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Abstract Ti–6Al–4V is widely used in the aerospace, auto-
mobile, and biomedical fields, but is a difficult-to-machine
material. Electrical discharge machining (EDM) is regarded as
one of the most effective approaches to machining Ti–6Al–4V
alloy, since it is a non-contact electro-thermal machining
method, and it is independent from the mechanical properties
of the processed material. This paper aims to combine grey
relational analysis and Taguchi methods to solve the problem
of EDM parameters optimization. From the viewpoint of
health and environment, tap water as working fluid has good
working environment, since it does not release harmful gas.
The process parameters include discharge current, gap volt-
age, lifting height, negative polarity and pulse duty factor. The
electrode wear ratio (EWR), material removal rate (MRR) and
surface roughness (SR) as objective parameters are chosen to
evaluate the whole machining effects. Experiments were car-
ried out based on Taguchi L9 orthogonal array and grey
relational analysis, and then verified the results through a
confirmation experiment. Compared the machining parame-
ters A1B1C3D2 with A1B2C2D2, MRR increased from
1.28 mm3/min to 2.38 mm3/min, EWR decreased from 0.14
to 0.10 mm3/min and SR decreased from Ra 2.37 μm to Ra
1.93 μm. The process parameters sequenced in order of rela-
tive importance are: the ratio of pulse width to pulse interval,
discharge current, lifting height and gap voltage. The results
showed that using tap water machining Ti–6Al–4V material

can obtain high MRR, decrease the machining cost and have
no harmful to the operators and the environment.
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1 Introduction

Ti–6Al–4V alloy has exceptional merits such as high
strength–weight ratio, good temperature stability and promi-
nent corrosion resistance, which makes it widely used in
aerospace, automobile, chemical and biomedical fields [1,
2]. However, it is a hard-to-cut material with its high melting
and low thermal conductivity and it not suitable for traditional
machining. Therefore, non-traditional machining methods
such as electrical discharge machining (EDM) have been used
to process this alloy. EDM is a non-traditional machining
method, which is extensively used in machining hard, high-
strength, complex geometry shape and temperature-resistant
materials in a contactless manner. The material is melted and
evaporated by the heat between electrode tool and work piece
[3–9]. Recently, EDM technology made it widely used in
machining the key parts such as aerospace and aeronautical
components. Much research has been conducted in an attempt
to improve the EDM material removal rate (MRR), surface
roughness (SR), reduce the electrode wear rate (EWR) and
seek optimal machining parameters.

Brass and bronze were used as electrode materials to ma-
chining D2 tool steel in tap water and deionized water, and the
results showed that by using 75 % tap water and 25 % deion-
ized water mixture, the dielectric can obtain the maximum
MRR and the minimum EWR [10]. In order to obtain surface
integrity of Ti–6Al–4V, graphite, electrolytic copper, alumin-
ium and copper–tungsten material were researched as EDM
electrodes [11–14]. EDM dielectric-water-in-oil, kerosene and
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deionized water were studied to get high MRR and low EWR
[15–18]. Powder-mixed EDM is one of the methods for
improving the capabilities of EDM, which can reduce the
gap between the tool and work piece, and make the machining
more stable and improve the MRR [19–22]. Cryogenic
cooling and treatment method can reduce EWR in Ti–6Al–
4V and Ti 6246 alloy EDM [23, 24]. Ultrasonic, vibratory,
rotary and magnetic field can also improve MRR in EDM
[25–30]. The residual stresses and white layer have a great
relationship with the type of the EDM dielectric [31, 32].
Machining performance in the EDM process can be improved
effectively through optimal machining parameters [33–39].
Using kerosene as dielectric will discharge large amounts of
solid, liquid and gaseous wastes, which result in serious
environmental problems. These toxic substances can enter
the body through inhalation and skin contact [8, 9].

Green manufacturing aims at improving the efficiency and
saving resources. Thus, optimization of process parameters is
an essential requirement to achieve environmentally friendly
EDM. The aim of this paper was to select optimum process
parameters for Ti–6Al–4Valloy green EDM. The experiments
were designed using a Taguchi L9 orthogonal array. Peak
current, gap voltage, lifting height and pulse duty factor were
the process parameters considered in this study. The experi-
mental data of MRR, SR and EWR were transferred to grey
relational grade and were assessed to determine the significant
machining parameters. The goal of seeking high efficiency,
high quality and no-pollution machining meets the modern
industrial requirements.

2 Experiments research

The work piece material was Ti–6Al–4V alloy with the di-
mension of 50×50×8mm. The sample wasmilled and ground

to keep parallel before the experiments. The chemical com-
position of the alloy is shown in Table 1. In this study, the
CNC ACTSPARK EDM machine is used and the experimen-
tal setup is shown in Fig. 1. A red copper rod with the diameter
of 10 mm and the height of 100 mm was used as electrode in
this study. In addition, tap water was employed as a dielectric
fluid in this investigation.

However, there are several machining parameters to be
considered in the EDM process. The process parameters such
as discharge current, gap voltage, the ratio of pulse width to
pulse interval and lifting height have a clear effect on the EDM
performance of Ti–6Al–4V alloy. Table 2 presents the four
process parameters and three levels of the machining param-
eters designed in the experiments. This experiments used a
negative polarity electrode and the Taguchi experimental de-
sign of L9(3

4) orthogonal array with four columns and nine
rows. The results of experiments were depicted in Table 3.

Each experiment was repeated three times with the average
being taken. TheMRR, EWR and SR of the machined surface
are the performance characteristics to evaluate the machining
quality in this study. The EWR (in cubic millimeter per
minute) is defined by the volume of the electrode worn in
the period of working time in minute. The MRR (in cubic
millimeter per minute) uses the same measuring unit that
accounts for the work piece removal volume under the work-
ing time. To measure the weight of the worn electrode and
workpiece removal, a precision balance (NL5003, China) was
used. In the experiments, the surface roughness of the ma-
chined work piece was measured by a surface roughness tester
(Taylor Hobson, UK).

3 Optimal multi-objective EDM parameters

The relation between the objective parameters and the ma-
chining parameters can be determined through the grey rela-
tional analysis method. Based on this theory, the grey rela-
tional grade can be acquired to judge of multiple objective
parameters, adopting discrete value to evaluate and find the
relationship of these data. The sequences can be categorized
into two types for our research.

Table 1 Chemical composition of Ti–6Al–4Valloy

Element Ti Al V Fe O C N H

wt.% 89.464 6.08 4.02 0.22s 0.18 0.02 0.01 0.0053

Fig. 1 The EDM experimental
setup
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For the higher-the-better MRR, data preprocessing is cal-
culated by:

x�i kð Þ ¼ x 0ð Þ
i kð Þ−minx 0ð Þ

i kð Þ
maxx 0ð Þ

i kð Þ−minx 0ð Þ
i kð Þ

ð1Þ

For the lower-the-better EWR and SR, data preprocessing
is calculated by:

x�i kð Þ ¼ maxx 0ð Þ
i kð Þ−x 0ð Þ

i kð Þ
maxx 0ð Þ

i kð Þ−minx 0ð Þ
i kð Þ

ð2Þ

Where xi
*(k ) is obtained from grey relational analysis; min

xi
(0)(k ) is the minimum value of sequence xi

(0)(k ); maxxi
(0)(k )

is the maximum value of the sequence xi
(0)(k ); x (0) is the

expectation value. Table 4 shows the data preprocessing
results.

The grey relational coefficient can be calculated as:

γ x0 kð Þ; x�i kð Þ� � ¼
min

i
min

j

���
��� x0 kð Þ−x�j kð Þ
���

���þ ζmax
i
max

j
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��
�

��
�

x0 kð Þ−x�i kð Þj j þ ζmax
i

max
j x0 kð Þ−x�j kð Þ
���

���
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Where x0(k ) the ideal value:
Δ0i(k )=|x0(k )−xi*(k )| is the difference of the absolute

value between x0(k ) and xi
*(k );

Δmin=∀jmin∈i ∀kmin|x0(k )−xj*(k )| is the smallest value
of Δ0i;

Δmax=∀jmax∈i ∀kmax|x0(k )−xj*(k )| is the largest value
of Δ 0i;

ζ is a coefficient that is defined in the range between 0 and 1.

Δv ¼ 1

nm

X

i¼1

m X

j¼1

n 1

n
x0 kð Þ−x j� kð Þ�� �� ¼ 0:4032 ð4Þ

εΔ ¼ Δv

Δmax
¼ 0:4032 ð5Þ

Δmax≤3Δv ð6Þ

1:5εΔ < ζ≤2εΔ ð7Þ
In this paper, through the calculations, we selected ζ as

0.75. The grey relation coefficients of each performance char-
acteristic are calculated using Formula (3), the results and grey
relational grade are shown in Table 5. No. 7 shows the highest
grey relational grade, indicating the optimal process parameter
set of A1B2C2D2 has the best multiple performance character-
istics among the nine experiments.

Since the experimental design is orthogonal, it is possible
to separate the effects of each process parameter at different
levels. For example, the mean of grey relational grade for the
discharge current at level 1, 2 and 3 can be calculated by
taking the average of the grey relational grade for the exper-
iments1–3, 4–6 and 7–9, respectively. The mean of the grey
relational grade for each level of other machining parameters

Table 2 Experimental levels of
the machining parameters Symbol Control parameters Level 1 Level 2 Level 3

A Discharge current(A) 11 16 20

B Pulse width/pulse interval (Ton/Toff) (μs) 30:70 50:50 70:30

C Gap voltage (V) 20 25 30

D Lifting height (mm) 3 6 9

Table 3 L9(3
4) orthogonal array, control parameters and observed values

No. Control factors Observed values

A B C D Ra (μm) MRR (mm3/min) EWR (mm3/min)

1 1 1 1 1 2.17 2.96 0.21

2 1 2 2 2 2.37 1.28 0.14

3 1 3 3 3 2.83 1.73 0.16

4 2 1 2 3 2.19 3.27 0.30

5 2 2 3 1 2.61 4.30 0.30

6 2 3 1 2 2.86 4.07 0.28

7 3 1 3 2 2.15 5.90 0.41

8 3 2 1 3 2.65 6.62 0.41

9 3 3 2 1 4.27 6.36 0.41

Table 4 Grey relational
generating of MRR,
EWR and SR

Number MRR EWR SR
Ideal sequence

1 1 1

1 0.32 0.75 0.96

2 0 1 0.89

3 0.09 0.93 0.68

4 0.37 0.41 0.98

5 0.56 0.40 0.78

6 0.52 0.47 0.66

7 0.86 0.03 1

8 1 0.03 0.76

9 0.95 0 0
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can be computed in a similar method. Figure 2 shows the
influence of process parameters on machining characteristics.
Based on the grey relational analysis, the predicted optimal
process parameters set is A1B1C3D2. The mean value of the
grey relational grade is 0.63. The process parameters se-
quenced in order of relative importance are the following:
discharge current, the ratio of pulse width to pulse interval,
gap voltage, and lifting height.

4 Confirmation experiment research

Since the optimal EDM process parameter set is obtained, the
confirmation tests are used to check the performance charac-
teristics improvement. The data of the confirmation experiment

are compared with the data obtained by orthogonal array and
grey theory prediction. The experimental comparison results
between A1B2C2D2 and A1B1C3D2 are shown in Table 6. We
can see that the MRR increased from 1.28 mm3/min to
2.38 mm3/min, the EWR decreased from 0.14 to 0.10 mm3/
min and the SR decreased from 2.37 to 1.93 μm. The corre-
sponding amelioration in MRR is 87.3 %, EWR reduced 25.7
% and surface roughness reduced 18.9 %, respectively.

The SEM micrograph of surface topography with the
orthogonal array parameters (A1B2C2D2) is shown in
Fig. 3a and the optimal grey relation analysis theory
predicted design (A1B1C3D2) is shown in Fig. 3b. We
can see that the latter cracks are smaller than the
former. Surface defects such as globules debris and
melted drops are unclear except for crater scattering
in A1B1C3D2. Figure 3 also shows that many micro-
voids existed on the surface of the sample machined.

In addition, energy-dispersive X-ray spectroscopy of Ti–
6Al–4Valloy of A1B1C3D2 is shown in Fig. 4. It indicated that
the oxide form of TiO occurs when Ti–6Al–4V alloy is ma-
chined using copper electrode with tap water dielectric fluid.
As illustrated in Fig. 4, the working area was occupied by the
tap water droplets which can be easily vaporized and subse-
quently reacted with the melted material. The melted Ti metal
is oxidized by oxygen decomposed from water.

The sole crater machined by EDM with tap water is
measured by Confocal laser scanning microscope (OLYM-
PUS OLS3000), we can see that the surface roughness of
A1B2C2D2 machining parameters in Fig. 5a is worse than
the optimal grey theory prediction design (A1B1C3D2)
shown in Fig. 5b. From Fig. 6a, we can see the cross-

Table 5 Grey relational coefficients and grades

Number Grey relational coefficient Grey relational grades

MRR EWR SR Average value Rank

1 0.42 0.67 0.93 0.68 3

2 0.33 1 0.82 0.72 1

3 0.35 0.88 0.61 0.61 6

4 0.44 0.46 0.96 0.62 5

5 0.53 0.45 0.70 0.56 7

6 0.51 0.49 0.60 0.53 8

7 0.79 0.34 1 0.71 2

8 1 0.34 0.68 0.67 4

9 0.91 0.33 0.33 0.53 9

Fig. 2 Process parameters effects
on grey relational grade
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sectional side wall micrograph of samples machined with
the orthogonal array parameters (A1B2C2D2) has much
molten metal in the side wall, but in Fig. 6b, there is
almost no molten metal in the side wall. So, the SR of
A1B1C3D2 is better than A1B2C2D2. We found that using
A1B2C2D2 parameters machined hole is larger than using
A1B1C3D2 parameters. The results demonstrate that
A1B1C3D2 parameters machined hole has better machining
precision.

5 Conclusions

The manufacturing industry was considered as one of the
main sources of environmental pollution. How to minimize
the pollution is an important topic for manufacturers all
over the world. The novel EDM Ti–6Al–4V with tap water
was explored. The application of the Taguchi method and
grey relational analysis to improve the multiple perfor-
mance of the EWR, MRR and SR in the EDM has been
reported in this paper. There are three conclusions gained
as follows:

1. The optimal process parameters are 11 A discharge cur-
rent, 30 V gap voltage, 3 mm lifting height, 30 μs pulse
duration and 30 % duty factor.

2. The machining performance of the EWR decreased from
0.14 to 0.10 mm3/min, the MRR increased from 1.28 to
2.38 mm3/min, and the SR decreased from Ra 2.37 μm to
Ra 1.93 μm, The corresponding improvement in MRR is
87.3 %, EWR reduced 25.7 %, and SR reduced 18.9 %,
respectively.

3. It was indicated that the method of combining Taguchi
and grey relational analysis was efficient and effective for
multi-objective parameters optimization in green electri-
cal discharge machining Ti–6Al–4V with tap water.
Using tap water machining, Ti–6Al–4V alloy has high
MRR, has no harm to operators and the environment,
and also decreases the whole cost.

Table 6 Results of the confirmation experiments

Observer values Orthogonal array Optimal combination levels of
machining parameters

Prediction Experiment

Level A3B1C3D2 A1B1C3D2 A1B1C3D2

MRR (mm3/min) 5.90 – 6.02

EWR (mm3/min) 0.41 – 0.17

SR (μm) 2.15 – 2.07

Grey relational grade 0.72 0.78 0.80

Fig. 3 SEM micrographs of the
work piece. a A1B2C2D2, b
A1B1C3D2

Fig. 4 Energy-dispersive X-ray spectroscopy of Ti–6Al–4V alloy
A1B1C3D2
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