2C2D3 parameters machined hole
with the same electrode. The results demonstrate that
A2B2C2D3 parameters machined hole has better machining

Fig. 7 Confocal laser scanning
crater surface morphology. a
A2B1C2D3, b A2B2C2D3

Fig. 8 The side wall morphology
of machined hole. a A2B1C2D3,
b A2B2C2D3
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precision. From the experiment results, we can see that EDM
S-03 material has the merit of high precision and it can do
machining complex shape aerospace parts. Usually, EDM has
low machining efficiency.

4 Conclusions

The novel special stainless steel S-03 material will be widely
used in airplane engine, high-pressure pump, gas generator,
and other automobile parts. The application of the Taguchi
method and gray relational analysis is to improve the multiple
performance characteristics of the MRR and SR in EDM.
EDM technology can obtain high precision in processing
S-03 material and has been reported in this paper. The effects
on MRR and SR of S-03 material by gap voltage, peak
discharge current, pulse width, and pulse interval were given.
The following conclusions are obtained from the experimental
results:

(1) Through the L9(3
4) Taguchi experiment and gray rela-

tional analysis, the optimal process parameters for EDM
high-accuracy process S-03 material are gap voltage
70 V, peak discharge current 7A, pulse width 50 μs,
and pulse interval 100 μs.

(2) The EDM high-accuracy process parameters sequenced
in order of relative importance are: peak discharge cur-
rent, pulse interval, gap voltage, and pulse width.

(3) The machining performance of the surface roughness
decreases from 1.6 to 1.7 μm, which satisfied the de-
mand of the product. Perfectly, the material removal rate
increases from 10.5 to 13.3 mm3/min, it is nearly im-
proved by 27 %. At the same time, the side surface
roughness of A2B2C2D3 is also better than A2B1C2D3.
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