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Abstract Creating a mathematical model of a vehicle crash is
a task which involves considerations and analysis of different
areas which need to be addressed because of the mathematical
complexity of a crash event representation. Therefore, to
simplify the analysis and enhance the modeling process, in
this work, a brief overview of different vehicle crash modeling
methodologies is proposed. The acceleration of a colliding
vehicle is measured in its center of gravity—this crash pulse
contains detailed information about vehicle behavior through-
out a collision. A virtual model of a collision scenario is
established in order to provide an additional data set further
used to evaluate a suggested approach. Three different ap-
proaches are discussed here: lumped parameter modeling of
viscoelastic systems, data-based approach taking advantage of
neural networks and autoregressivemodels and wavelet-based
method of signal reconstruction. The comparative analysis
between each method’s outcomes is performed and reliability
of the proposed methodologies and tools is evaluated.

Keywords Feedforward neural network . Lumped parameter
models .Multiresolution analysis . Vehicle crash modeling

1 Introduction

One of the major concerns of the automotive industry is
vehicle crashworthiness. Popular rating programs like Euro

NCAP or National Highway Traffic Safety Administration are
the principal representatives of the organizations which verify
whether a given car conform to the safety standards and regula-
tions. One of the biggest challenges related to the vehicle safety
assessment process is the proper execution of the experimental
crash tests. It is well known that those experiments are complex
and complicated ones. For that reason, a lot of efforts have been
made to assess the overall car performance during a collision
without a need to conduct a full-scale experiment.

Nowadays finite element method (FEM) is considered as
the most thorough computational tool which provides the
most detailed insight into the vehicle crash analysis. However,
this approach requires powerful computational hardware re-
sources in order to produce exact results. Apart from the
technical aspects of FEM approach (like hardware availability
or time-consuming simulation), the biggest challenge is to
correctly select material properties of a colliding vehicle and
its surroundings [1, 2]. Therefore, there are observable trends
to decompose complex mesh models into arrangements which
are less composite [3–7]. FEM model is capable of
representing geometry and material details of a structure.
The drawback of this method is the fact that it is costly
(software and required hardware) and time-consuming. Addi-
tionally, the cost and time of such simulation is increased by
the extensive representation of the major mechanisms in the
crash event. When using FEM models, it is desirable to
compare their results with the full-scale experimental mea-
surements in order to enhance the simulation outcome. De-
composition of a complicated mesh model of a car into less
complex arrangements also produces satisfactory results.

The secondary approach frequently utilized in vehicle
crash modeling is lumped parameter modeling of viscoelastic
systems [8–16]. Structural parameters of models like damping
or stiffness are estimated based on a given crash scenario. The
drawback of this method is that the obtained models cannot be
used to simulate different crash scenarios and are valid only
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for one given set of collision conditions. Therefore, in [17, 18],
there are proposed the efficient and reliable tools to assess
structural parameters of a vehicle involved in various crash
scenarios. In addition, the nonlinear models obtained in the
literature consider the dynamic nature of a vehicle crash event
and complexity of joints and interactions between particular car
body’s elements which results in the increased model’s fidelity.

On the other hand, a field of research which is related to the
methodology elaborated in this work is data-based modeling
[19]. There have been numerous examples of applications of
the autoregressive models like nonlinear autoregressive
(NAR), nonlinear autoregressive with exogenous input
(NARX), or nonlinear autoregressive moving average with
exogenous input (NARMAX) to predict the time series data. It
was shown that feedforward neural networks are special cases
of autoregressive models, abbreviated NAR [20]. By follow-
ing the same concept, it was found in [21], that the Bayesian
framework can be successfully extended to multilayer
perceptron, i.e., a feedforward network with the
backpropagation teaching algorithm. Thanks to that operation,
it was possible to compute the confidence limits for the
prediction. Similarly to those two works, in [22], the param-
eters of ARX and NARX models were estimated using the
feedforward neural networks. Different types of activation
functions have been used and their effects on the network’s
overall performance have been evaluated. Bayesian network
was successfully applied to recognize driver fatigue recogni-
tion as well [23]. Since aforementioned neural networks have
high capabilities for the signals prediction purposes, they are
commonly used, e.g., in machine diagnostics and failure de-
tection. In [24], a hybrid of NARX and autoregressive moving
average (ARMA) models was employed to forecast long-term
machine state based on vibration data. The results have proven
that such a model is a useful tool in the machine diagnostics
and predicts well the degeneration index of a machine. The
wide range of applications of this methodology is confirmed
in [25]. Edge-localized modes time series analysis based on
ARMA model has been successfully performed—it
decomposed the time series into deterministic and noise com-
ponents. NARX models have been successfully applied to
black box modeling of the gas turbine operating in isolated
and nonisolated mode too [26]. The variety of input signals
(from narrow to broadband) were taken into account in the
identification and validation stages of the modeling. Recurrent
NARX models were formulated in [27]. The effects of the
changing network’s architecture on the quality of predictions
were verified. Apart from the strictly engineering and techni-
cal applications of the regressive models, there is a huge
number of works taking advantage of this methodology but
devoted to the other areas of research. In [28, 29], one can find
regressive models utilized, e.g., to forecast the stock market
data—i.e., the weekly averaged exchange rates between the
British pound and the US dollar in the given time period. A

significant contribution was made in [30]. ARMA model was
used to estimate lumped parameters (stiffness, damping, and
mass) of analytical models (differential equations). Those phys-
ical parameters were changeable in time—thanks to that
nonlinear model’s behavior it was possible to simulate vehicle
frontal and side impacts with high level of accuracy. The other
efficient method—particle swarm optimization—was applied in
[31]. It has a strong potential for models parameters estimation.

Up-to-date technologies are currently being utilized in the
area of vehicle crash modeling—in [17, 32, 33], the results of
application of wavelets and regressive approach to model a
crash event are discussed. RBF neural networks have strong
potential in modeling nonlinear time series data [34, 35].
Artificial neural networks (ANNs) are capable of not only
reproducing car’s kinematics but can be successfully applied
to, e.g., predict the average speed on highways as it is shown
in [36]. Training of the network was based on the data gath-
ered by the radar gun and inputs consisted of geometric
parameters (e.g., length of curve) and traffic parameters as
well (e.g., annual daily traffic). On the other hand, ANNswere
employed to predict injury severity of an occupant by less
direct measurements too—using statistical data. Reference
[37] presents a method for crash severity assessment based
on the number of such inputs, like, e.g., driver age, alcohol
use, seat belt use, vehicle type, time of the crash, light condi-
tion, or weather condition. Fuzzy logic together with neural
networks and image processing has been employed in [38] to
estimate the total deformation energy released during a colli-
sion. A vision system has been developed to record a crash
event and determine relevant edges and corners of a car
undergoing the deformation. Also, human action recognition
was investigated in [39] by application of real-time video
streams. In the most up-to-date scope of research concerning
crashworthiness, it aims to define a dynamic vehicle crash
model which parameters will be changing according to the
changeable input (e.g., initial impact velocity). One of such
trials is presented in [40]—a nonlinear occupant model is
established, and scheduling variable is defined to formulate
LPV (linear parameter varying) model. In [41–43], there are
covered important aspects of signal processing and time series
data preparation for proper analysis and identification.

There is a limited number of publications related to appli-
cation of wavelet transform to vehicle crash modeling. One of
such examples is [32]—the crash pulse recorded during a
vehicle collision with a safety barrier was reproduced using
Haar wavelet analysis. A similar reasoning is proposed in
[44]. Decomposed crash signals are used to represent automo-
bile vibrations occurring in certain time spans, which in turn
are used to refine and validate a finite element vehicle crash
model. Application of wavelets for validation of an FE model
is covered in [45]. Since wavelet transform is a part of the
multiresolution analysis, it gives a full insight into the time
frequency character of a signal. For this reason, this approach
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is widely utilized in diagnostics of structures, constructions,
and devices [46–50]. Wavelet-based methods also find appli-
cations, e.g., in control algorithms for autonomous vehicles
[51], pattern recognition and texture classification [52], or
automatic incident detection on freeways which is an impor-
tant component of an Advanced Traffic Management and
Information Systems [53]. Also, decision support systems
are used to authenticate the liability of traffic crashes [54].

The rest of the paper has been divided into the following
parts. Section 2 describes the real crash test and presents the
basic information regarding the instrumentation and measure-
ments in this type of experiments. Layout of the experimental
setup, type of vehicle, and obstacle or data acquisition process
are some of the aspects which are thoroughly analyzed there.
Section 3 is devoted to viscoelastic modeling of vehicle colli-
sions. Principles needed to create spring–mass–damper models
(in total, four different configurations) are presented and per-
formance of each system discussed is assessed. Moreover,
Section 4 contains the specification of a virtual crash test which
was conducted to provide the authors with an additional dataset
used in further part of the paper to increase the model’s reli-
ability and analyze the results more deeply. Mathematical der-
ivation of the NAR model and artificial neural network is done
in Section 5. Furthermore, in Section 5, subsequent steps need-
ed to be followed to create a NAR model and feedforward
neural network are described. It also includes the elaboration of
network’s structure and examination of its performance. Final-
ly, the simulation results are presented. In Section 6, a detailed
analysis and overview of the continuous wavelet transform are
presented. Particular attention is paid to complex Morlet wave-
let, as this is the wavelet elementary function which is used
further in this work. A procedure for signal reconstruction
based on wavelet transform is also described. On top of that,
the discussedmethods are applied to themeasured vehicle crash
acceleration signal. The crash pulse is decomposed into the
components which have the greatest influence on its overall
shape. The scale gram of the recorded crash pulse is calculated
and its frequency–time relationship is observed. Subsequently,
the major frequency constituents of the analyzed signal are
identified. Finally, the acceleration signal is reconstructed from
the skeletons of the ridges of the wavelet coefficients matrix for
the major frequency components. Comparative analysis be-
tween the estimated vehicle kinematics and the reference one
is presented at the end. Moreover, in Section 7, the results
obtained in this work are compared with each other. It is also
concluded on the benefits and limitations of each of the
presented modeling methodologies. On top of that, suggestions
for future activities are made.

The major contributions of the current study lie in explor-
ing three vehicle crash modeling techniques and comparing
their outcomes. Advantages and drawbacks of each method
are briefly characterized. It is explained which approach,
among the ones used in this work, is the most beneficial for

modeling and simulation of a vehicle-localized impact. An-
other important contribution is that the simulation results are
comparedwith a full-scale vehicle crash measurements, which
greatly increases fidelity of the proposed models and validates
usefulness of the discussed modeling techniques. As already
mentioned in this section, the main motivation for this re-
search is to enhance vehicle dynamics simulation, crash re-
construction, and prediction by using modeling strategies
which allows making a quick assessment of vehicle structural
parameters in an early design and development phase.

2 Experimental setup description

Since for each of the presented vehicle crash modeling meth-
odologies, the same set of measurements from a full-scale
collision is used, it was decided to characterize this vehicle
crash test firstly. Experimental setup description is covered in
details in [55]. It is a typical midspeed vehicle-to-pole colli-
sion scheme showing the layout of the test setup is illustrated
in Fig. 1.

The vehicle has an initial velocity of 35 km/h while
impacting the obstacle. Its total mass including the measuring
equipment and dummy was determined to be 873 kg. During
the test, the acceleration at the center of gravity (COG) in three
dimensions (x -longitudinal, y -lateral, and z -vertical) was
recorded. The yaw rate was also measured with a gyro meter.

2.1 Vehicle center of gravity determination procedure

To properly mount an accelerometer, it was necessary to
correctly determine a vehicle’s COG. It was achieved by
weighting the vehicle in a horizontal position using four load
cells. Afterwards, the vehicle was tilted by lifting its frontal
part. The following notation is used:

m1 wheel load, front left (in kilograms)
m2 wheel load, front right (in kilograms)
m3 wheel load, rear left (in kilograms)
m4 wheel load, rear left (in kilograms)
mv total load (without data acquisition system nor dummy)

(in kilograms)
mf front mass in tilted position (in kilograms)
mb rear mass in tilted position (in kilograms)
Θ angle of tilt (in degrees)
l wheel base (in meters)
d distance across the median plane between the vertical

slings from the lift brackets at the wheel centers and the
load cells (in meters)

The above procedure is illustrated in Figs. 2 and 3, whereas
the numerical values obtained are summarized in Table 1. The
following formulas were used to determine location of vehi-
cle’s center of gravity:
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1. Longitudinal location—the horizontal distance between
COG and the front axle centerline:

COGx ¼ m3 þ m4

mv
⋅l ð1Þ

2. Lateral location—the horizontal distance between the
longitudinal median plane of the vehicle and COG:

COGy ¼ m1 þ m3− m2 þ m4ð Þ
mv

⋅
d

2
ð2Þ

3. Vertical location—COG location above a plane through
the wheel centers:

COGz ¼
m1 þ m2−mf

� �
⋅l

mv⋅tanΘ
ð3Þ

The location of COG is determined to be:

1. COGx=0.87 (in meters)
2. COGy=0.03 (in meters)
3. COGz=0.26 (in meters)

2.2 Vehicle and obstacle

The dimensions of the car are shown in Fig. 4 and listed in
Table 2. The obstruction and car themselves are shown in
Figs. 5 and 6, respectively. Using normal- and high-speed
video cameras (recording rate was 250 frames per second),
the behavior of the test vehicle during the collision was
recorded (see Fig. 7).

2.3 Data acquisition

The acceleration was recorded by using sa 3D accelerometer.
The accelerometer was a piezoresistive triaxial sensor with a
range of ±1,500 g. This device was mounted on a steel bracket
in the vehicle’s center of gravity and the bracket was fastened
by screws to the vehicle’s chassis. The yaw rate was measured

with a gyro instrument whichmakes it is possible to record 1°/s.
Data from the sensor was fed to an eight-channel data logger
and sampled with a frequency of 10 kHz. The velocity of the
vehicle was checked by an inductive monitor. It was directed
towards a perforated disc mounted on a wheel on the right side
of the test vehicle (see Fig. 8). Video recorders arrangement is
presented in Fig. 9.

2.4 Real crash pulse analysis

Having at our disposal the acceleration measurements from
the collision, we are able to describe in details the motion of
the car. Since it is a central impact, we analyze only the pulse
recorded in the longitudinal direction (x -axis). By integrating
car’s deceleration, we obtain plots of velocity and displace-
ment, respectively (see Fig. 10). At the time when the relative
approach velocity is zero (tm), the maximum dynamic crush
(dc) occurs. The relative velocity in the rebound phase then
increases negatively up to the final separation (or rebound)
velocity, at which time a vehicle rebounds from an obstacle.
The contact duration of the two masses includes both contact
times in deformation and restitution phases. When the relative
acceleration becomes zero and relative separation velocity
reaches its maximum recoverable value, we have the separa-
tion of the two masses. From the crash pulse analysis, we
obtain the data listed in Table 3.

Fig. 1 Scheme of the experiment

Fig. 2 Vehicle weighted in horizontal position
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3 Lumped parameter models

In this approach, we present the methodology to create visco-
elastic models of vehicle crash according to [14].We start with
simulation of the vehicle to pole impact by using the simple
mass–spring model, and then we extend the analysis to so-
called Kelvin model (spring and damper in parallel connected
to mass). Afterwards, the system in which spring and damper
are connected in series (so calledMaxwell model) is examined
and it is being assessed which of them gives the most exact
description of the car’s behavior in the pole collision.

3.1 Spring–mass model

The motion of this system is a nondecayed oscillatory one
(sinusoidal) because there is no damping in it [56]. This
arrangement is shown in Fig. 11; symbols—k , spring stiff-
ness; m mass; a , absolute displacement of mass m .

Let us introduce the following notation:

V initial barrier impact velocity (in meters per second)
f structural natural frequency (in Hertz)

The response of this system is characterized by the follow-
ing equations:

α
••

tð Þ ¼ −Vωesin ωetð Þ ð4Þ
α• tð Þ ¼ Vcos ωetð Þ ð5Þ

α tð Þ ¼ V

ωe
sin ωetð Þ ð6Þ

which represent deceleration, velocity, and displacement, re-
spectively. Furthermore, we define:

C ¼ V

ωe
ð7Þ

tm ¼ π
2ωe

ð8Þ

ωe ¼
ffiffiffiffi
k

m

r
ð9Þ

as maximum dynamic crush, time of maximum dynamic
crush, and system’s circular natural frequency, respectively.

To investigate what the parameters C and tm of such a
model are; first, we need to find the spring stiffness k . By
substituting (9) to (7) and rearranging, one gets:

k ¼ V 2

C2 m ð10Þ

From Fig. 10, C =0.52 m= 52 cm and V =9.86 m/s=
35 km/h is obtained. Therefore:

k ¼ 9:86m=sð Þ2
0:52ð Þ2 873kg ¼ 313; 878N=m

tm ¼ π
2ωe

¼ π

2

ffiffiffiffi
k

m

r ¼ π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
313; 878N=m

873kg

s
¼ 0:083s

Spring–mass model’s response for above spring stiffness k
(initial velocity and mass of the car remain the same) is shown
in Fig. 12. Let us compare what the dynamic crush and the
time at which it occurs are for the car and model (see Table 4).

Results obtained in this step are good. The dynamic crush
estimated by the spring–mass model is exactly the same as the
reference dynamic crush of a real car. Regarding the time
when it occurs, the difference between the model and reality
is less than 1 %. This model gives good approximation of the
car’s behavior during the crash. It is a particular case of a
Kelvin model in which damping has been set to zero as well as
of a Maxwell model in which damping goes to infinity.

3.2 Kelvin model

The Kelvin model shown in Fig. 13 has been proposed to
represent the vehicle to pole collision. Symbols used—k ,

Fig. 3 Vehicle weighted in titled position

Table 1 Data for deter-
mination of vehicle cen-
ter of gravity

Parameter Value

m1 (kg) 257

m2 (kg) 237

m3 (kg) 154

m4 (kg) 150

mv (kg) 798

mf (kg) 444

mb (kg) 354

d (m) 1.73

l (m) 2.28

Θ (degree) 28.4
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spring stiffness; c , damping coefficient; m , mass; and V0,
initial impact velocity.

Transient responses of the underdamped Kelvin model are
given by the following formulas (displacement, velocity, and
acceleration, respectively):

α tð Þ ¼ v0e−ζωetffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
ωe

sin
ffiffiffiffiffiffiffiffiffiffi
1−ζ2

q
ωet

� �
ð11Þ

α• tð Þ ¼ v0e
−ζωet cos

ffiffiffiffiffiffiffiffiffiffi
1−ζ2

q
ωet

� �
−

ζffiffiffiffiffiffiffiffiffiffi
1−ζ2

p sin
ffiffiffiffiffiffiffiffiffiffi
1−ζ2

q
ωet

� �" #
ð12Þ

α
••

tð Þ ¼ v0ωee
−ζωet −2ζcos

ffiffiffiffiffiffiffiffiffiffi
1−ζ2

q
ωet

� �
þ 2ζ2−1ffiffiffiffiffiffiffiffiffiffi

1−ζ2
p sin

ffiffiffiffiffiffiffiffiffiffi
1−ζ2

q
ωet

� �" #
ð13Þ

where: ζ ¼ c
2mωe

and ωe ¼
ffiffiffi
k
m

q
.

By following the method developed in [56], we calculate
Kelvin model’s coefficients. Known parameters are:

m =873 kg mass of the car
v0=9.86 m/s initial impact velocity

The parameters which we obtain from the crash pulse
analysis are illustrated in Fig. 10. We calculate the centroid
time:

tc ¼ C

v0
¼ 0:52m

9:86m=s
¼ 0:053s ð14Þ

and relative centroid time:

tc
tm

¼ 0:053s

0:076s
¼ 0:7 ¼

ffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
arctan

ffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
ζ

e
−ζffiffiffiffiffiffi
1−ζ2

p arctan
ffiffiffiffiffiffi
1−ζ2

p
ζ

h i
ð15Þ

By taking advantage of (15), we find the value of damping
coefficient ζ=0.05. Having ζ, from (16), we determine value
of ftm=0.24.

f tm ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffi
1−ζ2

p arctan

ffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
ζ

ð16Þ

Structure natural frequency is then equal to:

f ¼ 0:24Hz⋅s
0:076s

¼ 3:1616Hz ð17Þ

Spring stiffness k and damping coefficient c of the Kelvin
model are determined to be:

k ¼ 4π2 f 2m ¼ 344; 150N=m ð18Þ

c ¼ 4πfζm ¼ 1; 733Ns=m ð19Þ

Fig. 4 Car used in the crash test

Table 2 Major car’s
dimensions Dimension Value (m)

Width 1.58

Length 3.64

Height 1.39

Wheel base 2.28

Frontal overhang 0.66

Rear overhang 0.70

Wheel track: front axle 1.38

Wheel track: rear axle 1.34
Fig. 5 Obstruction
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Kelvin model response for those parameters is shown in
Fig. 14. Comparison between the model and reality for the
filtered data is done in Table 5.

We observe a larger discrepancy between the dynamic
crush from the acceleration’s integration and model’s predic-
tion than for the spring–mass model. This allows us to claim
that since the method of parameters estimation utilized in both
of those cases is based on a similar approach, the Kelvin
model is not suitable for modeling the impact examined by
us. For that reason, we investigate a model which consists of
spring and damper connected in series to a mass.

3.3 Maxwell model—introduction

The arrangement in which spring and damper are connected in
series to mass is called Maxwell model (Fig. 15). To derive its
equation of motion, it is proposed to place small mass m ′
between spring and damper. By doing this, the inertia effect
which occurs for the spring and damper is neglected and the
system becomes third order differential equation which can be
solved explicitly [56]. According to Fig. 15, we define d and
d ′ as absolute displacement of mass m and absolute

displacement of mass m ′, respectively. We establish the fol-
lowing equations of motion (EOM):

md
••
¼ −c d •− d0 •Þð ð20Þ

m0 d0
••

¼ c d •− d0 •Þ−kd0ð ð21Þ
By differentiating (20) and (21) w.r.t. time and setting

m ′=0 we obtain:

m d
•••

¼ −c d
••
− d0

••
� �

ð22Þ

0 ¼ c d
••
− d0

••
� �

−k d0 • ð23Þ

We sum up both sides of (22) and (23) and rearrange:

d0
•
¼ −m

k
d
•••

ð24Þ

We substitute (24) into (20) and finally obtain the
undermentioned EOM:

d
•••
þ k

c
d
••
þ k

m
d
•
¼ 0 ð25Þ

Fig. 6 Car’s deformation

Fig. 7 Subsequent steps of the crash test

Fig. 8 Velocity verification device

Int J Adv Manuf Technol (2014) 70:965–993 971



Therefore, characteristic equation of the Maxwell
model is:

s s2 þ k

c
sþ k

m

� �
¼ 0 ð26Þ

In this system, the rebound of the mass depends on the sign
of discriminant Δ of the quadratic equation in brackets. For
positive Δ, there is no rebound, i.e.,:

k

c

� �2

> 4
k

m

In this case, roots of the characteristic Eq. (26) are respectively:

s0 ¼ 0
s1 ¼ aþ b
s2 ¼ a−b

where:

a ¼ −k
2c

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

2c

� �2

−
k

m

 !vuut
On the other hand, for negative Δ, the rebound occurs

when:

k

c

� �2

< 4
k

m

In this case, roots of the characteristic Eq. (26) are,
respectively:

s0 ¼ 0
s1 ¼ aþ ib
s2 ¼ a− ib

Fig. 9 Visual data acquisition
system layout

Fig. 10 Vehicle kinematics

Table 3 Parameters characterizing the real crash pulse

Parameter Value

Initial impact velocity, V (km/h) 35

Rebound velocity, V′ (km/h) 3

Maximum dynamic crush, dc (cm) 52

Time when it occurs tm (ms) 76

Permanent deformation dp (cm) 50
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where:

a ¼ −k
2c

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m
−

k

2c

� �2
 !vuut

Since this case is of our greater interest than the previous
one (due to the fact that in the experiment rebound occurred),
we will describe in details its response. Displacement of a
mass is given by the formula:

α ¼ d0e
s0t þ eat d1sin btð Þ þ d2cos btð Þ½ � ð27Þ

Initial conditions (t= 0) are:

α ¼ 0
α• ¼ v

α
•• ¼ 0

Where v is the initial impact velocity. Constants are:

d2 ¼ 2av

a2 þ b2

d1 ¼ v−ad2
b

d0 ¼ − d2

However, in a Maxwell model, the mass may not rebound
from the obstacle. It means that its displacement increases
with time to an asymptotic value. The parameter, which de-
termines whether the rebound will occur or not, is damping
coefficient. When it is less than a limiting one (named transi-
tion damping coefficient c* ), the mass will be constantly
approaching an obstacle, whereas when it is higher, there will
exist a dynamic crush at a finite time. Another boundary
situation is for damping coefficient c =∞ . Then the Maxwell
model degenerates into spring–mass system. To determine the
value of transition damping coefficient we assume that c =0,
or equivalently

k

c�
¼ 2

ffiffiffiffi
k

m

r
and

c� ¼
ffiffiffiffiffiffi
km

p

2
ð28Þ

Indeed, for c<c*, we have Δ>0—it means no dynamic
crush at a finite time.

We are able to assess what the minimal damping should be,
which we add to the simple spring–mass model mentioned
above, which will produce the dynamic crush not extended in
an infinite period of time. According to (28), for the model and
crash test being analyzed in Section 3.1, we calculate the
transition damping coefficient:

c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
313; 878N=m⋅873 kg

p
2

¼ 8; 277N⋅s=m

For every damping greater than this value, the Maxwell
model formed from the spring–mass model from Section 3.1,
will give us the response more and more similar to the spring–
mass model characteristics presented in Fig. 12, as it is shown
in Fig. 16.

Fig. 11 Spring-mass model

Fig. 12 Spring-mass model response

Table 4 Comparison between car and spring–mass model responses

Parameter Crash pulse
analysis

Spring-mass
model

Dynamic crush, dc (cm) 52 52

Time of dynamic crush, tm
(ms)

76 83

Fig. 13 Kelvin model
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It is noted that the final displacement (or asymptotic val-
ue—for transition damping coefficient) achieved by the mass
in this model is characterized by the equation (V0, initial
impact velocity; m , mass; c , damping coefficient):

crush ¼ V 0m

c
ð29Þ

This system is appropriate for simulating soft impacts or
offset impacts because the time of dynamic crush is longer
than for Kelvin model. We assume the same parameters for
both models, e.g.,:

k ¼ 100 N=m; c ¼ 15 N−s=m;m ¼ 5 kg; v0 ¼ 10 m=s:

In Fig. 17, it is seen that for the Maxwell model, the dynamic
crush occurs later than for the Kelvin model.

This is an analog situation to the real crash: in a vehicle-to-
rigid barrier collision (Kelvin model), the whole impact energy
is being consumed faster; therefore, the crash is more dynamic
than the vehicle-to-pole collision (Maxwell model)—under the
assumption that we compare the same cars with the same initial
impact velocities—as in the example above. It is noting that we
do not investigate here the magnitude of the displacement of
both models—as we can see for the same parameters, it is
higher for the Maxwell model. The above example just illus-
trates the dynamic responses of those two systems and in order
to apply those two models to the real crash, one need to assess
what spring stiffness and damping coefficient of both of them
are separately.

3.4 Maxwell model creation

Only two examples ofMaxwell model are discussed for which
Δ <0, i.e., when the rebound occurs, because that is what
happens during the experiment. We are going to start with
the simplification of this situation, in which damping coeffi-
cient of this model has a limiting, transitional value. Then, we
proceed to the full Maxwell model’s analysis.

Maxwell model with transition damping coefficient is the
particular case of a Maxwell model in which mass displace-
ment reaches an asymptotic value given by (29). For

c� ¼
ffiffiffiffiffiffi
km

p

2

parameters of (27) degenerate into:

a ¼ − ω
b ¼ 0
d1 ¼ −

v

b
d2 ¼ −2

v

ω
d0 ¼ 2

v

ω

where

ω ¼
ffiffiffiffi
k

m

r

Fig. 14 Kelvin model response

Table 5 Comparison between car and Kelvin model responses

Parameter Crash pulse analysis Kelvin model

Dynamic crush, dc (cm) 52 43

Time of dynamic crush, tm (ms) 76 83

Fig. 15 Maxwell model (m ′) designates zero mass

Fig. 16 Maxwell model responses for different values of damping
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We take advantage of trigonometric relationships:

lim
b→0

sin btð Þ
b

¼ t

lim
b→0

cos btð Þ ¼ 1

Finally, we come up with the following equation of mass
displacement:

α ¼ v

ω
2− ωt þ 2ð Þe−ωt½ � ð30Þ

To establish the parameters of the Maxwell model (spring
stiffness k and damping coefficient c ), we just substitute to
(30) values of v, α , and tm taken from the acceleration
measurements analysis shown in Fig. 10—we obtain ω =
37.52 rad/s. Knowing circular natural frequency ω and mass
of the whole vehicle m =873 kg, we calculate spring stiffness
k and transition damping coefficient c* :

k ¼ ω2 m ¼ 37:242 ⋅873 ¼ 1 ; 228 ; 966 N=m

c� ¼
ffiffiffiffiffiffi
km

p

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 228; 966⋅873

p
2

¼ 16; 377 N⋅s=m

Response of the model with above computed parameters
and initial impact velocity v =9.86 m/s=35 km/h is shown in
Fig. 18.

As we can see, the value of maximum dynamic crush is the
same as the one obtained from the experiment’s data analysis
(C =0.52 m) and time when it occurs is much longer—
approximately tm=0.2 s (compared to experimental tm=
0.076 s;).

The response of the Maxwell model is described by (27).
Having the car’s displacement curve from the experiment, we
can establish parameters of the model (spring stiffness k and
damping coefficient c ) just by fitting the curve defined by (27)
to that real graph. However, parameters which we obtain by

fitting (27) are a , b , d0, d1, and d2. Since d1 and d2 (we do not
discuss d0 separately because d0=−d2) are functions of v as
well, it is not guaranteed that the model’s parameters which
we obtained would be correct—in another words, v would not
be fixed if we fit (27) to the experiment’s displacement.
Therefore, we express (27) only in terms of a and b (which
are just functions of k , c and mass m =873 kg) and set initial
impact velocity to v =9.86 m/s. The equation which we obtain
has the following form:

α ¼ −
2av

a2 þ b2

þ eat
v −

2a2v

a2 þ b2

b
sin btð Þ þ 2av

a2 þ b2
cos btð Þ

2664
3775 ð31Þ

Fitting (31) to the experiment’s results has been done in
Matlab Curve Fitting Toolbox and is shown in Fig. 19. Fitting
(31) not (27) resulted in loss of approximation’s accuracy but
on the other hand, we are sure that the initial impact velocity
has the correct value. From the above operation, we obtain
parameters a and b of (31) which are equal to:

a ¼ −k
2c

¼ −14:79
1

s

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m
−

k

2c

� �2
 !vuut ¼ 21:06

1

s2

The damping coefficient c and spring stiffness k of the
Maxwell model are determined to be, respectively:

c ¼ m a2 þ b2
� �
−2a

¼ 19; 546N⋅s=m
k ¼ − 2 ac ¼ 578; 171N=m

The response of the model is shown in Fig. 20. As we
can see, the value of maximum dynamic crush is exactly the
same as the one obtained from the experiment’s data analysis
(C =52 cm) and time when it occurs is longer—tm=104 ms
(compared to the experiment’s tm=76 ms). However, the
overall response of the Maxwell model is similar to the car’s
behavior during collision with a pole.

3.5 Discussion

To represent vehicle-to-pole collision, four models were
established (spring–mass model, Kelvin model, Maxwell
model with transition damping coefficient, and complete
Maxwell model). Characteristics which the best represents
the overall car’s behavior during the crash period belongs to
the Maxwell model. Although Kelvin and spring–mass
models give good approximation in the beginning of the crash

Fig. 17 Maxwell and Kelvin models responses comparison
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(up to the time of maximum dynamic crush), they completely
fail to represent the crash after the rebound. Maxwell model
with transition damping coefficient shows correctly just the
maximum dynamic crush, not its time at all. Therefore, the
Maxwell model gives the best overall outcome—there is no
difference in maximum displacement and about 27 % of
divergence for time of maximum dynamic crush compared
to the reality. On top of that, the entire shape of the Maxwell
model response resembles closely the real car’s crush. These
results directly correspond to findings explored in details in
[56] regarding modeling of vehicle localized impacts.

4 Virtual crash test description

In order to generate new dataset which will be used further in
the text to evaluate the proposed vehicle crash modeling
methodology, it was decided to create a virtual crash test
according to [19]. The virtual experiment has been performed

to provide another dataset to increase the number of simulated
vehicle crash scenarios. This has been done tomake the results
more reliable. Also, adding new crash scenarios helped to
strengthen the contributions of this work. To make the virtual
experiment as reliable as possible, we have decided to repro-
duce one of the huge numbers of collisions presented in [56].
We have chosen on purpose a low-speed collision (22 km/h
compared to 35 km/h from the real crash test presented in
Section 2) and similar car’s type as well as its dimensions to
check if it is possible to establish a model applicable to two
different collision types and two different initial impact veloc-
ities (however, to the similar car’s type).

4.1 Methodology and assumptions

A multibody car model has been built. We have divided the
front part of the vehicle into six undeformable components as
we can assume that in such a type of collision only this car’s
section undergoes the deformation. To simulate elastoplastic
properties of the car’s body, its particular components were
connected with springs and dampers (see Fig. 21). To make
the vehicle follow the reference car’s behavior from [56], their
valueswere assigned in the trial and errormethod (seeTable 6).
Furthermore, since we investigate a central collision, the
whole model is constrained in such a way that its motion is
possible only in one direction—longitudinal. By doing this,
we analyze only its longitudinal acceleration component—the
same as it was done in Section 2 (Table 6).

4.2 Vehicle description

The most relevant dimensions of the car are shown in Figs. 22
and 23. They were assigned to fulfill the overall mid-size
vehicle geometric requirements. Mass of the whole vehicle is
equal to 1,000 kg.Mass distribution was also taken into account

Fig. 18 Maxwell model (transition damping coefficient) response

Fig. 19 Fitting the Maxwell model response to the real experiment’s
displacement

Fig. 20 Complete Maxwell model response
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(e.g., the front part of the hood is not heavy, on the other hand,
the axle together with wheels and engine weigh more).

4.3 Virtual crash pulse analysis

Sampling rate for the virtual experiment is exactly the same as
the one for the real collision elaborated in Section 2—i.e.,
10 kHz (according to [57]). Similarly, the acceleration was
measured in the car’s center of gravity (COG, see Fig. 24)—
subsequent steps of a virtual collision are illustrated in Fig. 25.
In Fig. 26, there is shown virtual experiment’s outcome. Keep
in mind that the response obtained from the virtual crash test
should be treated as the approximated crash pulse since it is
not possible to get such rapidly changing acceleration plot (as
it is in the real experiment) in this kind of simulation. How-
ever, the results are satisfactory because the obtained virtual
car’s deformation closely follows the reference one from [56],
as well as the overall shapes of velocity and acceleration. See
Table 7 for the most relevant crash pulse characteristic param-
eters. The value of permanent deformation (dp) for the virtual
experiment should be treated as the approximated one, since
the whole model is represented as a multibody. As we see, the
crush curve in Fig. 12 do not achieve a steady value. However,
the behavior of this model in the crush time interval (up to the
moment when the acceleration plot reaches the zero value) is
satisfactory.

5 Data-based modeling by nonlinear autoregressive model
and feedforward neural network

This work contains an analysis of a NAR model established
for a full-scale crash test and virtual vehicle collision
according to [19]. The main contribution of this research is
that presented results are evaluated and compared with the
original experimental measurements. Additionally, the perfor-
mance of the created NAR model is verified by its application
to reproduce the kinematics of a vehicle under different colli-
sion circumstances than the ones which occurred for the
vehicle which crash test data was used to formulate it. To the
knowledge of the authors, such application of NAR model to
reconstruct vehicle collisions has not been discussed in the
literature before. The originality of the presented method is
directly related to exploring the field of vehicle dynamics
modeling by using nonlinear autoregressive models.

5.1 NARMA model derivation

In [58], nonlinear autoregressive with moving average
(NARMA) model parameters were obtained from three-layer
neural network in which activation function was in form of a
polynomial. Since NARMA model is a general case of NAR
model, its derivation will be covered first to gain better

understanding of the NAR model itself utilized by us. A
nonlinear, time invariant, discrete time dynamic system can be
successfully represented by the following NARMA model [58]:

y nð Þ ¼
X
i¼0

P

a ið Þu n−ið Þþ
X
j¼1

R

b ið Þy n− jð Þ

þ
X
i¼0

P X
j¼0

P

a i; jð Þu n−ið Þu n− jð Þ

þ
X
i¼1

R X
j¼1

R
b i; jð Þy n−ið Þy n− jð Þ

þ
X
i¼0

P X
j¼1

R

c i; jð Þu n−ið Þy n− jð Þ þ…þ e tð Þ ð32Þ

where P and R are orders of the moving average and
autoregressive terms (both linear and nonlinear). In particular,
a (i ) and a (i, j) are the linear and nonlinear moving average
terms; b (i ) and b (i, j) are the linear and nonlinear ARMA
terms; c (i, j) are the nonlinear cross terms; y (n ) is the system
output signal; u (n ) is the input signal; e (n ) is the error; and i ,
j , m , and n are indices. The output signal y (n ) from (32) may
be expressed as:

y nð Þ ¼
X
i¼1

M

cipi xið Þ þ e nð Þ ð33Þ

where {pi(x i)}
M
i=1 is a set of basic functions including past

values of output y (n ) and present values and past values of
input u (n ). The weight of the coupling of hidden unit i to the
output unit is c (i ), the number of the hidden units is M , and

Fig. 21 Virtual experiment overview

Table 6 Values of stiffness and damping for each spring

Spring number Stiffness c (kN/m) Damping k (kNs/m)

1 90 70

2 500 80

3 100 10

4 800 6

5 600 10

6 30 70
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the weighted sum of inputs to the hidden unit i is x i, expressed
as:

xi ¼
X
j¼0

P

ωjiu n− jð Þþ
X
j¼1

R

vjiy n− jð Þ ð34Þ

According to [58], let us define the basis function from (33)
as a polynomial function:

pi xð Þ ¼ a0i þ a1ixþ a2ix
2 þ…þ anix

n þ… ð35Þ

By substituting (35) into (33), we obtain the following
relationship describing the output:

y nð Þ ¼ c1 a01 þ a11x1 þ a21x
2
1 þ…

� �
þc2 a02 þ a12x2 þ a22x

2
2 þ…

� �
þcM a0M þ a1MxM þ a2Mx

2
M þ…

� �þ e nð Þ
ð36Þ

By further substitutions (x i from (34) into (36)), one can
obtain an equivalent equation for (32), in which linear and

Fig. 22 Overall dimensions of the virtual vehicle given in millimeter

Fig. 23 3D model of a virtual vehicle—dimensions in millimeter Fig. 24 Center of gravity (COG) of a virtual car
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nonlinear coefficients from (32) will be represented by neural
network weight values and polynomial coefficients. There-
fore, it is possible to get coefficients of the NARMAmodel by
solving the following formulas:

a ið Þ ¼
X
s¼1

M

csa1sωis ð37Þ

b ið Þ ¼
X
s¼1

M

csa1svis ð38Þ

a i; j; k;…; nð Þ ¼
X
s¼1

M

csansωisωjs…ωns ð39Þ

b i; j; k;…; nð Þ ¼
X
s¼1

M

csansvisvjs…vns ð40Þ

c i; j; k;…; nð Þ ¼ 1

2

X
s¼1

M

csansωisvjs…ωnsvns ð41Þ

Hence, it has been shown that NARMAmodel coefficients
are obtained from the proper training of a neural network. We

employed a similar approach for the NAR model parameters
estimation.

5.2 NAR model analysis

According to [20], the NAR model is given by the following
formula:

y nð Þ ¼ f y t−1ð Þ; y t−2ð Þ;…; y t−dð Þð Þ þ e tð Þ ð42Þ

where f is the unknown smooth function, y (t ) is the output, t
is the time vector, d is the number of delays, and e (t ) is the
error term. We assume the error term e (t ) to be independent
identically distributed (i.i.d.) and having the conditional mean
E(e (t)|f(t −1), f (t −2),… )=0 with the finite variance σ2. The
minimum mean square error optimal predictor of y (t ) given
the past values y (t −1), y (t −2), … , y (t−d ) is the conditional
mean [20]:

by tð Þ ¼ E y tð Þ y t−1; y t−2ð Þ;…; y t−dð Þðjð Þ
¼ f y t−1ð Þ; y t−2ð Þ;…; y t−dð Þð Þ ð43Þ

where t≥d +1. The predictor has mean-squared error σ2.

Fig. 25 Sequence of a simplified virtual crash test

Fig. 26 Virtual car’s kinematics
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5.3 Network’s establishment

By following the same method as the one elaborated in [20], a
feedforward neural network has been created as NAR model.
It is a nonlinear approximation to function f given by:

by tð Þ ¼bf y t−1ð Þ; y t−2ð Þ;…; y t−dð Þð Þ

¼
X
i¼1

I

W ig
X
j¼1

d

wijy t− jð Þ þ θi

 ! ð44Þ

where the function g (x ) is a smooth bounded monotonic
function—in our case, a sigmoid one. It is noted that the
argument x of function g (x ) in (44) is referred to as a single
neuron summation. Hence, the sigmoid activation function
becomes:

g xð Þ ¼ 1

1þ e−x
ð45Þ

I denotes the total number of neurons in the hidden layer.
The parametersWi and wij (weights) as well as θ i (biases) are
estimated in the training process—Levenberg–Marquardt
backpropagation technique was used in this work. It was
developed, e.g., to perform the network teaching without
computing the Hessian matrix. It can be approximated as [59]:

H ¼ JT J ð46Þ

under the assumption that the network’s performance function
has the form of a sum of squares (feedforward network train-
ing procedure produces typically such an outcome). More-
over, the gradient can be expressed as:

g ¼ JTe ð47Þ

where J is the Jacobian matrix—it is composed of first deriv-
atives of the network errors with respect to the weights and
biases, and e is a vector which contains network errors.
According to [60], computing Jacobian matrix using
backpropagation technique is less complex than comput-
ing the Hessian matrix. The Levenberg–Marquardt
backpropagation algorithm is given by (I stands for an
identity matrix):

xkþ1 ¼ xk− JT J þ μI
	 
−1

JTe ð48Þ

Coefficient μ decides on the overall performance of the
algorithm: when it is equal to zero, the approach degenerates
into the Newton’s method which uses the approximate Hes-
sian matrix. On the other hand, when the value of μ increases,
this becomes gradient descent. Newton’s method works well
near an error minimum, so it is advisable to shift to Newton’s
method right at the beginning of network training stage.
Therefore, the decreasing performance function (i.e., improve-
ment of network’s accuracy) causes μ to decrease. μ in-
creases, however, only when a tentative step would increase
the performance function. Thanks to that, it is guaranteed that
the performance function is always reduced at each iteration of

the algorithm [61]. An estimation of the function f , i.e., bf
from (44), is obtained by minimizing the sum of the squared

residuals ∑
t¼1

n

y tð Þ−by tð Þð Þ2 , where n denotes the total number

of time samples.

5.4 Network’s structure and training

Multiple layer neural networks do not give any advantages for
the time series problem as the one analyzed by us—it is not as
complex as, e.g., speech recognition problem which requires
consideration of a multilayer neural network [20]; therefore, it
is sufficient to use just one hidden layer. Instead of using an
optimization technique in the trial and error method, it was
decided to select the number of input delays d =5 and the total
number of neurons in the hidden layer I =30. The architecture
of the network created by us is shown in Fig. 27. The valida-
tion of the results was done by using error histogram from
Fig. 28, regression plot from Fig. 29, and training state from
Fig. 30. As an input to the network, we have provided the real
vehicle’s recorded acceleration which consisted of 1,401 sam-
ples, being equal to the crash time period of 0.14 s sampled
with the frequency of 10 kHz. In fact, this signal exhibits the
most complex characteristic from all the other signals which
we analyze. This guarantees the possibly best performance of
a network when it is simulated to predict the signals which
were not used for its creation. The time series data obtained
from the experiments (real and virtual acceleration, respec-
tively) was considered as a target data. The network is trained
until the performance goal is met, i.e., until thesum of the

squared residuals (or mean-squared error; MSE) ∑
t¼1

n

y tð Þ−by tð Þð Þ2 reaches a value close to zero and does not
improve after a few iterations (in our case, it is six validation
checks). The good measure of the network’s validation is
illustrated in the so-called regression plot in Fig. 29 which
determines whether the values estimated by an ANN are
comparable with the target ones and in Fig. 30 which

Table 7 Parameters characterizing the virtual collision

Parameter Value

Initial impact velocity, V (km/h) 22

Rebound velocity, V ′ (km/h) 3.2

Maximum dynamic crush, dc (cm) 29

Time when it occurs, tm (ms) 88

Permanent deformation, dp (cm) 25
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represents the relationships between the number of iterations
(epochs), validation checks, and gradient of the teaching
curve. The measured real crash pulse used in the training of
the network has been randomly divided into three parts in the
following way:

& Training data: 50%—the network is adjusted according to
its error.

& Validation data: 25 %—it measures network generaliza-
tion and stops the training when the generalization does
not improve.

& Testing data: 25 %—it provides an independent measure
of network performance during and after the training.

It means that the three above subsets have been chosen
from target data provided to the network as the reference
characteristic.

5.5 Network’s performance

Training of the network stops when the generalization stops
improving, as indicated by an increase in the mean square
error of the validation samples. It turned out that after 53
iterations the performance (mean-squared error) did not im-
prove; therefore, after six validation checks, the training was
stopped. Plots of network’s performance and error histogram
are shown in Figs. 31 and 28, respectively. The output of the
network is compared to the original signal used in the teaching
stage in Fig. 32 (plots are named Real reference and Real
estimated , respectively). Results obtained in this step are
satisfactory. The value of the mean-squared error equals
around to MSE=0.0065 and was achieved quickly—after
53 epochs. Considering the error distribution, almost 1000
of all the samples analyzed (being 71 % of the total number of
samples) was reproduced with high degree of accuracy. The
other 29 % of samples also exhibit great accuracy of predic-
tion. Regression plots, showing correlation between the target
values and the network’s outputs are in Fig. 29. The value of
regression R =1 means close relationship—no deviation from
the original target values. We observe it for the each set of
data: training, validation, and test. The training state is
depicted in Fig. 30. There are illustrated parameters utilized
in the Levenberg–Marquardt backpropagation algorithm. Ex-
actly as supposed, μ starts to increase when the network’s
performance does not improve. Above considerations allow
us to proceed to the evaluation of network’s results in simula-
tion of the data sets which were not used for its creation in the
training stage.

5.6 Simulation results

Having the network trained and simulated for the dataset used
for its creation (real car’s acceleration), we proceed to

evaluation of its capabilities of reproducing the kinematic plots,
which were not used in the teaching stage. The outcome of this
operation is presented in Figs. 32, 33, and 34. The simulation
results illustrate that the network does not only reproduce the
crash pulse signal which was utilized in the teaching procedure,
but—what is of great significance—it predicts the kinematic
responses which were not presented to it in its creation stage.
This is because of the fact that the created mathematical model
is a parametric one. It means that a given structure of a neural
network can be used for testing of another signal as long as they
have the same number of samples as the reference signal used
in the training stage. Since for teaching, a signal which is the
most complex among all the six pulses examined in this work
has been used, the network is able to reproduce the other five
less complex signals in the simulation and testing stages. Once
the network is properly taught, it reproduces another signal
without any fault. In the literature, there are not much examples
of application of ANNs to reproduce kinematics of a vehicle
undergoing a collision. On the other hand, NNs are commonly
used in statistical models of vehicle crashes as already de-
scribed. Therefore the contribution of this work is not only
validation of the ANNs simulation results but also their appli-
cation in an area which has not been extensively explored by
their usage yet.

6 Signal reconstruction, modeling, and simulation based
on Morlet wavelets

According to [33], one of the major contributions of this work
is evaluation of the simulation results with the data obtained
from a full-scale vehicle crash test. Furthermore, the wavelet-
based modeling methodology is applied to vehicle crash
modeling yielding reliable results. Finally, the fidelity of
the created mathematical model is evaluated by compar-
ing its results with the ones obtained by using different
modeling approaches.

Fig. 27 Feedforward neural network’s architecture
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6.1 Continuous wavelet transform (CWT)

Wavelet analysis is a method of signal decomposition [62].
Wavelet transform decomposes a signal into the elementary
signals called wavelets. Wavelets are continuous, oscillatory
functions which have diversified lasting times as well as

spectra. The wavelet transform of a signal x (t) which satisfies
the condition:

Z
−∞

∞

x tð Þj j2dt < ∞ ð49Þ

Fig. 28 Network’s error
histogram

Fig. 29 Network’s regression
plot
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can be expressed as:

Wgx
� �

a; bð Þ ¼ 1ffiffiffi
a

p ⋅
Z
−∞

∞

x tð Þg� t−b
a

� �
dt ð50Þ

where:

b translation value
a scale parameter (dilation)
g (t ) elementary wavelet function

g* complex conjugate of function g (t )
x (t ) analyzed signal
t time

Each value of (Wgx )(a, b ) is then normalized by the
coefficient 1ffiffi

a
p . This provides the condition that the internal

energy of each wavelet ga,b(t ) is independent of the scale
parameter a . As it is seen from (50), wavelet transform can
be considered as a linear transformation which decomposes a
given signal x (t ) into elementary functions ga,b(t), which are

Fig. 30 Network’s training state

Fig. 31 Network’s performance
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obtained from the wavelet function being analyzed g (t) by
dilation and translation. Translation b is related to time de-
composition, whereas dilation a is responsible for frequency
segmentation. This transformation has a significant advantage
over the other transforms commonly used in engineering
applications, e.g., Fourier transform, contrary to wavelet trans-
form, does not provide local information about analyzed func-
tion because of the infinite character of the trigonometric
functions which are utilized there.

6.2 Complex morlet wavelet

Morlet wavelet (named after Jean Morlet [63]) is defined as:

g tð Þ ¼ e j2π f 0 tj j⋅e−
tj j2
2 ð51Þ

where:

j imaginary unit

f0 wavelet function center frequency
t time

The exemplaryMorlet wavelet is shown in Figs. 35 and 36.
Fourier spectrum of the Morlet wavelet is given by the

translated Gauss function [62]:

G fð Þ ¼
ffiffiffi
2

p
πe−2π

2 f − f 0ð Þ2 : ð52Þ
Wavelet transform is a linear representation of a signal [64].

Therefore, for n given functions x i and n complex values α i

(i =1, 2, …, n ), the following equation holds:

Wg ¼
X
i¼1

n

αi⋅ Wgxi
� �

a; bð Þ ð53Þ

This essential property makes it possible to apply wavelet
transform to analyze signals composed of numerous compo-
nents which are characteristic for impulse response of a con-
struction. Local resolution of wavelet transform in the time

Fig. 32 Comparison of the
measured and predicted
acceleration for the real and
virtual car

Fig. 33 Comparison of the
measured and predicted velocity
for the real and virtual car

984 Int J Adv Manuf Technol (2014) 70:965–993



and frequency domains, respectively, is specified by the peri-
od and bandwidth of the frequency of an analyzed function:

Δt ¼ a⋅Δtg⋅
1

f s
ð54Þ

Δf ¼ Δ f g
a

⋅ f s ð55Þ

where Δtg andΔfg represent the period and bandwidth of the
elementary wavelet function, respectively, and f s is the sam-
pling frequency of the analyzed signal. Equations (54) and (55)
define relationships between scale parameter a , frequency res-
olution Δf , and time resolution Δt of the analyzed signal.

6.3 CWT parameters selection

It is an advantage of the continuous wavelet transform that it is
possible to determine its coefficients for each value of the
scale parameter a . Moreover, CWT is continuous with respect

to the translation, which means that for a given scale value the
elementary wavelet function is smoothly translated in the
whole domain interval of the analyzed signal. The results
obtained from such an approach are more convenient to
interpret and emphasize some of the features contained in
the signal as well. The drawback of CWT is, however, its
great computational complexity.

The key issue related to wavelet analysis is the proper
choice of its parameters [62]. The elementary wavelet function
g (t ) concentrates the majority of its energy in the interval
(ωmin, ωmax). The Fourier transform G (ω ) outside of this
interval is omitted, hence spectrum gmn of g (t ) has significant
values in the interval (ωmin/2

m, ωmax/2
m). For low values of

the scale parameter a , high-frequency components of the
signal are extracted, whereas the low-frequency components
require high values of the scale parameter a as it is shown by
(55). Therefore, if we select a narrow bandwidth of the ele-
mentary wavelet function g (t ), we emphasize those features
of the signal which last for a short period of time; however, we
lose the resolution in the time domain. Contrary, if we choose
a wide bandwidth, the time features of the signal are
reproduced well but simultaneously we lose the resolution in
the frequency domain.

6.4 Scale gram creation

According to [65], a scale gram is a measure of the variances
of the wavelet coefficients (i.e., strength of the signal) as a
function of the time scale. Formulation of the wavelet coeffi-
cients matrix is achieved by translating and scaling elementary
wavelet functions and subsequently translating them along the
time axis of the analyzed signal. The convolution of wavelet
function and analyzed signal which is obtained in this step
gives the values of the wavelet coefficients matrix. Schemat-
ically, this process is visualized in Fig. 37. It is noted that the
execution of the block diagram from Fig. 37 was performed in

Fig. 34 Comparison of the
measured and predicted crush for
the real and virtual car

Fig. 35 Exemplary complex Morlet wavelet components
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MATLAB® software—for the details regarding the step-by-
step procedure, refer to [66]. The characteristic feature of a
scale gram is its changeable resolution in the time and fre-
quency domains. In this work, we will also use the notions of
ridge and skeleton of the wavelet transform, which are de-
scribed according to [62].

1. Ridge of the wavelet transform—is a set of points (a , b )
in the domain of the wavelet transform (Wgx )(a , b ) of the
signal x (t) where the phase x (t )g (a,b)(t ) is stationary, so
the following condition is satisfied:

t0 a; bð Þ ¼ b ð56Þ

The simplest method to detect a ridge of the wavelet
transform is to find the maximum values of the wavelet
coefficients in the wavelet coefficients matrix.

2. Skeleton of the wavelet transform—is a set of coefficients
of the wavelet transform (Wgx )(a, b ) calculated from the
ridge (Wgx )(ar(b ), b ) where ar is the scale parameter of
the ridge.

6.5 Signal reconstruction

The above two definitions have a strong impact on the inter-
pretation of the wavelet analysis results, since in practical
applications, the skeleton of the wavelet transform is required
to reconstruct a signal for a given frequency component. On
the other hand, the knowledge of the ridge of the wavelet
transform leads to determination of the frequency components
of a signal. Therefore, the natural frequency of a system can be

obtained directly from the ridge, whereas the skeleton con-
tains information about response of a system in time domain.

Fig. 36 Complex Morlet wavelet
components—overview

Fig. 37 Block diagram for scale gram creation
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Since by using CWT, a one-dimensional signal is mapped to a
two-dimensional signal, it causes a lot of redundancy in the
representation of the signal. However, it provides the possi-
bility for signal reconstruction. A classical inversion formula
is [67]:

x tð Þ ¼ C−1
g ∬W a; bð Þga;b tð Þ da

a2
db: ð57Þ

There exists, however, a simpler inverse way which re-
quires using Morlet’s formula. In this method, only single
integration is needed:

x tð Þ ¼ C−1
1g

Z
W a; bð Þ da

a3=2
ð58Þ

where:

C1g ¼
Z
−∞

∞
g� ωð Þ
ωj j dω ð59Þ

Therefore, (58) is used to reconstruct a signal for the scale
parameters for which coefficients of the wavelet transform
matrix have the maximum values—i.e., for the scale parame-
ters for which ridges are detected.

6.6 Data analysis

We apply the presented methods to the acceleration pulse
recorded in x -direction during the collision of a vehicle with
a barrier (Fig. 38). We choose complex Morlet wavelet as an
elementary wavelet function: bandwidth and center frequen-
cies are selected to be f b=2 Hz and f0=2 Hz, respectively.
Their values are assigned in the trial-and-error process
according to the dataset being analyzed (i.e., its length and
sampling rate). The general rule here is that the center fre-
quency based approximation should capture the main wavelet
oscillation. In other words, the leading dominant frequency of
the wavelet is characterized by the center frequency of the
elementary wavelet function [66]. Consequently, when we
relate the frequency f0 with the wavelet function and dilate
the wavelet by a factor a , the center frequency becomes f0/a .
Finally, by taking into account the sampling frequency f s and
applying Eq. 55 (as it is shown below), the frequency vector is
derived. Based on Eq. 51, the following elementary wavelet
function is obtained: Fig. 39.

Based on the frequency components information obtained
from Fourier transform of the analyzed acceleration signal
(see Fig. 40), the frequency range in which all the relevant
frequency components of the analyzed signal are contained
are defined. This frequency interval according to (55) deter-
mines the size of the scale vector for wavelet coefficients
matrix:

amin ¼
Δ f g
f max

⋅ f s ð60Þ

amin ¼ 2 Hz½ �
625 Hx½ �⋅10; 000 ¼ 32 ð61Þ

amax ¼
Δ f g
f min

⋅ f s ð62Þ

amax ¼ 2 Hz½ �
28:5714 Hz½ �⋅10; 000 ¼ 700 ð63Þ

According to (50), the wavelet transform is performed and
matrix of wavelet coefficients is calculated. The scale gram
showing wavelet coefficients matrix obtained in this operation
is illustrated in Fig. 41. Please note the scale gram from
Fig. 41 is plotted in the scale–samples relationship. By using
relationship given by (55), it is possible to plot the scale gram
in the frequency time domain (see Figs. 42 and 43). This gives
the better understanding of the CWT, since the relationship
between the frequency components of the acceleration pulse
and the time intervals when they are present is explicitly
presented. Please note that on Fig. 43, there are also plotted
ridges of the wavelet coefficients matrix for five frequency
components which are considered to have the greatest influ-
ence on the scale gram of the acceleration signal, i.e., which
have the highest amplitudes. The ridges are detected by using
the discussed method, i.e., they are the local maxima of the
coefficients of the wavelet coefficients matrix. Table 8 sum-
marizes the values of identified frequency components of the
acceleration signal and the scale parameters for which the
highest values of coefficients of wavelet coefficients matrix
(i.e., ridges) are observed.

Remark 1. It is noting that the computational aspect of the
wavelet coefficients matrix creation has a crucial influence on
the simulation results. In the case being considered, the ob-
tained wavelet coefficients matrix was of size 669×1,751.
This is due to the length of the signal being analyzed and to
the size of the assumed frequency vector. Simulations were
performed on a 4 GB RAM PC with four-core , eight-thread
processor each of 1.6 GHz clock speed being able to boost up
to 2.8 GHz in amax turbo frequency mode. The computational
time needed to create the wavelet coefficients matrix of the size
mentioned above was 12.022 s. In some cases of much larger
wavelet coefficients matrices, one needs to consider the max-
imum memory capacity of a computer used so that the simu-
lation becomes possible whatsoever.

The acceleration signal contains a huge number of frequen-
cies, as shown in Fig. 40. Therefore, it is considered as a sum
signals which have this wide range of frequencies. For this
reason, the superposition principle holds here—reconstruction
of the acceleration signal is achieved by adding its signal
components, which have the major frequencies (of the highest
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CWTamplitude). CWT helps to identify not only the frequen-
cies of those component signals, but also their time history
(see Fig. 20).

6.7 Simulation results

To reconstruct the acceleration signal shown in Fig. 38, (58) is
used. We sum the real part of wavelet coefficients matrix
components for the scale parameters for which the highest
amplitudes of CWT were observed—i.e., for the frequency
components for which ridges are determined. Literally, it may
be described as adding the skeletons of the wavelet transform.
Since five main frequency components of the acceleration
signal have been identified, reconstruction of this signal is
achieved by summation of the skeletons of those five ridges,
which are shown in Fig. 44. The resulting reconstructed

acceleration signal is presented in Fig. 45. To obtain velocity
and displacement of the vehicle throughout the collision, it is
required to integrate the estimated acceleration signal. Results
of this operation are illustrated in Figs. 46 and 47. It is shown
that the overall behavior of the estimated acceleration curve
follows the reference acceleration. Consequently, the similar-
ities between estimated and reference velocities as well as
displacements are observed.

7 Conclusions and future works

The obtained results indicate that the spring–mass and Kelvin
models are not appropriate for simulation of the collision
which we deal with. However, results obtained from studying
Maxwell model provided us with more satisfactory results.

Fig. 38 Vehicle acceleration pulse recorded during a collision

Fig. 39 Elementary wavelet function—complex Morlet wavelet

Fig. 40 Fast Fourier transform of the acceleration signal in x-direction

Fig. 41 Scale gram of the acceleration signal
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Comparative analysis of the model’s and real car’s responses
allows to conclude that the obtained simulation outcomes
closely resemble the original full-scale vehicle behavior.

It is desirable to verify whether the other viscoelastic
models which were not discussed in this paper are capable
of vehicle crash simulation. In particular, the so-called hybrid
models (systems composed of two springs, one damper, and a
mass) may be promising for this application. Furthermore, a
two-mass–spring–damper model can be used to represent
interactions between fore- and aft-frame of a vehicle. On top
of that, it is advisable to examine methods for nonlinear
system parameters identification. Since the models presented
in Section 3 are lumped parameter ones, which are valid only

for the data which were used for their creation, they cannot be
used to simulate, e.g., a high-speed vehicle collision. Howev-
er, the capabilities of mathematical models with nonlinear
parameters (stiffness and damping) to simulate a variety of
crash events are required to be assessed.

One of the preponderant advantages of the wavelet trans-
form is its applicability to analysis of signals which represent
nonstationary or nonlinear processes. For those systems, the
classical approach in which we assume the constancy of
parameters in linear systems is not sufficient. As already
mentioned, Fourier transform does not allow for detection of
local features of signals, since the carriers of this operation are
trigonometric functions, which by definition have
nonbounded character. By analyzing a signal in the frequency
domain, we gain insight into its spectrum; however, we know
nothing about the time when particular peaks occur. On the
other hand, when we know their localization in time, we know
nothing about their frequency. In order to avoid this difficulty,
it is advisable to use wavelet transform. In this type of anal-
ysis, we limit the frequency bandwidth (i.e., the resolution of
analysis) only to the frequencies which are relevant for a given
phenomenon. Therefore, one may say that by per forming a

Fig. 42 Scale gram of the acceleration signal seen from top: frequency
time domain. Ridges of the wavelet coefficient matrix are also shown

Fig. 43 Scale gram of the
acceleration signal seen from
side: frequency time domain.
Ridges of the wavelet coefficient
matrix are also shown

Table 8 Main frequency
components of the ac-
celeration signal

Scale Frequency (Hz)

62.5 320

125 160

222 90

400 50

555 36
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wavelet transform, we approximate a physical phenomenon.
The aim of this approximation is to extract the characteristic
features of a process being considered from the signals which
represent it.

Wavelet transform has a strong potential in modeling of
real world physical systems. However, there are prerequisites
that need to be addressed to properly perform system identi-
fication. One of those is the selection of proper frequency
interval in which wavelet analysis is to be performed,
according to the frequency components of signals which
characterize a given phenomenon. It is noting that by execut-
ing wavelet transform, a given phenomenon is approximated.

That is because if a narrow frequency band of an elementary
wavelet function is assumed, local features of a signal are
emphasized at the cost of resolution loss in the time domain.
On the other hand, if a wide frequency band is assumed, time
history features of a signal are reproduced well at the cost of
resolution loss in frequency domain. It was showed in this
work that to reproduce a given signal, it is sufficient to use
only the major frequency components which have the highest
amplitude among all the frequencies contained in the signal,
i.e., frequency components for which ridges of the wavelet
coefficients matrix are detected. It is emphasized that ridges
for constant-scale parameters were assumed for the sake of

Fig. 44 Skeletons of the wavelet
transform for the major frequency
components of the acceleration
pulse

Fig. 45 Comparative analysis of the vehicle acceleration signals Fig. 46 Comparative analysis of the vehicle velocities
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computational efficiency, however, still yielding reliable re-
sults. For the future work, it is recommended to introduce
ridges for nonstationary signals, i.e., for changeable scale
parameters. This will give a more accurate insight into the
frequency domain part of analysis of a given signal and allow
to detect its nonstationary frequency components.

NAR model was established and its capabilities of repro-
ducing kinematics of a car in a crash event were evaluated. It
was verified that for the NARmodel, increasing the number of
delays in a network will improve the model construction and
the results of its testing as well. A similar case occurs for the
number of neurons. The more neurons compose a hidden
layer, the better is the network’s prediction of a given signal.
However, it was found that at some point (i.e., at some value
of a delay, which is different for different signals we use), the
increase of neurons number does not improve the results—in
some cases, the data is even overfitted. Moreover, too huge
amount of neurons greatly raises the computation time needed
to teach a network. Therefore, a good network performance is
a resultant of the proper selection of delays and number of
neurons. On top of that, the appropriate division of the data set
being examined, into teaching, validation, and testing sets can
significantly enhance the overall network design (i.e., there is

required less number of delays, neurons, and shorter compu-
tation time is needed to achieve the desired performance).

Neural networks have strong potential in nonlinear systems
modeling—they can estimate their nonlinear parameters (e.g.,
stiffness and damping). The changeable initial impact velocity
can be treated as an input to such a model and its output
kinematics will help to predict a real car behavior. For in-
stance, the application of the regressive models established for
a low-speed collision to reproduce kinematics of a car in-
volved in a high-speed collision may be investigated as well.

In order to visualize the effectiveness of each of the
methods presented in this work, it was decided to calculate
for every proposed modeling methodology the root mean
square error (RMSE) of the estimated vehicle acceleration
(y i, reference value; byi , estimated value):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

n

yi−byi� �2
n

vuuut
ð64Þ

which yields the results shown in Table 9. The value of the
root mean square error determines the average difference
between the reference and estimated value.

Table 9 clearly points out the significant improvement in
the results of modeling vehicle crash by using wavelet-based
method described in this work with respect to the results
yielded by typical lumped-parameter models. However, the
biggest benefit is obtained when approach based on nonlinear
autoregressive model and feedforward neural network is
followed.

References

1. Eskandarian A, Marzougui D, Bedewi NE (1997) Finite element
model and validation of a surrogate crash test vehicle for impacts
with roadside objects. Technical report, National Crash Analysis
Center, Virginia, USA

2. Tenga TL, Chang FA, Liu YS, Peng CP (2008) Analysis of dynamic
response of vehicle occupant in frontal crash using multibody dy-
namics method. Math Comput Model 48(11–12):1724–1736

3. Kim HS, Kang SY, Lee IH, Park SH, Han DC (1996) Vehicle frontal
crashworthiness analysis by simplified structure modeling using
nonlinear spring and beam elements. Int J Crashworthiness 2(1):107–118

4. Niu Y, Shen W, Stuhmiller JH (2007) Finite element models of rib as
an inhomogeneous beam structure under high-speed 11 impacts.Med
Eng Phys 29(7):788–798

5. Moumni Z, Axisa F (2004) Simplified modelling of vehicle frontal
crashworthiness using a modal approach. Int J Crashworthiness 9(3):
285–297

6. Borovinsek M, Vesenjak M, Ulbin M, Ren Z (2007) Simulation of
crash tests for high containment levels of road safety barriers. Eng
Fail Anal 14(8):1711–1718

7. Soto CA (2004) Structural topology optimization for crashworthi-
ness. Int J Crashworthiness 9(3):277–284

Fig. 47 Comparative analysis of the vehicle displacements

Table 9 Values of root mean square error (RMSE)

Modeling methodology RMSE for acceleration (g)

LPM–Kelvin model 10.49

LPM–Maxwell model 8.60

Wavelet-based method 5.22

NAR model and FFNN 0.08

Int J Adv Manuf Technol (2014) 70:965–993 991



8. Belytschko T (1992) On computational methods for crashworthiness.
Comput Struct 42(2):271–279

9. Deb A, Srinivas KC (2008) Development of a new lumped parameter
model for vehicle side-impact safety simulation. In: Proceedings of
the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, vol. 222, pp.1793–1811

10. Jonsén P, Isaksson E, Sundin KG, OldenburgM (2009) Identification
of lumped parameter automotive crash models for bumper system
development. Int J Crashworthiness 14(6):533–541

11. Šušteršić G, Grabec I, Prebil I (2007) Statistical model of a vehicle-
to-barrier collision. Int J Impact Eng 34(10):1585–1593

12. Elmarakbi AM, Zu JW (2006) Crash analysis and modeling of two
vehicles in frontal collisions using two types of smart front-end
structures: an analytical approach using IHBM. Int J
Crashworthiness 11(5):467–483

13. PawlusW, Karimi HR, RobbersmyrKG (2011)Mathematical model-
ing of a vehicle crash test based on elasto-plastic unloading scenarios
of spring–mass models. Int J Adv Manuf Technol 55:369–378

14. Pawlus W, Karimi HR, Robbersmyr KG (2011) Development of
lumped-parameter mathematical models for a vehicle localized im-
pact. J Mech Sci Technol 25(7):1737–1747

15. Pawlus W, Karimi HR, Robbersmyr KG (2011) Effects of
different spring–mass model elasto-plastic unloading scenarios
on the vehicle crash model fidelity. ICIC Expr Lett Part B
Appl 2(4):757–764

16. Pawlus W, Karimi HR, Robbersmyr KG (2011) Application of
viscoelastic hybrid models to vehicle crash simulation. Int J
Crashworthiness 16(2):195–205

17. PawlusW, RobbersmyrKG, Karimi HR (2011)Mathematical model-
ing and parameters estimation of a car crash using data-based regres-
sive model approach. Appl Math Model 35:5091–5107

18. Ma J, Kockelman KM, Damien P (2008) A multvariate Poisson-
lognormal regression model for prediction of crash counts by sever-
ity, using Bayesian methods. Accid Anal Prev 40(3):964–975

19. PawlusW, Karimi HR, RobbersmyrKG (2012) Data-basedmodeling
of vehicle collisions by nonlinear autoregressive model and
feedforward neural network. Inf Sci. doi:10.1016/j.ins.2012.03.013,
ISSN: 0020-0255

20. Connor JT,Martin RD,Atlas LE (1994) Recurrent neural networks and
robust time series prediction. IEEE Trans Neural Netw 5(2):240–254

21. Crucianu M, Uhry Z, Boné R, Asselin de Beauville J-P NAR time-
series prediction: a Bayesian framework and an experiment.
Proceedings of the European Symposium on Artificial Neural
Networks (ESANN ‘98), Bruges, Belgium, April 1998

22. Wang D, Lum K-Y, Yang G (2002) Parameter estimation of ARX/
NARX model: a neural network based method. Proceedings of the
9th International Conference on Neural Information Processing
(ICONIPOZ), Singapore

23. Yang G, Lin Y, Bhattacharya P (2010) A driver fatigue recognition
model based on information fusion and dynamic Bayesian network.
Inf Sci 180(10):1942–1954

24. Pham HT, Tran VT, Yang B-S (2010) A hybrid of nonlinear
autoregressive model with exogenous input and autoregressive mov-
ing average model for long-term machine state forecasting. Expert
Syst Appl 37(4):3310–3317

25. Zvejnieks G, Kuzovkov VN, Dumbrajs O, Degeling AW, Suttrop W,
Urano H, Zohm H (2004) Autoregressive moving average model for
analyzing edge localized mode time series on Axially Symmetric
Divertor Experiment (ASDEX) Upgrade tokamak. Phys Plasmas
11(12):5658–5667

26. Basso M, Giarré L, Groppi S, Zappa G (2005) NARX models of an
industrial power plant gas turbine. IEEE Trans Control Syst Technol
13(4):599–604

27. Zemouri R, Gouriveau R, Zerhouni N (2010) Defining and applying
prediction performance metrics on a recurrent NARX time series
model. Neurocomputing 73(13–15):2506–2521

28. Crone SF, Kourentzes N (2010) Feature selection for time series
prediction—a combined filter and wrapper approach for neural net-
works. Neurocomputing 73(10–12):1923–1936

29. Sheta AF, Jong KD (2001) Time-series forecasting using GA-tuned
radial basis functions. Inf Sci 133(3–4):221–228

30. Gandhi UN, Hu SJ (1995) Data-based approach in modeling auto-
mobile crash. Int J Impact Eng 16(1):95–118

31. Bock J, Hettenhausen J (2012) Discrete particle swarm optimisation
for ontology alignment. Inf Sci 192:152–173

32. Karimi HR, Robbersmyr KG (2011) Signal analysis and performance
evaluation of a vehicle crash test with a fixed safety barrier based onHaar
wavelets. Int J Wavelets Multiresolution Image Process 9(1):131–149

33. Karimi HR, Pawlus W, Robbersmyr KG (2012) Signal reconstruc-
tion, modeling and simulation of a vehicle full-scale crash test based
on Morlet wavelets. Neurocomputing 93:88–99, ISSN: 0925-2312

34. Gan M, Peng H, Peng X, Chen X, Garba I (2010) A locally linear
RBF network-based state-dependent AR model for nonlinear time
series modeling. Inf Sci 180(no.22):4370–4383

35. Mitrakis NE, Theocharis JB (2012) A diversity-driven structure
learning algorithm for building hierarchical neuro-fuzzy classifiers.
Inf Sci 186(1):40–58

36. McFadden J, Yang WT, Durrans RS (2001) Application of artificial
neural networks to predict speeds on two-lane rural highways. Transp
Res Rec 1751:9–17

37. Abedelwahab H, Abdel-Aty MA (2001) Development of artificial
neural networks models to predict driver injury severity in traffic
accidents at signalized intersections. Transportation Research Board
80th annual meeting, Washington D.C., USA

38. Várkonyi-Kóczy AR, Rövid A, Várlaki P Intelligent methods for car
deformation modeling and crash speed estimation. The 1st
Romanan–Hungarian Joint Symposium on Applied Computational
Intelligence, Timisoara, Romania, May 2004

39. Syrris V, Petridis V (2011) A lattice-based neuro-computing meth-
odology for real-time human action recognition. Inf Sci 181(10):
1874–1887

40. van der Laan E, Veldpaus F, de Jager B, Steinbuch M LPVmodeling
of vehicle occupants. 9th International Symposium on Advanced
Vehicle Control (AVEC '08), Kobe, Japan, October 2008

41. Zhang L, Shi P (2008) L2−L∞ model reduction for switched LPV
systems with average dwell time. IEEE Trans AutomControl 53(10):
2443–2448

42. Zhang L, Cui N, Liu M, Zhao Y (2011) Asynchronous filtering of
discrete-time switched linear systems with average dwell time. IEEE
Trans Circ Syst I Regular Pap 58(5):1109–1118

43. Zhao Y, Zhang L, Shen S, Gao H (2010) Robust stability criterion for
discrete-time uncertain Markovian jumping neural networks with
defective statistics of modes transition. IEEE Trans Neural Netw
22(1):164–170

44. Cheng Z, Pilkey WD, Darvish K, Hollowell WT, Crandall JR (2001)
Correlation analysis of automobile crash responses using wavelets.
Proceedings of the International Modal Analysis Conference IMAC,
Kissimmee, Florida, USA

45. Cheng Z, Pellettiere JA, Rizer AL (2004) Wavelet-based validation
methods and criteria for finite element automobile crashworthiness
modeling. Proceedings of the 22nd IMAC Conference and
Exposition (IMAC XXII): A Conference and Exposition on
Structural Dynamics, Dearborn, MI, USA

46. Kankar PK, Sharma SC, Harsha SP (2011) Rolling element bearing
fault diagnosis using wavelet transform. Neurocomputing 74(10):
1638–1645

47. Hester D, Gonzalez A (2012) A wavelet-based damage detection
algorithm based on bridge acceleration response to a vehicle. Mech
Syst Signal Process 28:145–166

48. Nguyen KV, Tran HT (2010) Multi-cracks detection of a beamlike
structure based on the on-vehicle vibration signal and wavelet anal-
ysis. J Sound Vib 329(21):4455–4465

992 Int J Adv Manuf Technol (2014) 70:965–993

http://dx.doi.org/10.1016/j.ins.2012.03.013


49. Wanga YS, Leeb C-M, Kimb D-G, Xua Y (2007) Sound quality
prediction for non-stationary vehicle interior noise based on wavelet
pre-processing neural network model. J Sound Vib 299(4–5):933–947

50. Chatterjee P, OBrien E, Li Y, Gonzalez A (2006) Wavelet domain
analysis for identification of vehicle axles from bridgemeasurements.
Comput Struct 84(28):1792–1801

51. Sun T, Pei H, Pan Y, Zhang C (2011) Robust wavelet network control
for a class of autonomous vehicles to track environmental contour
line. Neurocomputing 74(17):2886–2892

52. Qiao Y-L, Zhao C-H, Song C-Y (2009) Complex wavelet based
texture classification. Neurocomputing 72(16–18):3957–3963

53. SrinivasanD, JinX, CheuRL (2005)Adaptive neural networkmodels for
automatic incident detection on freeways. Neurocomputing 64:473–496

54. Liu P (2009) A self-organizing feature maps and data mining based
decision support system for liability authentications of traffic crashes.
Neurocomputing 72(13–15):2902–2908

55. Robbersmyr KG (2004) Calibration test of a standard Ford Fiesta
1.1l, model year 1987, according to NS-EN 12767. Technical Report
43/2004, Agder Research, Grimstad

56. Huang M (2002) Vehicle crash mechanics. CRC Press, Boca Raton
57. ISO 6487:2000. Road vehicles—measurement techniques in impact

tests—instrumentation
58. Chon KH, Cohen RJ (1997) Linear and nonlinear ARMA model

parameter estimation using an artificial neural network. IEEE Trans
Biomed Eng 44(3):168–174

59. Vien NA, Yu H, Chung TC (2011) Hessian matrix distribution for
Bayesian policy gradient reinforcement learning. Inf Sci 181(9):
1671–1685

60. Nasoz F, Lisetti CL, Vasilakos AV (2010) Affectively intelligent and
adaptive car interfaces. Inf Sci 180(20):3817–3836

61. Guo ZX, Wong WK, Li M (2012) Sparsely connected neural
network-based time series forecasting. Inf Sci 193:54–71

62. Mendrok K (2010) Signal analysis and identification—lectures.
AGH University of Science and Technology, Kraków

63. Grossman A, Morlet J (1984) Decomposition of Hardy functions into
square integrable wavelets of constant shape SIAM. J Math Anal
15(4):723–736

64. Burrus CS, Gopinath RA, GuoH (1998) Introduction to wavelets and
wavelet transforms. Prentice Hall, Upper Saddle River

65. Scargle JD, Steiman-Cameron T, Young K, Donoho DL,
Crutchfield JP, Imamura J (1993) The quasi-periodic oscilla-
tions and very low frequency noise of Scorpius X-1 as tran-
sient chaos—a dripping handrail? Astrophys J Part 2 Lett
411(no.2):91–94

66. Misiti M, Misiti Y, Oppenheim G, Poggi J-M (2002) Wavelet
Toolbox for use with MATLAB®—user’s guide, ver. 2. The
MathWorks Inc

67. Lin J, Qu L (2000) Feature extraction based onmorlet wavelet and its
application for mechanical fault diagnosis. J Sound Vib 234(1):135–
148

Int J Adv Manuf Technol (2014) 70:965–993 993


	Investigation of vehicle crash modeling techniques: theory and application
	Abstract
	Introduction
	Experimental setup description
	Vehicle center of gravity determination procedure
	Vehicle and obstacle
	Data acquisition
	Real crash pulse analysis

	Lumped parameter models
	Spring–mass model
	Kelvin model
	Maxwell model—introduction
	Maxwell model creation
	Discussion

	Virtual crash test description
	Methodology and assumptions
	Vehicle description
	Virtual crash pulse analysis

	Data-based modeling by nonlinear autoregressive model and feedforward neural network
	NARMA model derivation
	NAR model analysis
	Network’s establishment
	Network’s structure and training
	Network’s performance
	Simulation results

	Signal reconstruction, modeling, and simulation based on Morlet wavelets
	Continuous wavelet transform (CWT)
	Complex morlet wavelet
	CWT parameters selection
	Scale gram creation
	Signal reconstruction
	Data analysis
	Simulation results

	Conclusions and future works
	References


