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Abstract The present work is meant to show the effective
capability of optimizing an unbalanced Paired-Cell
Overlapping Loops of Cards with Authorization (POLCA)-
controlled production system by means of a heuristic algo-
rithm. This objective is suggested by the fact that one of the
most significant issues when using card-driven production
control systems is represented by the optimized setting of
the large number of cards within the control loops. This is
particularly true in the case of unbalanced systems, where the
number of cards may vary significantly among the different
loops. Little law is usually adopted in literature to infer this
number from historical data, but the obtained number is usu-
ally far from the optimum. Indeed, in real-world applications,
the systems to be controlled are designed to process units with
very different routings, each with different probability to
occur. In all these situations, they result particularly difficult
to set correctly. To this aim, in the present work a Genetic
Algorithm is used. The objective is that of finding the correct
number of cards and to reduce the overall Total Throughput
Time and the average Work In Process. The proposed ap-
proach may provide a valid support tool to overcome these
limitations, making the most of POLCA capabilities in many
manufacturing configurations.

Keywords POLCA .m-CONWIP . Unbalanced production
systems .Work in process . Heuristic . Genetic algorithms .

Simulation

1 Introduction

Paired-Cell Overlapping Loops of Cards with Authorization
(POLCA, [1]) has been proposed as an effective method to
improve production systems throughput time performance.
This result is obtained by means of an opportune control on
the release and the dispatching of work orders to the shop floor,
being this the key point where traditional Kanban system fails.
Briefly, POLCA is a hybrid card-based pull production control
mechanism characterized by multiple short control loops, each
cycling over two successive workstations and overlapping two
by two. This distinctive feature makes it able both to control the
overall workload and to balance it among the various worksta-
tions. Researchers have shown [2] that in the case of balanced
systems, POLCA is very effective in reducing the Total
Throughput Time (TTT) that includes the time effectively spent
by work packages within the floor shop and the time spent by
orders within the orders queue. Here, the word “balanced”
indicates that routings are uniformly distributed and that both
working and inter-arrival times are, on average, similar. In
particular, the model analyzed by the authors allows a signifi-
cant reduction of the TTT with respect to the corresponding
uncontrolled production system and to the standard CONWIP
configuration. Actually, outcomes show that POLCA is an
important and effective production control method. However,
some considerations must be addressed carefully due to the fact
that the investigated production system is very peculiar. Indeed,
it is balanced by definition, due to the strong design hypotheses
made by the authors. Often, in real-world applications, the
systems to be controlled are designed to process units with very
different routings, each with significantly different probability
to occur. In all these situations, queues may form in front of
certain workstations, whereas some other machines may be
temporarily starving and waiting for units to be worked. In
particular, when these systems have to be optimized one of
the major drawbacks to be faced is represented by the setting of
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the number of cards that are required within each different loop.
Little law is usually adopted to infer this number from historical
data [1]. However, due both to the variability of the quantities
involved in the calculation and to the intrinsic complexity of the
systems to be controlled, the obtained number is usually far
from the optimum. Some authors [2] have proposed modifica-
tions to the law to include queuing times and uncertainty within
the computation, but the result is rather complicated and diffi-
cult to be adopted in real situations. And in fact, in the case of
balanced systems a simple “trial and error” procedure is
adopted [2]. When routings and arrival times are different this
method becomes useless at all. Indeed, in this case each loop
needs a potentially different number of cards and, when the
number of loops grows up, the trial and error procedure would
be time-consuming and ineffective. The quest for a better
method is definitely worth the effort. In literature, a significant
number of works deal with the optimization of traditional
Kanban systems by means of simulation and/or heuristic
methods. Among them, it is worth mentioning the study of
Koulouriotis et al. [3]), where the authors perform the optimi-
zation of different pull control policies (Kanban, CONWIP and
hybrid pull systems) by means of simulation and a genetic
algorithm (GA) with resampling. The obtained results confirm
that the distribution of cards has a considerable effect on the
performance of the controlled systems [4] and that genetic
algorithms are very effective in such noisy environments.
Selvaraj [5] proposes the adoption of a genetic algorithm to
determine the correct number of Kanbans within a Generalized
Kanban Control Systemwith varying demand arrival rates. The
objective is that of maximizing the throughput and the machine
utilization level while reducing the average work in process.
Results are validated by means of simulation tests. Alabas et al.
[6] compare three heuristic procedures (tabu search, genetic
algorithms, and simulated annealing) supported by a simulation
tool to verify their speed of convergence and their effectiveness
in finding the correct number of Kanbans. Köchel and
Nieländer [7] combine a GAwith simulation to find the optimal
order policies in complex Kanban controlled manufacturing
system. Similar applications of such methods can be found also
in Hu and Yi [8]; Al-Tahat et al. [9] and Huang et al. [10]). With
respect to m-CONWIP systems, many works have been pub-
lished that deal with mathematical models to optimize the
number of cards in complex systems [11–13]. On the contrary,
the recent work of Ajorlou et al. [14] proposes the
adoption of a Bee Colony approach to optimize the
WIP and the total makespan of a multi-CONWIP-
based manufacturing system. They show its effective-
ness and affirm that the approach may be of great help
in real applications. It clearly emerges that heuristic methods
and simulation provide a useful tool to evaluate the impact of
design alternatives and can certainly be adopted as a decision
support instrument, able to assist managers in the control of
complex manufacturing systems.

The above mentioned results and the fact that, at present,
no such attempt has been carried out yet, authorize to believe
that the problem of optimizing the number of cards in an
unbalanced POLCA-controlled production system can be ef-
fectively approached by means of simulation-driven heuris-
tics. The present work is therefore aimed at showing the
effective capability of a simulation-driven Genetic Algorithm
to individuate the correct number of cards and to reduce the
overall TTT and the average WIP both with respect to the
unconstrained model and to a multi-CONWIP-controlled
model. Though the algorithm in itself does not represent the
objective of the work, the GA has been selected due to the fact
that it is well known, widely used, and that it has proved to be
effective in solving a large number of engineering problems.

The paper is structured as follows: first of all, a brief
introduction to the studied POLCA system is provided,
followed by a short yet exhaustive description of the adopted
genetic algorithm. Finally, the case study will be presented in
detail to show the effective capabilities of the proposed
approach.

2 The proposed unbalanced POLCA system

POLCA [1, 15] is a pull system with a peculiar authorization
mechanism. The triggering method can be implemented either
physically, by means of real cards cycling between two work
centers, or electronically. An order can enter the production
stage if and only if a card is available for the loop the item is
trying to enter. Obviously, the number of available cards
represents the constraint. The major characteristic of POLCA
with respect to Kanban or CONWIP resides in the fact that
loops are overlapping with one another (Fig. 1).

This assures that a workstation only processes items for
which capacity is available in the immediately succeeding
loop. In Fig. 1, when a card for loop A/B is available an item
is allowed to enter the shop floor (being worked on machine
A). Then, it waits before workstation B until a card for the
subsequent loop B/C is available. The card A/B still remains
attached to the item, and it is released only when the item is
allowed to enter the next loop. Owing to this mechanism, the
POLCA is able to effectively increase the performance of the
production system. As already stated in the previous para-
graph, recent researches have shown that in the case of bal-
anced systems POLCA is very effective in reducing the TTT.
It is noteworthy that “balanced” refers to the fact that routings
are uniformly distributed and that both working and inter-
arrival times are, on average, similar. Owing to this, the setting
of the number of cards within bins is rather easy (see again
[2]). Unfortunately, in real-world applications, the systems to
be controlled are designed to process units with very different
routings, each with significantly different probability to occur.
In all these situations, queues may form in front of certain
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workstations, whereas some other machines may be tempo-
rarily starving and waiting for units to be worked. This makes
the optimization of the number of cards particularly burden-
some. This work tries to propose a solution to this issue.

The proposed model is made of four workstations (A, B, C,
D) that serve three different products (P1, P2, P3). Each
product is characterized by a specific routing (R1, R2, R3),
and the corresponding arrival rate is kept very different with
the aim of further unbalancing the whole system. A simple
scheme of the model is reported in Fig. 2, where workstations,
routings, and the corresponding POLCA loops are clearly
evidenced. Inter-arrival times are such that all the workstations
have enough capability to perform the required work yet
maintaining the bottle-neck fully occupied.
In detail:

& Inter-arrival time is exponentially distributed with an av-
erage of 1.6 min;

& Product P1 follows the routing R1=[A, B, C, D] and
represents the 60 % of the production mix;

& Product P2 follows the routing R2=[A, B, D] and repre-
sents the 30 % of the production mix;

& Product P3 follows the routing R3=[A, C, D] and repre-
sents the 10 % of the production mix;

& Workstation A has a processing time of 1 min;
& Workstation B has a processing time of 1.75 min;
& Workstation C has a processing time of 1 min;
& Workstation D has a processing time of 1.5 min;
& All the processing times follow the Erlang distribution

with k =2;
& Orders are processed on “longest queue” basis at each

workstation.

The overall performance of the system is measured consid-
ering two distinct quantities, namely the Shop floor Through-
put Time (STT) and the Order Pool Time (OPT). The former

identifies the time spent by units within the shop floor, where-
as the latter is the time spent by orders within the pool prior to
enter the production stage (waiting for available cards). Their
sum is the TTT, which therefore represents the actual perfor-
mance metric:

TTT ¼ OPTþ STT

Adopting the POLCA control system allows a significant
reduction of the STT when constraints to the workload are
introduced. Such restriction, in turn, increases the OPT, due to
the fact that some orders have to wait for a free card to be
allowed to enter the production system. However, the average
reduction of the STT tends to balance the increase in the OPT
and, in particular in the case of constant processing times, it
allows a global reduction of the TTT (Fig. 3). When random
processing times are used, the effect is generally small, but the
corresponding reduction of the STT makes the control system
worth the effort, due to the fact that orders could be effectively
scheduled with the aim of reducing the OPT while
maintaining very small values of the shop-floor throughput
time. In general, while the TTT is kept unchanged or is
diminished, the STT and the WIP may be effectively reduced.
When constraints become even more restrictive (i.e., when the
number of available cards is further reduced) the OPT begins
to raise rapidly and soon prevails over the decrease in the STT,
making the average TTT increasing again.

The “trial and error” procedure (Gems and Riezebos [2])
that could be used to determine the optimal number of cards
can be resumed as follows:

1. The initial number of cards for each loop is kept relatively
high to simulate the unconstrained systems, for which
OPT=0 and STT=TTT;

2. The critical points are found by progressively reducing the
number of cards in all control loops;

Fig. 1 Overlapping loops in a POLCA-controlled system

Fig. 2 The unbalanced model with routings and loops
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3. When the TTT begins to increase again, due to excessive
values of theOPT (meaning that some units werewaiting for
cards to enter the shop floor), the iteration is stopped.

Unfortunately, the relatively high number of loops in the
model, the fact that the distribution of cards has a considerable
effect on the performance of the controlled systems and,
finally, the consideration that the number of cards in a loop
modifies the optimal number in the remaining loops make the
whole procedure time-consuming and often almost ineffec-
tive. Tests have shown, for instance, that many configurations
exist that minimize the TTTwhile are not able to optimize the
average WIP value. Such considerations justify the adoption
of a completely different approach. The same problem affects
as well the multi-CONWIP systems but, due to the lower
number of routings with respect to the actual number of loops
in a POLCA-controlled system, the latter is definitely more
cumbersome to optimize.

3 The genetic algorithm

To optimize the number of cards within the proposed model, a
standard Genetic Algorithm (GA) [16] has been opportunely
configured. Though the algorithm in itself does not represent
the objective of the work—this is, actually, the capability of
optimizing the number of cards within the loops bymeans of a
heuristic search—the GA has been selected due to the fact that
it is well known, widely used, and effective. Indeed, this
heuristic approach has been extensively and successfully ap-
plied in the last decades to solve production and operations
management problems (see, for instance, [17–19]). In a GA, a
population of aspirant solutions to a generic optimization
problem evolves towards better configurations. The evolution
starts from a randomly generated population and moves by
generations, during which the fitness of every individual is
evaluated. The more suitable individuals are stochastically
selected, two by two, and are later recombined and mutated
to form a new population. The new population is then used in
the next iteration of the algorithm. The algorithm terminates
when either a maximum number of generations has been
reached or a suitable fitness level has been obtained for the
population (convergence). The typical genetic algorithm requires
therefore:

& A genetic representation of the solution space;
& A fitness function to evaluate the solutions;
& Crossover and mutation operators;
& A valid termination condition;
& A final neighborhood search procedure to further improve

the obtained solution.

The latter point is very important as a GA generally moves
toward the optimal solution but is often unable to reach the

actual minimum . The neighborhood procedure is therefore
necessary to explore with a finer mesh the solution space
and to individuate eventual better individuals.

As already stated, the representation of each individual is
generally constituted by a fixed-length array of bits. Variable
length representations may also be used, but the crossover
implementation becomes consequently burdensome. Once the
genetic representation and the fitness function are defined, the
GA proceeds to initialize a population of solutions and then to
improve it through the iterative application of the available
operators.

To begin with, in the present circumstance, chromosomes
embody the numbers of cards in each loop by means of a
simple binary representation. To grant that the GA is able to
explore the whole solution space, including the unconstrained
configurations, after some initial testing the number of bits for
each loop within the model has been fixed to 6, thus giving a
maximum of 63 cards. Being 7 the loops, each chromosome
has an overall length of 42 bits. Figure 4 clearly shows the
sequence of loops and the corresponding routings within a
chromosome.

In brief, the first six bits are used to calculate the cards in
the first loop within the first routing, the following six refer to
the second loop in the same routing and so on till all the loops
of the routing have been correctly allocated. Then, loops from
the other routings follow up in a similar fashion till the
completion of the chromosome.

The GA uses two different but equally probable crossover
operators:

& Single-point crossover. A position is randomly selected
within each two chromosome (ancestors) and the off-
spring is generated by combining the leftmost part of the
first with the rightmost part of the second and vice versa;

& Two-point crossover. In this case, two points are selected and
the genes comprised between these positions aremoved from
the first chromosome to the second and vice versa.

Also, it makes use of two equally probable mutation
operators:

& Position exchanging. Two positions are randomly selected
within a single chromosome and the corresponding bits
are exchanged;

& Bit inversion. In this case, a position is randomly selected
and the corresponding bit is modified.

The crossover procedure is controlled by the cross-
over ratio (CR) and the mutation by the mutation ratio
(MR). At the end of each iteration, the best individual
within the population undergoes an opportune neighbor-
hood search. In brief, the number of cards is obtained
from the binary representation for each loop and is later
modified (increased or reduced of one unit). The
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corresponding fitness is evaluated and compared to the
original one. If the new solution is better than the
former, it is kept in its place and the GA begins a new iteration.
The best individual is also saved in a separate structure, the
elite , and is re-inserted within the population at each iteration
to make the most of its performing genotype. When all the
epochs have been run or if no improvement to the best
individual has been found during the last ten consequential
iterations the algorithm is stopped.

The effective capability of the GA to perform well and to
optimize the number of cards mainly resides in the evaluation
of the fitness function for each individual. In this study, the
fitness is obtained by means of a Monte Carlo simulation
process. In brief, using the commercial simulation software
“Simul8,” the whole POLCA model has been accurately
represented. The GA has been built using the free Pascal

Object-Oriented Programming language. At each iteration,
every individual is used to pass the proper parameters (i.e.,
the number of cards for all the loops) to the simulation
process. The simulation is then executed, and the results are
collected to evaluate the fitness function.

As already stated, there are many different configurations
that minimize the TTT with different values of WIP. There-
fore, the fitness function has been evaluated with three well-
defined objectives in mind:

1. Minimizing the average TTT;
2. Reducing the WIP, by reducing the number of cards for

each loop;
3. Maximizing the overall throughput.

The simulation model has been programmed to return, at
the end of each run, the average TTT value, the average WIP

Fig. 3 TTT reduction trend when
constraints are applied

Fig. 4 Structure of a chromosome
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and the throughput value for each run. The fitness function has
been evaluated as follows:

f ið Þ ¼ TTTi þ
X

j
WIPij � t j

� �
þ NCiX

j
WIPij

ð1Þ

where:

& f(i) is the fitness of the i th individual;

& TTTi is the average Total Throughput Time for the i th
individual, as computed by the simulation. It assures that
better individuals, having low values of both OPT and
STT, have better probabilities of being selected. Also, the
contribution of the OPT to the TTTassures that the overall
throughput is effectively maximized adding penalties to
those configurations that have greater values of the OPT;

& the second addend represents the penalty due to the number
of items that are on average within the shop floor. The
calculation is performed for all the j routings separately,
considering the average cycle time (t j) for the routing itself;

& the last term represents the penalty due to the number of
cards allocated within all the loops of all the j routings for the
individual. This has been introduced to move the GA toward
those configurations that use the lower number of cards. To
assure that greater penalties are given to those configurations
that have a large number of cards and do not use the most of
them, the actual number of cards NCi is compared to the
value of the total average WIPi. One may observe that this
behavior is secured by the second addend, but test has shown
that the introduction of the last one significantly improves
and speeds up the convergence of the GA.

Finally, the already mentioned neighborhood search deserves
a brief explanation. Indeed, it is well known from literature [20]
that GAs perform exceptionally when moving to good solutions
with a coarse resolution. They become ineffective when local
minima have to be located exactly. Consequently, several differ-
ent neighboring search procedures have been used widely to
enhance the heuristic. In this context, such procedure has been
used both at the end of each epoch, trying to improve the best
individual of the moment, and at the end of the GA execution,
both if all epochs have been run or if the termination condition
has been met, to verify that the found solution actually represents
a minimum. Technically speaking, the procedure used at the end
of each iteration randomly selects a loopwithin the best available
chromosome and increases or decreases (with equal probability)
the number of cards in the loop by one unit. Then, a simulation is
run and the fitness is evaluated again. If this is better than the
original one, the new modified chromosome is saved within the
population. On the contrary, the neighborhood procedure used at
the end of the algorithm consists of an iteration during which the
number of cards in all loops is increased or decreased, by one unit
at time, up to the 10 % of the number itself. The procedure has
the major drawback of being quite slow, but its use is fully

justified by the fact that it finds extremely improved solutions
in most cases and that the number of simulations required is
tolerable. In fact, the number of cards within the loops of the best
chromosome at the end of the trial is quite small, and the
neighborhood search entails a maximum of one or two simula-
tions for each loop. Globally, this is comparable to performing a
further iteration on the whole population set. The complete flow
diagram of the proposed algorithm is reported in Fig. 5.

In brief, the algorithm can be resumed as follows:

& The initial population is randomly created;
& In the first loop (index i , in Fig. 5), the algorithm cycles

through the individuals and uses them to set the initial
number of cards for the simulation. A simulation is run for
each chromosome and the corresponding fitness is saved;

& A second loop (index j) is started to cycle through the epochs;

– A nested loop (index z ) cycles through the individuals to
generate the new population at the given epoch;

Two individuals are selected by using the classic roulette
wheel procedure, based on the individual fitness;
Crossover and mutation operators are applied (as previ-
ously explained, two equally probable crossover and
mutation operators are used);
The new fitness is evaluated and the z th chromosome is
saved within the new population;

– Before moving to the next epoch a “short” neighborhood
search is performed starting from the best individual
within the new population;

A single simulation is run and the original individual is
overwritten if the neighbor has a better fitness;

– Elitism procedure is performed and the best individual is
preserved for the future generations;

– If the maximum number of epochs is reached or a termi-
nation condition applies the outer loop (index j ) is
terminated;

& An extensive neighborhood procedure is run (as explained
above).

4 The case study

The proposed approach has been tested verifying the GA
outcomes against the unconstrained POLCA model, to show
that it actually allows a significant reduction of the STTwhen
constraints to the workload are introduced. Such restriction, in
turn, increases the OPT, due to the fact that some orders have
to wait for a free card to be allowed to enter the production
system. However, the average reduction of the STT results to
be greater than the corresponding increase in the OPT. To
validate the experiment, the POLCA-controlled system has
been as well compared with an identical model controlled by a
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multi-CONWIP (m -CONWIP) mechanism with an appropri-
ate “forward-looking loading rule.” In particular, the Work In
Next Queue rule has been adopted to grant that the items are
favored within routings for which capacity is available in the
succeeding work centers. This helps the m-CONWIP to re-
duce the OPT and to improve its performance. The m -
CONWIP has already proved (see for instance Gems and
Riezebos [2]) to be effective in balancing the workload among
the available workstations under particular circumstances. In
particular, the authors verified that it behaved generally better
than the POLCAmodel. Therefore, it may be used as a reliable

benchmark to verify the capabilities of the proposed approach.
The optimization of the number of cards, in this case, has been
obtained by means of the same genetic algorithm, provided
that the chromosome length is appropriately adjusted due to
the presence of only three cards loops. Owing to this, the
present work aims to put in evidence both the performance
of the POLCA control and the ease with which the optimal
number of cards can be set.

To begin with, a first set of tests has been used to determine
the optimal configuration of the GA for both cases. In particular,
the major issue to be faced at this stage dealt with the population
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Fig. 5 Algorithm flow diagram
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size and the number of epochs (iterations) to be used. Indeed, the
simulation-driven GA tends to become really slow as soon as the
number of individuals to be evaluated grows up. This is due to
the fact that each chromosome requires an independent run of the
simulator and this is a really time-consuming activity. The sim-
ulation itself had been previously validated with a significant
number of tests and, following the outcomes of such experi-
ments, each simulation has a warm-up period of 25,000 min, to
eliminate the initial transient, and a result collection period of
100,000 min. When the GA requires the simulation to be run,
this takes a few seconds to open the software package, load the
initial values, and get the results back. Necessarily, this grows up
linearly with the population size and the epochs number. The
optimal values for the GA parameters have been set, bymeans of
trials, as follows:

& The initial crossover and mutation ratios have been select-
ed equal to CR=0.70 and MR=0.15;

& The number of epochs and the population sizes, instead,
have been selected after testing several configurations (20,
30, 40, and 50 individuals with the epochs varying be-
tween 50 and 100 in steps of 10). Epochs have been kept
low enough to avoid excessive simulation durations;

& After determining the “optimal” number of epochs and the
population size, the crossover and mutation ratios have been
further investigated to improve the obtained solution. In par-
ticular, their values have been studied in the ranges 0.60≤CR≤
0.80 (in steps of 0.05) and 0.10≤CR≤0.30 (in steps of 0.05).

Though the adopted procedure is coarse and far from
optimality, it can be considered sufficient enough to the aim
of the present work. Indeed, the focus is not that of optimizing
the GA, but that of showing it can be effectively used to
optimize the unbalanced POLCA-controlled production sys-
tem. In brief, the performed tests have shown clearly that a
standard GA, configured with almost standard values of its
parameters, is able to optimize the production system under
exam. Moreover, the results remain almost steady while mod-
ifying the parameters, indicating that the algorithm can be
considered robust and effective. In particular, when the pa-
rameters have been tested within the above mentioned ranges,
the corresponding variation of the fitness of the best individ-
uals remained within the 6 % of the “absolute” best configu-
ration. This, in turn, is characterized by the following values:

& Population size=30;
& Epochs=50;
& CR=0.65;
& MR=0.20;

As already stated, if the best individual remains unchanged
for ten consecutive epochs the GA is stopped. At each itera-
tion, all the population is renewed and the elite is used to re-
insert the best individual of the moment. It is important to
pinpoint that though a number of interesting studies are

available that deal with the convergence analysis and the
stopping criteria of GAs (see for instance [21, 22]) in the
present work a “brute force” approach has been preferred,
mainly due to the fact that the epochs number had to be kept
low to avoid too long computing times. Therefore, an in-depth
analysis on convergence and on the stopping criteria would
have been costly and almost ineffective. The theoretical
values, indeed, would result far larger than those actually
used. This would result, in the end, in extremely large com-
puting times. However, the great number of test showed that
the outcomes can be considered almost reliable.

5 Results and discussion

The test has been performed running 100 trials for the single
CONWIP, them -CONWIP, and the POLCAmodels with 100
different sets of pseudo-random numbers.

As an example, let us consider the results derived from the
first set of pseudo-random numbers. In this case, the
unconstrained situation is characterized by the following av-
erage values (obtained by simulation):

& OPT=0;
& STT=TTT=39.19 (min);
& WIP≈36.

Test have shown that the standard CONWIP (single loop)
is not able to improve this situation and that the TTT value
increases (due to the increase of the OPT) as soon as con-
straints are imposed, in perfect accordance to the outcomes of
Germs and Riezebos [2]. On the contrary, the m -CONWIP
model outperforms the single loop approach and is able to
improve the situation, finding an optimal solution in 14
epochs. These improvements are resumed in Table 1.

The TTT is greater with respect to the one in the
unconstrained case, but the number of cards is very little,
granting a very high throughput with low values ofWIP, whose
values are, on average, 12. The best chromosome, showing the
number of cards for the three loops, is the following:

[[11] [5] [1]]

The same pseudo-random numbers were used to verify the
POLCA model, and results are shown in Table 2.

The TTT is about 1.5 min lower than in m-CONWIP case,
and the number of cards has decreased enough, granting also
in this case a very good throughput with low values of WIP
(15, on average), as confirmed by the trend of the fitness
function. The best chromosome, having the structure reported
in Fig. 4, is the following:

[[8 7 4] [4 10] [25]]

It is noteworthy that while the TTT shows a little but not
negligible improvement with respect to the m -CONWIP
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model, the fitness function shows a greater difference. This
may be explained, in accordance to Eq. 1, with lower values of
the averageWIP. Thus, the test confirms a very good behavior
of the POLCA model with the “longest queue” selection rule
in the case of unbalanced systems.

An excerpt of the whole experiment outcomes, where the
best solutions for the first 20 trials are summarized for both
models, is reported in Table 3.

Interestingly, the GA found the same optimal solution in 95
cases out of 100 in the case of the POLCA system and all the
times in the case of the m-CONWIP. In the five cases where
the best chromosome differed (as, for instance, in trial 2), the
following individual was found:

[[8 10 4] [4 10] [25]]

This is strictly similar to the previous one, differing for only
three cards in the second loop of the first routing. However,
the values of the TTT and of the fitness function always
showed to be better than in the m -CONWIP case.

This confirms that the algorithm was effectively able to
converge to very good individuals. Besides, the outcomes
show that the POLCA results are generally better than those
found the m -CONWIP model in all cases. This is a major
result, as it shows that the POLCA model with the “longest
queue” rule, in the case of unbalanced routings, performs
better than the m -CONWIP, whereas Germs and Riezebos
[2] verified that in the case of balanced systems, the latter
behaved decidedly better. This is due to the fact that POLCA

shorter loops have a better capability of recovering and
balancing the orders within the shop floor with respect to the
longer loops of the m -CONWIP. While this aspect was irrel-
evant in a perfectly balanced system, in the present case it
became the determining factor. Therefore, being the setting of
POLCA cards a major operating difficulty, above all if com-
pared to standard CONWIP or even to m -CONWIP-con-
trolled systems, the proposed approach may provide a valid
support tool to overcome this limitation making the most of
POLCA capabilities in many manufacturing configurations.

In conclusion, it clearly emerges from these experiments
that heuristic methods (other than GAs could be used as well)
and simulation may provide a useful tool to evaluate the
impact of design alternatives for the POLCA systems and
can certainly be adopted as a decision support instrument,
able to assist managers in the control of complex manufactur-
ing systems. Indeed, they dramatically reduce the difficulty
that one may encounter in properly setting the number of cards
within the loops, keeping in mind that the distribution of cards
has a considerable effect on the performance of the controlled
systems. The performed tests, though they could be further
improved with a finer setting of the parameters and a higher
number of epochs for the GA, confirmed a very good behavior
of the POLCA model with the “longest queue” selection rule
in the case of unbalanced systems. In particular, while the TTT

Table 1 Improvements
during a trial of the m-
CONWIP model

Epoch TTT Fitness NC

1 41.54 76.43 94

2 40.16 66.59 64

5 40.16 65.01 45

8 40.33 64.54 39

9 41.05 64.54 38

12 42.85 63.02 22

14 41.04 62.89 17

Table 2 Improvements
during a trial of the
POLCA model

Epoch TTT Fitness NC

1 39.68 82.78 265

2 39.78 78.37 207

4 40.67 69.82 95

7 41.03 67.31 63

9 40.78 65.55 44

11 39.44 58.53 49

14 39.44 58.48 46

16 39.39 58.58 40

Table 3 Results of the first 20 trials

m-CONWIP POLCA

Trial TTT Fitness NC TTT Fitness NC

1 41.04 62.89 17 39.39 58.48 40

2 98.76 120.57 17 96.74 116.76 43

3 44.81 65.05 17 43.28 61.92 40

4 63.25 83.91 17 60.99 79.96 40

5 39.46 60.36 17 37.93 57.29 40

6 43.67 65.12 17 42.12 59.16 40

7 48.23 71.17 17 47.91 69.67 40

8 51.56 82.31 17 44.11 76.45 40

9 59.45 94.01 17 59.13 91.43 40

10 43.42 61.12 17 41.88 59.80 40

11 44.82 61.77 17 42.07 56.18 40

12 57.82 86.45 17 53.12 83.11 40

13 46.32 68.13 17 46.01 63.67 40

14 38.98 60.01 17 36.57 59.63 40

15 39.12 63.77 17 37.63 59.89 40

16 47.54 65.62 17 46.13 64.48 40

17 44.16 71.22 17 41.05 67.02 40

18 42.02 57.11 17 40.78 57.02 40

19 49.15 63.52 17 48.57 62.37 40

20 47.87 62.21 17 47.53 58.79 40
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was kept near the optimal values, both the STT and the WIP
were effectively reduced, and this result was obtained by
means of a fast simulation-driven GA that eliminated
completely the burden of setting the correct number of cards
within the many control loops required by the approach.

6 Conclusions

POLCA is a hybrid card-based pull production control mech-
anism characterized by multiple short control loops, each
cycling over two successive workstations and overlapping
two by two. This distinctive feature makes it able both to
control the overall workload and to balance it among the
various workstations. In the case of balanced systems,
POLCA is very effective in reducing the Total Throughput
Time (TTT) but often, in real-world applications, the systems
to be controlled are designed to process units with very
different routings, each with significantly different probability
to occur. In all these situations, queues may form in front of
certain workstations, whereas some other machines may be
temporarily starving and waiting for units to be worked.When
these systems have to be optimized, one of the major draw-
backs to be faced is represented by the setting of the number of
cards that are required within each different loop. Little law is
usually adopted to infer this number from historical data.
However, due both to the variability of the quantities involved
in the calculation and to the intrinsic complexity of the sys-
tems to be controlled, the obtained number is usually far from
the optimum. In the case of balanced systems, a simple “trial
and error” procedure can be adopted, but it is as much true that
when routings and arrival times are different this method
becomes ineffective. This is mainly due to the fact that in this
case each loop needs a potentially different number of cards
and that, when the number of loops grows up, the trial and
error procedure would be time-consuming and unwieldy. The
present paper has therefore addressed the optimization of the
number of cards by means of a simulation-driven genetic
algorithm. Though the algorithm in itself does not represent
the objective of the work, the GA has been selected due to the
fact that it is well known, widely used, and effective. The
objective was that of showing the effective capability of the
proposed approach to individuate the correct number of cards
and to reduce the overall TTT and the average WIP, both with
respect to the unconstrained model and to a multi-CONWIP-
controlled model. The results show that the POLCA outcomes
are generally better than those found the m -CONWIP model
in all cases. This is a major result, as it shows that the POLCA
model with the “longest queue” rule, in the case of unbalanced
routings, performs better than them -CONWIP, whereas in the
case of balanced systems, the latter had behaved absolutely
better. This may be ascribed to the fact that POLCA shorter
loops have a better capability of recovering and balancing the

orders within the shop floor with respect to the longer loops of
the m-CONWIP. While this aspect was irrelevant in a perfect-
ly balanced system, in the present case it became the deter-
mining factor. The setting of POLCA cards is undoubtedly a
major operating difficulty, above all if compared to standard
CONWIP or even to m -CONWIP-controlled systems. There-
fore, the proposed approach may provide a valid support tool
to overcome this limitation making the most of POLCA
capabilities in many manufacturing configurations.

As actual production systems are characterized by rapid
modifications to the production mix and to the order arrival
times, a possible future work could be addressed to the iden-
tification of an auto-adaptive tool able to rapidly re-configure
the number of cards within loops as soon as those modifica-
tions occur.
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