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Abstract Stability prediction is important to avoid chatter
and improve production efficiency in cutting process. Many
methods including analytical, experimental, and numerical
ones have been proposed. In this work, a stability criteria
method using argument principle is proposed for a general
dynamical systems. The method needs only to evaluate the
characteristic function on a straight segment on the imagi-
nary axis and the argument on the boundary of a bounded
half circular region. The method is applied to three milling
models in cutting process. Examples which show the evalu-
ation of stability criteria proposed in the paper is simple and
valid compared with full-discretization method.

Keywords Cutting · Argument principle · Stability criteria

1 Introduction

Machining is one of the most common manufacturing pro-
cesses in industry due to its high flexibility and ability
to produce parts with excellent quality. Chatter, a type of
self-excited vibrations arising in metal cutting operations,
is a major limitation in machining resulting in poor qual-
ity and reduced productivity. Under certain conditions, the
cutting process may become unstable yielding oscillations
with high amplitudes and cutting forces. Feed rate optimiza-
tion, cutting force prediction, and stability prediction are
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all important research problems for milling process [1, 2].
However, stability prediction is the key problem to optimal
selection of spindle speed and cutting depth to avoid chatter
and improve production efficiency. Many methods includ-
ing analytical, experimental, and numerical ones have been
proposed.

Smith and Tlusty [3] presented a method to generate
stability lobes by time domain simulations of the chatter
vibrations in milling process. Altintas and Budak [4] pre-
sented an analytical method (ZOA method) for predicting
milling stability lobes based on the mean of the Fourier
series of the dynamical milling coefficients. The temporal
finite element analysis (TFEA) for milling process simula-
tion was presented by Bayly et al. [5]. Some experimental
methods are utilized to get the stability boundaries [6–8].
Stability of systems could be evaluated numerically apply-
ing the semi-discretization method for periodic delay dif-
ferential equations [9]. The semi-discretization was used in
[10] to obtain approximate solutions for retarded functional
differential equations (RFDEs). The essence of the method
is that the delayed and the time-dependent terms are approx-
imated by piecewise constant values (zeroth-order approxi-
mation), and, consequently, the RFDE is approximated by a
series of ordinary differential equations (ODEs). The solu-
tions of these ODEs lead to a finite-dimensional discrete
map approximation of the RFDE. The semi-discretization
method can effectively be used for analyzing cutting pro-
cesses, like the milling process for which the governing
RFDE has time periodic coefficients [11], the turning pro-
cess with varying spindle speed for which the time delay
itself is also time dependent in the governing RFDE [12], or
feedback control systems [13, 14]. The method was recently
refined in ref. [10, 15]. Convergence proof for the semi-
discretization method can be found in ref. [16]. The methods
reviewed above have their advantages and disadvantages,
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respectively [17]. In ref. [17], a full-discretization method
based on the direct integration scheme was presented for
prediction of milling stability. The fundamental mathemati-
cal model of the dynamical milling process considering the
regenerative effect is expressed as a linear time periodic sys-
tem with a single discrete time delay, and the response of the
system is calculated via the direct integration scheme with
the help of discretizing the time period. Then, the Duhamel
term of the response is solved using the full-discretization
method. The full-discretization method has high computa-
tional efficiency without loss of any numerical precision
compared with semi-discretization.

Delay differential equations (DDEs) describe systems
where the present rate of change of state depends on a past
value (or history) of the state. The theory of DDEs is a
generalization of the theory of ODE into infinite dimen-
sional phase spaces. In cutting process, delay differential
equations were used to describe dynamical systems. The
pioneering orthogonal chatter stability models were intro-
duced by Tlusty and Polacek [18], and Tobias and Fiswick
[19] almost at the same period but independent of each
other. The dynamical orthogonal cutting system is the form
by Altintas [20]

mẍ + cẋ + kx = Fr = Kra[h0 − (x(t)− x(t − τ))] (1.1)

Here, m is a lumped mass, k is stiffness and c is damping at
the cutting point, Fr is cutting force, Kr is the radial cutting
coefficients, a is width of cut, h0 is static chip thickness,
and x(t) and x(t − τ) are the present and past vibration
amplitudes in the radial direction, respectively. After lin-
earizing the cutting force variation �F at some nominal
chip thickness, the linearized equation of motion of classical
regenerative chatter becomes (see [21])

ẍ + 2ζωnẋ + ω2
nx = k1

m
(x − xτ ) (1.2)

Here, ωn is the natural angular frequency of the undamped
free oscillating system, ζ = c/(2mωn) is the so-called rela-
tive damping factor, xτ denotes the delayed value of x, and
the cutting force coefficient k1 is the slope of the cutting
force at the nominal chip thickness. In nondimensional form

ẍ + 2ζ ẋ + x = p(x − xτ ) (1.3)

where p = k1
mω2

n
. If we let X = (x, ẋ)T, state-space form of

the Eq. (1.3) is

Ẋ = Ax(t)+ Bx(t − τ) (1.4)

where A =
(

0 1
−(1 − p) −2ζ

)
, B =

(
0 0
−p 0

)
.

Another dynamical equation of a single DOF milling
model [22, 23] is

ẍ + 2ζωnẋ + ω2
nx = −wh(t)

mt

(x − xτ ) (1.5)

where w is the depth of cut and mt is the modal mass of
the tool. The time delay τ is equal to the tool passing period
60/(N�), where N is the number of the cutter teeth and �

is the spindle speed in revolutions per minute. h(t) is the
cutting force coefficient which is defined as

h(t) =
N∑
j=1

g(φj (t)) sin(φj (t))[Kt cos(φj (t))+Kn sin(φj (t))] (1.6)

where Kt and Kn are the tangential and the normal lin-
earized cutting force coefficients, respectively, and φj (t) is
the angular position of the j th tooth defined by

φj (t) = (2π�/60)t + (j − 1)2π/N. (1.7)

The function g(φj (t)) is defined as

g(φj (t)) =
{

1, if φst (t) < φj (t) < φex(t)

0, otherwise
(1.8)

where φst (t) and φex(t) are the start and exit angles of the
j th cutter tooth. Through some simple transformations, the
state-space form of the single DOF milling model (1.5) can
be represented as

Ẋ = Ax(t)+ Bx(t − τ) (1.9)

where A =
( −ζωn

1
mt

mt(ζωn)
2 −mtω

2
n − wh(t) −ζωn

)
,

B =
(

0 0
wh(t) 0

)
.

Dynamical models deal with concentrated forces acting
on the tool. These forces are the components of the resul-
tant of the distributed force system along the rake face of
the tool. Stépán derived a model which takes the distributed
characteristic of the cutting force into account by means of
a shape function ω(θ). The equation of motion is the linear
DDE [24]

ẍ+2ζ ẋ+x = p

∫ h

0
x(t−θ)ω(θ)dθ−p

∫ −τ

−τ−h

x(t+θ)ω(τ+θ)dθ

(1.10)

Equation (1.10) could be equivalently expressed as

ẍ+2ζ ẋ+x = p

∫ 0

−h

x(t+θ)ω(−θ)dθ−p

∫ 0

−h

x(t−τ +θ)ω(θ)dθ

(1.11)

Let X = (x, ẋ)T and Eq. (1.11) is transformed into

Ẋ =
(

0 1
−1 −2ζ

) (
x
ẋ

)
+ p

∫ 0

−h

(
0 0

ω(−θ) 0

) (
x(t + θ)
ẋ(t + θ)

)
dθ

(1.12)

−p

∫ 0

−h

(
0 0

ω(−θ) 0

)(
x(t − τ + θ)

ẋ(t − τ + θ)

)
dθ
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In this paper, dynamical systems, similar to Eqs. (1.4),
(1.9), and (1.12), could be generally unified to express in the
following state-space form

Ẋ = AX + BX(t − τ)+ p

∫ 0

−h

K(θ)X(t + θ)dθ

−p

∫ 0

−h

H(θ)X(t − τ + θ)dθ (1.13)

with initial function

x(t) = ϕ(t), −h < θ ≤ 0 (1.14)

where A,B,K,H ∈ R
n×n are corresponding matrices and

τ stands for delay.
Recently, several stability criteria for system bounded

regions have been investigated via the characteristic func-
tion [25–29]. Asymptotic stability of linear neutral systems
with distributed delay are presented using the argument
principle [30]. This work is motivated by [30]. Then stabil-
ity criteria for dynamical system (1.13) in cutting process is
obtained in Section 2. In Section 3, the method is applied
to three milling models in cutting processes. In Section 4,
conclusions with a brief discussion are presented.

2 Stability criteria of system (1.13)

Assume that initial condition ϕ(t) is continuously differen-
tiable

sup
−h≤θ≤0

|ϕ(t)| < ∞, sup
−h≤θ≤0

|ϕ̇(t)| < ∞ (2.1)

Matrices of system (1.13) K(θ) = (kij ), H(θ) = (hij )

are functions of bounded variation and with bounded first
moments
∫ 0

−h

|θ ||kij |δθ < ∞,

∫ 0

−h

|θ ||hij |δθ < ∞, i, j =1, 2, ...n

(2.2)

Under the conditions (2.1) and (2.2), system (1.13) has the
unique solution x(t, ϕ) and there exists a Laplace transform
of the solution. We now apply Laplace transform to system
(1.13), the characteristic equation is

P(z) = det[zI − A− e−zτB −
∫ 0

−h

ezθK(θ)δθ

−
∫ 0

−h

ezθ e−zτH(θ)δθ ] = 0 (2.3)

where I is a unit matrix. Let

B̄ = e−zτB, K̄(z) =
∫ 0

−h

ezθK(θ)δθ, H̄ (z)

=
∫ 0

−h

ezθ e−zτH(θ)δθ

Characteristic equation yields

P(z) = det[zI − A− B̄ − K̄(z)− H̄ (z)] = 0 (2.4)

whose root is called a characteristic root.

Lemma 2.1 (Argument principle [31]) Suppose that

(i) a function G(s) is analytic throughout the domain
D except for poles, the domain D is interior to a
positively oriented simple closed counter;

(ii) G(s) is analytic and nonzero on;
(iii) counting multiplicities, Z is the number of zeros and

Y is the number of poles of G(s) inside γ .

Then
1

2π
�γ argG(s) = Z − Y (2.5)

where change of the argument of G(s) along the closed line
γ is defined by

�γ argG(s) = argG(γ2)− argG(γ1) (2.6)

where γ1,γ2 stand for the starting point and final point of γ ,
respectively.

Lemma 2.2 (Kolmanovskii and Myshkis [32]) Let charac-
teristic Eq. (2.4) has no zeros in the half plane �z ≥ 0 and
kernels K and H satisfy condition (2.2). Then system (1.13)
is asymptotically stable.

The main results of the present paper will be derived.

Theorem 2.3 Assume that condition (2.2) holds, there
exists a positive constant r and matrices satisfy

‖A‖ + ‖B‖ + ‖K̄‖ + ‖H̄‖ ≤ r, (2.7)

where ‖ · ‖ denotes norm of matrices. Let z be a charac-
teristic root of Eq. (2.4) with �z ≥ 0, then a bounded half
circular region in the complex plane |z| ≤ r includes all
characteristic roots of Eq. (2.4).

Proof Since z is a characteristic root of Eq. (2.4) with �z ≥
0, it has

P(z) = det[zI − A− B̄ − K̄(z)− H̄ (z)] = 0 (2.8)

Let W = A+B+K̄+H̄ , there exists a integer j, 1 ≤ j ≤ n,
such that

z = λj (W).

Hence,

|z| = |λj (W)| ≤ ‖A+B+K̄+H̄‖ ≤ ‖A‖+‖B‖+‖K̄‖+‖H̄‖ ≤ r.

The proof is completed.

Here, the following definitions are necessary for obtain-
ing main results.
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Definition 2.4 Let (ρ, θ) be polar coordinates. Let la be
the straight segment which is on the imaginary axis, whose
two terminal points are d1 = (r,−π/2) and d2 = (r, π/2),
respectively. Let lb be the half circumference on the right
half plane defined by

lb = {(ρ, θ) : ρ = r,−π/2 ≤ θ ≤ π/2} (2.9)

Furthermore, let l = la ∪ lb and D stand for the set of a
bounded half circular region surrounded by l. The boundary
of D is l and D̄ = D ∪ l.

Definition 2.5 On the complex plane, we take two points
q1 = (r + ε,−π/2) and q2 = (r + ε, π/2), respectively,
where any ε > 0. Take l′a as the straight segment on the
imaginary axis l′a = q1q2 and

l′b = {(ρ, θ) : ρ = r + ε,−π/2 ≤ θ ≤ π/2}. (2.10)

l′ = l′a ∪ l′b, Q stands for the set of a bounded half circular
region surrounded by l’ and Q̄ = Q ∪ l′.

Domains D̄ and Q̄ can be seen Fig. 1.

Corollary 2.6 Under conditions of Theorem 2.3, let z be the
characteristic roots of characteristic Eq. (2.4) with �z ≥ 0,
then z ∈ D̄.

Theorem 2.7 Under conditions of Theorem 2.3, system
(1.13) is asymptotically stable if and only if

P(z) �= 0 z ∈ l (2.11)

and

�l argP(z) = 0 (2.12)

where �l argP(z) is change of the argument of P(z) along
the closed half circle l.

Fig. 1 The regions D̄ and Q̄

Proof Suppose system (1.13) is asymptotically stable. All
zeros of P(z) are on the left half plane. Hence, while z ∈ l,
P(z) �= 0 holds and the change of argument of P(z) should
be also zero along the closed half circle l by argument
principle.

Conversely, assume that Eqs. (2.11) and (2.12) hold.
Since P(z) is an entire function, it has at most a finite num-
ber zeros in any bounded region. According to Lemma 2.2,
system (1.13) is asymptotic stability while P(z) �= 0 in the
half plane �z ≥ 0. And from Corollary 2.6, if P(z) = 0 in
the half plane �z ≥ 0, then z ∈ D̄. Hence, we need to check
whether P(z) = 0 for z ∈ D̄. Using argument principle, if
the change of argument of P(z) is equal to zero along the
closed half circle l, then P(z) �= 0. Therefore, system (1.13)
is asymptotic stability.

If the closed circle l is replaced by l′, then Theorem 2.7 is
obvious and straightforward . Since matrices A,B, K̄, and
H̄ are real and the characteristic roots of Eq. (2.4) are sym-
metric with respect to the real axis, it is sufficient to only
check whether P(z) = 0 for z ∈ d2o, the upper half part of
d1d2. Stability criterion Theorem 2.7 could be simplified as
follows.

Theorem 2.8 Under conditions of Theorem 2.3, system
(1.13) is asymptotically stable if and only if

P(z) �= 0 z ∈ d2o (2.13)

and

�l′ argP(z) = 0 (2.14)

where o stands for the origin, i.e. o = (0, 0) .

The proof is similar to Theorem 2.7. Theorem of unstable
criteria could be obtained.

Theorem 2.9 Under conditions of Theorem 2.3, system
(1.13) is unstable. If

P(z) �= 0 z ∈ d2o (2.15)

and

1

2π
�l′ argP(z) = Z, (2.16)

where Z is number of unstable characteristic roots.

Remark 2.10 Theorem 2.9 not only provided a unstable cri-
teria for system (1.13), but also gave the number of unstable
characteristic roots by the argument principle if there are no
characteristic roots on the imaginary axis.
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Fig. 2 Stability chart of Eq. (3.1)

3 Experiments

In this section, the method presented by this paper would be
applied to three milling models in cutting processes.

Example 3.1 Firstly, let us consider a simple milling model
[33]

ẋ = −px(t − τ), p > 0 (3.1)

It is easy to know p = π
2τ is the so-called stability curve

on the parameter plane (τ, p). Figure 2 shows this stability
curve (see [33]). Points below the curve correspond to stable
behavior, while upper ones correspond to unstable behavior.

In this paper, apply Laplace transform to Eq. (3.1), then
characteristic equation is obtained

P(z) = z+ pe−zτ = 0 (3.2)

Using stability criteria Theorem 2.8 and 2.9, stable behav-
iors at some different parameters p and τ would be obtained
by the symbol “*” in Fig. 2. It clearly shows a good
agreement with stability curve.

Here, phase curves of P(z) at two parameters p =
1.5, τ = 1 and p = 1, τ = 3 are provided respectively in
Fig. 3 for understanding the method presented in the paper.
In Fig. 3a, since change of the argument �l′ argP(z) = 0,
system (3.1) is stable at p = 1.5, τ = 1. However, in
Fig. 3b, change of the argument 1

2π�l′ argP(z) = 2, so
system (3.1) is unstable at p = 1, τ = 3 .

Example 3.2 Let us consider a classical milling model
(1.5) and its state-space form Eq. (1.9) [22, 23]. Hence,
characteristic equation of (1.9) is obtained by

det

[(
z 0
0 z

)
−

( −ζωn
1
mt

mt (ζωn)
2 −mtω

2
n −wh(t) −ζωn

)

−
(

0 0
wh(t) 0

)]
= 0 (3.3)

Where tool has two fluted cutter, the natural frequency is
ωn/(2π) = 922 Hz, the relative damping is ζ = 0.011, the
modal mass is mt = 0.03993 kg, the cutting force coeffi-
cients are Kt = 6 × 108N/m2 and Kn = 2 × 108N/m2.
In Fig 4, curve “-” shows stability lobes of � versus w
on Eq. (1.9) provided by full-discretization method [17].
The symbol “*” show stable behaviors at some different
parameters using the proposed method in the paper.

Subsequently, we would consider another milling model
(1.11) which takes the distributed characteristic of the cut-
ting force into account by means of a shape function [24].

Fig. 3 Phase curves P (z) of Eq. (3.2). a p = 1.5, τ = 1(stable),b p = 1, τ = 3(unstable)
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Fig. 4 Stability chart of Eq. (3.3)

Example 3.3 If the shape ω(θ) of delay differential
Eq. (1.11) is approximated by the exponential function [24]

ω(θ) = 1

q0τ
e

θ
q0τ

where q0 is the ratio of the short and regenerative delay, then
Eq. (1.11) can be transformed into a third-order system

q0τ
...
x+(1+2ζq0τ)ẍ+(2ζ+q0τ)ẋ+(1+p)x(t)−px(t−τ)= 0.

(3.4)

Hence, characteristic equation of delay differential Eq. (3.4)
is obtained

P(z)=q0τz
3+(1+2ζq0τ)z

2+(2ζ+q0τ)z+1+p−pe−zτ=0,

(3.5)

where p = k1
mω2

n
and k1 is cutting force coefficient [24].

Take the values m = 50 kg, ζ = 0.05, ωn = 775 rad/s,
and q0 = 0.01. Using the proposed method in the paper,

Fig. 5 Stability chart of Eq. (1.11)

the stability charts in the parameters plane of cutting force
coefficient k1 versus angular velocity � is shown in Fig. 5.

4 Conclusions

In this work, a stability criteria method using argument prin-
ciple is proposed for a general dynamical systems (1.13).
The stability criteria method need only to evaluate the char-
acteristic function on a straight segment on the imaginary
axis and the argument on the boundary of a bounded half cir-
cular region. At different parameters, if phase curves P(z)

have no intersection points on imaginary axis and lie in
right half plane (see Fig. 3), then the dynamic system is
in stable behavior. Otherwise, the system is unstable. In
Section 3, the method is applied to three milling models
in cutting processes. Examples 3.1 and 3.2 show a good
agreement with stability curve obtained by analytical solu-
tion or full-discretization method. Example 3.3 shows that
the presented method could be also applied to linear milling
models which described differential-integral delay equa-
tions. Results show that the evaluation of stability criteria
method proposed in the paper is very simple and valid.
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