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Abstract This paper presents a new approach for cutting
force denoising in micro-milling condition monitoring. In
micro-milling, the comparatively small cutting force signal
is contaminated by heavy noise, and as a result, it is necessary
to denoise the force signal before further processing it. The
traditional denoising methods, based on Gaussian noise as-
sumption, are not effective in this situation because the noise
is found to contain high non-Gaussian component. Based on
the force and noise's sparse structures in the time–frequency
domain, this approach employs a sparse decomposition ap-
proach and solves denoising as a convex optimization prob-
lem. It is shown that the proposed approach can separate the
heavy non-Gaussian noise and recover useful information for
condition monitoring.

Keywords Micro-milling . Conditionmonitoring . Sparse
representation . Non-Gaussian noise

1 Introduction

CNC machining is fundamental to modern manufacturing.
During machining, the contact between the cutting tool, work
piece, and the chips imposes pressure on the tool and causes

the shape of the tool to change, either gradually as tool wear or
abruptly as tool fracture or breakage. Tool abnormal condi-
tions can range from slightly exceeding the tolerances speci-
fied for the product to catastrophic failure of a tool which
destroys an extremely expensive work piece.

Micro-milling is an advanced precision manufacturing
technology which can produce high precision micro-scale
components with hard materials. It is one of the most versatile
micromachining operations and has been applied in high
precision electronic instruments, aerospace, and medical and
optical industries [1]. On the other hand, micro-milling is a
discontinuous operation, with the teeth of the milling tool
entering and exiting the work piece during each rotation. This
interrupted cutting process brings shock and insatiability on
the cutting tool. The cutting tool condition has direct influence
on the final product quality. Due to its importance, tool con-
dition monitoring has been extensively studied in manufactur-
ing systems and many of them have been reviewed lately in
[2, 3]. Generally, condition monitoring is to apply appropriate
sensor layout and signal processing techniques to identify and
predict the machine tool's state, so as to reduce loss brought
about by low product quality or machine failures. The sensory
signals can be used independently [4, 5] or combined as
sensor fusion with various types of signals, such as vibration,
force, and acoustics [4, 6–8] to provide compensated infor-
mation for tool condition monitoring (TCM). With the imple-
mentation of different approaches to interpret these monitored
signals, various goals of TCM can be reached. One of the
prominent and most widely studied aspects is the detection of
tool wear [4–6, 9–15], which is the main problem when the
tool works under normal conditions. Other important tool
failure modes are breakage and chipping [15–18], which lead
to abrupt changes of tool geometry and result in unqualified
products. The tool needs to be replaced immediately under
these conditions. Studies on machining condition monitoring
have also been carried from a system point of view, such as
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chatter [19, 20], vibration [21], ploughing [22], and tool
deflection detection [23].

Condition monitoring is most important but difficult to
implement in micromachining due to the component's tiny
structure and high precision requirements. Signal noise always
exists in machining, and denoising is prerequisite in condition
monitoring in mechatronic systems [24–28]. The noise prob-
lem in milling is due to nature of the impulse response of the
intermittent milling process and the system vibration brought
by the (almost) periodical variations of the cutting forces. The
problem is much magnified when the machining is scaled
down to microlevel, and the cutting force is at very low
amplitude. Many researchers have noticed this noisy problem.
Tansel et al. [15] found the force was too noisy and then
filtered it with a band pass filter to reduce the noisy effect.
The authors also sort for acoustic emission (AE) signals for a
combination. Similar studies were reported in [7] with a
combination of force and AE signals. AE signals were also
applied in [5, 17] for micro-milling monitoring. The AE signal
is sensitive with very wide dynamic bandwidth, while the
wide-band property also limits its application, as the data
needs to be sampled at very high sampling rate (>1 MHz).
An online monitoring with AE is almost impossible with
current computing facilities, and at the same time, AE signals
are very sensitive to sensor position and mounting surface. In
[17], different schemes of sensor fusions were studied from
vibration, force, and AE signals. The signal features were
fused to a neuro-fuzzy network. It was observed that the
neuro-fuzzy algorithm could effectively monitor the tool con-
ditions in micro-milling. Vibration features were studied to
monitor the tool conditions in [11, 16, 17]. In [11], the spindle
vibration frequency features were elected as inputs to a neural
network to classify the tool wear. It was reported that this
framework could provide good classification rate. In [18], the
authors applied motor current signals to detect tool breakage.
Features from wavelet and statistical domains were extracted
to correlate with different tool conditions. This provides an
economical and convenient solution to TCM. However, these
signals are not as sensitive as force and AE.

Cutting force has been found to be one of the most
sensitive measurements for machining condition monitoring
[2]. However, unlike macro machining, a difficulty of
denoising in micromachining is that the noise is usually
very high [low signal-to-noise ratio (SNR)] and found to
be non-Gaussian. While most current denoising algorithms
are based on Gaussian noise assumption [29], they are
limited to apply to this case. On the other hand, it has been
found that the noise harmonics distribute widely in the
frequency domain. As a result, the traditional approaches,
such as filtering and wavelet thresholding, are not effective
in this situation. It should be noted that this denoising
preprocessing may be skipped when the analysis is based
on the averaged force features, as the noise is rather

symmetric in general. The important instantaneous informa-
tion was lost under this condition however.

Figure 1 shows a typical sample of the cutting force and
noise in micro-milling. As can be seen from Fig. 1, the SNR is
very low and the absolute value of the noise is nearly one third
that of the force. At the same time, the frequency bands of
noise and force are overlapped quite a lot (this will be shown
in later sections). An effective noise removal procedure is an
essential first step towards accurate estimation of the tool wear
state in micromachining.

Based on the non-Gaussian noise assumption, in [28], the
authors applied the independent component analysis (ICA)
approach to deal with this problem; it has been found to be
effective but the extracted independent components are prone
to variations under different initializations. The other problem
is that the approach in [28] needs to compute at least three
force components to extract the independent components; it
will not be applicable in case of less channels monitored. In
this paper, a new method is developed for force denoising,
which takes advantages of the special properties of non-
Gaussian noise in the time–frequency domain.

Sparse representation (also named compressive sensing,
sparse coding in information theory [30, 31]) has received a
great deal of attentions in recent years from applied mathe-
matics [30] to signal classification and image recognition
[31–36]. Sparse representation originates from wavelet anal-
ysis while it has widened and deepened the scope of wavelet
analysis. The idea of sparse representation is to represent a
signal sparsely in terms of linear combination of atoms in an
overcomplete (redundant) dictionary [29, 30]. The dictionary's
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Fig. 1 Cutting force and noise in micro-milling. Both the force and noise
are sampled at 6,000 Hz, and 0.5 s accounts for 3,000 sample points
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redundancy offers a wide choice of atoms to represent the
signal so that a smallest linear combination of atoms could be
selected to approximate the signal. The affront mentioned ICA
approaches have been found to be closed related to the sparse
representation [37].

In this study, based on both the signal and noise prop-
erties in the time–frequency domain, a sparse decomposi-
tion is developed for cutting force denoising and condition
monitoring in micro-milling. The paper is organized as
follows: Section 2 identifies the noise properties in
micro-milling, and then the principle of sparse decompo-
sition for denoising is developed in Section 3. Section 4
illustrates the denoising results in the time–frequency do-
main and discusses the results. The conclusions are then
drawn in Section 5.

2 Noise and force properties and their properties
in the time–frequency domain

2.1 The STFT

For any signal y (t), the Fourier transformby fð Þ is obtained by
inner product of y (t ) with a sinusoidal wave e j2πft,

by fð Þ ¼ 〈y tð Þ; e j2πft〉 ¼
Z ∞

−∞
y tð Þe− j2πf dt ð1Þ

The Fourier transform transforms the signal y (t ) from
the time domain into the frequency domain and results in
the amplitudes of the frequency f . To overcome the limi-
tation of FT's lack of local information, a time sliding
window is applied to the Fourier transform. The resultant
transform is denoted windowed or short-time Fourier trans-
form (STFT),

STFTy t; fð Þ ¼
Z tþT=2

t−T=2
y τð Þg τ−tð Þ e−2πjfτdτ ð2Þ

The corresponding energy density |STFTy(t ,f)|
2 is called a

spectrogram, which are widely used for time–frequency anal-
ysis. The STFT coefficients represent the signal in the sparse
time–frequency blocks at different positions.

2.2 Noise properties

As can be seen from Fig. 1, the SNR is very low and the
amplitude range of the noise is nearly one third of that of the
force. The SNR is calculated as,

SNR ¼ 10� log10
s2i
n2i

¼ 10:1 dB ð3Þ

According to formula (3), the SNR is generally around (9–
15 dB) for micro-milling in this study. This value is rather low,
and denoising is prerequisite for a reliable correlation of force
tool conditions. The noise statistics are listed in Table 1. To
find a suitable denoise approach, the noise properties are
demonstrated in Fig. 2. The noise is collected during the recess
of the tool hold during machining, which means the segment
is in between two cutting process and is pure noise.

The density estimation shows that the noise is super Gauss-
ian, with a longer tail than Gaussian distribution and is well
fitted with Laplace distribution (see Fig. 2b). The normalized
frequency representation (power spectrum density, PSD) and
autocorrelation show that the noise harmonics distribute wide-
ly in the frequency domain, and the autocorrelation is high
with value around 0.8. This means that the noise is neither
Gaussian nor white. As a result, the traditional approaches,
such as filtering and wavelet thresholding, are not effective
under this case.

The interesting phenomenon in the above figures is that
only several amplitudes in the PSD are prominent and the
others are very small. When the PSD is integrated along the
time, it is the time–frequency representation (it is named
spectrogram and will be discussed in details in Section 3.3).
Not like dense values in the time domain, the noise has sparse
structure in the time–frequency domain (Fig. 3). On the other
side, the force signal also shows such a sparsity in the time–
frequency domain, which will be discussed in the next section.

Based on the sparse property of noise and force in the
time–frequency domain, a sparse representation approach
is applied for noise separation in the micro-milling condi-
tion monitoring. The idea of this approach is based on the
findings that both force and noise could be sparsely repre-
sented in the time–frequency domain, and that the dictio-
naries (time–frequency bases) can be learned differently
for force and noise signals. The details are discussed in the
following sections.

Table 1 The statistics of
reference noise Statistics Value

Mean −0.1876

Variance 0.2103

Skew 0.006

Kurtosis 2.2621
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2.3 Force properties

In Fig. 4, a force component in the time domain is illustrated
and its corresponding representation in the frequency domain
by applying PSD. As can be seen from the figure, the signal
has nonzero coefficients for almost every time point in time
domain, but in the frequency domain, only some frequencies
(harmonics) have large coefficient. These properties motivate
the sparse representation of both noise and force in the time–
frequency domain.

3 Sparse force and noise representation
in the time–frequency domain

3.1 Sparse representation theory

As the sparse representation theory is quite new to manu-
facturing society, a little more details are introduced in this
section. When treated as a vector, a signal is said sparse if
most of its entries are equal or close to zero. The idea of
sparse representation is to code a signal with linear com-
bination of atoms in an overcomplete (redundant) dictio-
nary so that the representation is sparse [29]. The motiva-
tion for overcomplete is that larger dictionaries incorporat-
ing more patterns and increase sparsity. It improves the
applications to compression, denoising, and pattern recog-
nition as a result.

In signal theory, any square integrable function y (t ) is
regarded as signal. With the square integrable constraint,
∫−∞∞ |y (t )|2dt <+∞ , the signal y (t ) is an energy signal and
belongs to the Hilbert space, L2(R ) (the reader unfamiliar
with Hilbert space may simply think Hilbert space is a
generalization of the three-dimensional Euclidean space in
which the concepts of distance and angle are extended as
norm and inner product, respectively. For any signal in the
Hilbert space, it has the basic operation properties that can
be added, subtracted, and multiplied by constants. See [38]
for more details.)

In the Hilbert space, the l p norm for a given signal y =[y1,
y2,…,yn]

T is defined as

yk kp ¼
X
i¼1

n

yij jp
" #1=p

p≥1ð Þ ð4Þ

In particular, yk k1 ¼ ∑
i¼1

n

yij j; yk k2 ¼
ffiffiffiffiffiffiffi
∑
i¼1

n
s

yij j2; yk k∞ ¼
max
1≤ i≤n

yij jf g
The so-called l0 norm, which is excluded from the above

definition domain, is an extension of the l p norm definition
when p→0. Specifically, the sparsity of a discrete signal
(vector) y is defined by
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yk k0 ¼
X
i¼1

n

yij j0 ¼ number of nonzeros iny ð5Þ

In the Hilbert space, one can always find a set of functions
{φ i}in L2(R), such that the signal y can be expressed as the
linear combination of N elementary waveforms, signal atoms
{φ i}, such that

y ¼ Φx ¼
X
i¼1

N

xiφi ð6Þ

Where x i is the representation coefficients of y in the
dictionary Φ =(φ1, . . . , φN).

Clearly, x and y are equivalent representations of the same
signal, with y in the time (or any other domain) and x in the Φ

domain. The signal y is said to beK -sparse inΦ if it is a linear
combination of only K basis vectors, that is, only K of the x i
coefficients in (6) is nonzero. In practice, x is considered
sparse if it has just a few large coefficients and other coeffi-
cients are relatively small.

Figure 5 demonstrates such an idea. As it has been known,
only two basis vector is needed to fully represent a vector in
two dimension. The coefficients a1 and a2 are both large in
the two-dimension representation (Fig. 5a). While it is repre-
sented in the three-dimensional space, Fig. 5b shows that in
higher dimension, better basis (φ1) can be found to represent
the signal. The basis φ1 is close to y, and the coefficient of this
basis is large and the other twos are small. At the same time,
there will be redundant information with three basis vectors
representation. This is because the three basis vectors are
linear dependent, as φ 1+φ 2+φ 3=0. This redundant
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representation approach is close to the frame theory in the
traditional wavelet analysis, and details could be found in
[29].

With the l0 norm definition in (5), the sparse coding can be
formally expressed as a mathematical optimization problem:
Given a signal y ∈ Rn and a dictionary Φ∈ Rn×k, the sparse
representation problem can be stated as

min
x

xk k0 s:t: y ¼ Φx; x∈Rk
� �

ð7Þ

This form is also known as compressive sensing (sampling)
in information theory [30]. This problem is NP-hard difficult
to solve. On the other side, in general, the l1 constraint also
induces sparse solutions for the coefficient vectors x . By
substituting the l0 norm in Equation (7) with l1 norm, it results
in the Lasso-type problem [38],

min
x

y−Φxk k22 þ λ xk k1 ð8Þ

Where λ is a parameter that balances the trade-off between
reconstruction error and sparsity. The equation (8) is a convex

problem that can be solved very efficiently using for example
the LARS–Lasso algorithm [39].

3.2 The properties of sparse representation

The two key points in the development of sparse representa-
tion are sparsity and incoherence [40]. Sparsity indicates that
the information carried by the signal is much smaller than its
bandwidth. Incoherence means that the basis must be signif-
icantly different, and the dictionary consists of redundant
(overcomplete) bases as a result. Typically, such overcomplete
dictionaries are wavelet packets, Gabor dictionaries, and local
cosine dictionaries.

Overcomplete dictionaries An overcomplete dictionary can
be represented as a matrix Φ∈Cm×n with n >m . The n column
(atom) contains at least m linearly independent vectors, and it
means the dictionary contains more than necessary vectors to
represent signals, and so it is also called redundant dictionar-
ies. With the overcomplete dictionary, a dense signal could be
transformed into a sparse signal.

Figure 6 gives a demonstration of sparse representation
with overcomplete dictionary representation (sparse coding).
The original measurement y20×1 has 20 nonzero coefficients,

a bFig. 5 The expansion of vector x
in space L2(R). a Represented in
complete base {e1,e2} with
coefficients a1 and a2. b
Represented in overcomplete
base {φ1,φ2,φ3}

Signal y Learned dictionary D Weight x 

y: m×1 
dense vector 

x: n×1 
Sparse vector 

D: m×n, m<n 
redundant (column) basis 

Fig. 6 Sparse representation of
the signal vector
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which is a dense vector. When it is represented in terms of an
overcomplete dictionaryΦ20×50, the coefficient vector x50×1 is
sparse with K =10 in a higher dimension.

Incoherence between bases Incoherence means that the basis
must be significantly different. For a dictionaryD =[Φ ,Ψ ], the
coherence between the two orthonormal matrices Φn×n and
Ψn×n is defined as [40]

μ Φ;Ψð Þ ¼ ffiffiffi
n

p
max

1≤ k; j≤n
ϕT
k ψ j

�� �� ð9Þ

Where ϕk
T and ψj are the k -th row and j -th column of Φ

and Ψ . The coherence μ(Φ ,Ψ ) measures similarity of basis in
Φ and Ψ . Incoherence refers to the bases with small coher-
ence, which means the bases are less similar. As a result, a
dictionarywith incoherent bases has large varieties and “richer
vocabulary” in the dictionary. At the same time, the dictionary
D has to meet some properties so as to represent the signal
sparsely and compressively. Under the l1 minimization, suffi-
cient conditions have been raised thatD satisfies the restricted
isometry property (RIP) [41] or null space property (NSP)
[42]. The RIP is robust and is a stronger condition than the
NSP which is both necessary and sufficient [42].

As demonstrated in Section 2, the STFT coefficients
represent the signal in the sparse time–frequency blocks
at different positions. The STFT analysis is character-
ized by the window function, overlap, and duration.
With proper choosing of window size and overlapping
interval, these time–frequency blocks |STFTy(t ,f )|

2 forms
a redundant dictionary.

3.3 Sparse representation as a convex optimization problem

From the pattern classification point of view, the sparse rep-
resentation in 3.1 is a reconstructive approach, as it is basically
decomposed to contain sufficient information for reconstruc-
tion. While in this study, the aim is for noise separation and
then the tool state estimation. The basis' discrimination power
is concerned besides the signal's reconstruction error from the
commonly applied sparse decomposition approach. The basis
is the combination of the pre-learned basis of the pure noise Ψ
and the updating signal basis Φ (i), [Φ (i );Ψ].

This work introduces a metric which includes both recon-
struction and discrimination terms in the dictionary learning
process, benefitting from the best of both discriminative and
reconstructive worlds. It is illustrated to optimize objective
function J ,

J ¼ max Discriminationð Þ þmin Reconstructionð Þ þmax Sparsityð Þ
¼ max J 1ð Þ þmin J 2ð Þ þmax J 3ð Þ

ð10Þ
Where J1 maximizes the discrimination of the basis in the

STFT, and J2 controls the reconstruction error, and J3 domain

maximizes the sparsity of estimated force. This formulation of
the final problem is similar to the ideas that have been studied
for texture classification [34], face recognition [36], and hand-
written digit recognition [34–36].

A measure of basis discrimination is adapted from Fisher's
discriminant analysis [43],

J wð Þ ¼ SB
SW

ð11Þ

Where SB is the between-basis scatter and SW is the within-
basis scatter.

For a c - basis problem, define the within-basis scatter,

Sw ¼
X
i¼1

c

Si ð12Þ

and the between-basis scatter,

SB ¼
X
i¼1

c

ni μi−μcð Þ μi−μcð ÞT ð13Þ

Where Si ¼ 1
ni
∑
i¼1

n

φi−μið Þ φi−μið ÞT (14)

is the covariance matrix measure the variability of sample

within basis φi;μi ¼ 1
ni
∑
i¼1

n

φi is the mean of samples from

basis φ i, ni is the number of data in basis φ i, and μc is the
mean of basis φ c.

To find the maximization of J (w ), this question can be
formulated equivalently as an optimization problem by mini-
mizing the inverse of J (w),

J 1 ¼ minw
1

2

SW
SB

ð15Þ

Where the role of within and between scatter is switched.
The measure J2 is the reconstruction error l2 norm that

illustrates the robustness of the algorithm,

J 2 ¼ min yi−φi
T xi

�� ��2
2

ð16Þ

The measure J3 forces the sparsity of the representation the
STFT,

J 3 ¼ min xij j1 ð17Þ

So finally, the sparse representation problem is formalized
as a convex optimization problem,
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min
1

2

SW
SB

þ 1

2
λ1 yi−φi

T xi
�� ��2

2
þ λ2 xij j1 ð18Þ

In (18), λ1 is the l 2 norm regularization parameter, and λ2
is the l 1 norm regularization parameter.

How to learn the dictionary {φ i} is most important in
this approach. The best dictionary is the one that leads to
the sparsest representation. Hence, it could be desirable to
have a huge dictionary (i.e., T>>N ) but it leads to a
prohibitive computation time cost for calculating the x
coefficients. Therefore, there is a trade-off between the
complexity of our analysis (i.e., the size of the dictionary)
and computation time. Pursuit algorithms can nearly

reach optimal M -term approximations in incoherent dic-
tionaries that include vectors that are sufficiently different
[29].

In this work, an l1 variation of K-SVD [32] is adapted to
learn the dictionary by solving the optimization problem in
formula (18) in which the orthogonal matching pursuit (OMP)
[29, 32] is implemented. The optimization is carried out
iteratively in three steps:

a Learn the dictionary Ψ from pure noise.
b Sparsely code the y given the current dictionary estimate.
c Update the dictionary atoms given the sparse representations.

The dictionary update is performed one atom at a time,
optimizing the target function for each atom individually
while keeping the remaining atoms fixed. The time domain
signal then can be recovered by inversion of STFT transfor-
mation. The detail implementation of the algorithm is de-
scribed in Table 2.

4 Case Studies

4.1 Experiment Setup

A total of 27 test experiments are conducted with different
spindle speed, depth of cut, radial depth of cut, and feed rate
for Φ500 μm and Φ800 μm tools [26]. The materials used are
either copper or steel. The tool wear was measured using the
Olympus Toolmakers microscope at 213 times enlargement.
Figure 7a shows a fresh tool with no flank wear, while Fig. 7b
shows an average flank wear of (64 μm+58 μm)/2=61 μm.

The machine used in the micro-milling experiment is an
end milling machine driven by a 22 kw spindle drive motor,
and the spindle speed variation is between 5,000–30,000 rpm.
The cutting force was measured with a three-channel dyna-
mometer mounted under the work piece. The cutting force
output was recorded as voltage variations on a digital tape
recorder and down-sampled at 6,000 Hz. The working condi-
tions are attached in the Appendix, which was previously

Table 2 The modified K-SVD algorithm

Initialization : set the random normalized dictionary matrix

Φ (0)=abs(randm(m ,k)), X (0)=abs(randm(k ,n)),k <m ,n

Set J =1, Φ (0)=[Φ (0);Ψ]

Repeat until convergence

Sparse coding: use OMP algorithm to compute the sparse

representation {φ i} for each signal {yi}

for i=1,2,…,N

min 1
2
SW
SB

þ 1
2λ1 yi−φT xik k22 þ λ2 xij j1

Dictionary update : For k=1 , 2 , …,K

& Define the group of examples that use φk,

wk={i |1≤i ≤N ,xi(k)≠0}

& Compute residual matrix

Ek ¼ y−∑
j≠k

φT
j x j

& Restrict Ek by choosing only the columns corresponding to

those elements that initially used φk in their representation,

and obtain Ek
R.

& Apply SVD decomposition Ek
R=UΔVT.

Update: φk=u1,xR
k=Δ(1,1)⋅v1

Set J =J+1

58
m
µ

64
m
µ

VB1
VB2

a bFig. 7 Flank wear a micro-mill
tool with diameter Φ800 μm. a
fresh tool b worn tool
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tabled in [26]. Figure 8 shows the tool life curves of tests of
pure copper and steel T4 with coated carbide tool.

4.2 Results and discussions

In this study, a dictionary is learned for every working condi-
tion; as a result, there are a total of 27 dictionaries that
represent 27 different experiments. The experimental setup
is the same as that reported in [26] and listed in the Appendix.
Due to the discontinuous cutting nature of micro-milling, the
noises are recorded in between every machining pass and
during the recess of tool holder. This reference noise and the
cutting force from the first cutting pass are applied to learn the
dictionary for its corresponding working conditions. While all
the results are consistent, the following shows the results from
test 22 (Fig. 8b).

In this study, the STFTwindow is chosen as Gaussian. The
window size is selected with 512 points and with 64 points
overlapping. The selection of optimal values for λ1 and λ2 is a

delicate and difficult task. Their values are chosen with em-
pirical studies. The regularization parameter λ2 is directly
related to the sparsity of noise in STFT: the higher the λ2,
the higher the sparsity, λ2=0.89. The parameter λ1 is chosen
to control the reconstruction: the higher the value of λ1, the
better reconstruction, λ1=0.41.

Figure 9 shows the force signals and their corresponding
power spectrum at severe flank wear state. As can be seen
from top figure, the low frequency components have rela-
tively larger peaks, and as a result, the desired frequency
components (the harmonics of rotation frequency fr ) are
largely affected. This phenomenon is even worse when the
tool wear value is lighter. The denoised force and its corre-
sponding power spectrum are shown in the middle figure. As
can be seen from this figure, the minor lobes beyond the
characteristic frequencies are largely compressed or elimi-
nated. At the same time, the ratio between the first two
characteristic frequencies fr and 2fr is raised, which is an
important indication of tool wear conditions.
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To verify the results, the separated noise is shown in the
bottom figure. The statistics of the noise are mean=−0.2813,
variance=0.1862, skew=0.0003, and kurtosis=2.8930. This
indicates the estimated noise is super Gaussian and having
heavy tails. It coincides with the reference noise distribution
shown in Fig. 2, with heavy tail distribution fitted well by a
Laplace distribution, which has skew=0 and kurtosis=3.0.
Meanwhile, under the same mean and variance fit, the noise is
far from Gaussian distribution. The results show that the pro-
posed approach could separate the heavy super Gaussian noise
well. This could be a good supplement tomost current denoising
algorithms that based on the Gaussian noise assumption. The
underlying assumption of this approach, the noise having sparse
representation in the frequency domain, is a common phenom-
enon and adaptable to most machining force signals.

On the other side, it has been found that the learned
dictionaries are quite dense and it has more than 95% nonzero
elements (Fig. 10a). The learned dense dictionary reflects the
idea of sparse coding with highly redundant dictionary, and its
corresponding dense basis makes it possible for the discrimi-
nation between different signals with various elements.
Figure 10b shows that the algorithm is fast and converges
quickly.

To demonstrate the denoising effect, Fig. 11 and 12 show
the force spectrogram before and after denoising. Due to the
limit of display memory, only 100 s force signals are
displayed. This segmental force is focused in the last few
machining passes of test 22 (Fig. 8b) before tool is severely
worn. As can be seen from Fig. 11, the force harmonics are
completely immersed within the noise and the difference

Fig. 11 Force spectrogram
before denoising Fx

Fig. 12 Tool wear with sparse
STFT denoised force
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cannot be discriminated from the figure when the tool flank
wear dramatically increases. The sparse STFT denoised force
spectrogram shows much better properties in Fig. 12. It is
observed that after 80 s, 1Fr, 2Fr, and 3Fr (Fr =300 Hz) of
the reconstructed force increased dramatically, corresponding
to the sharp increase of tool flank wear in Fig. 8b) around
320 s. Comparing Fig. 12 to 11, it is clear that Fig. 12 shows
better diagnostic information since the harmonics stand out
with the first three harmonics increasing dramatically
according to the fast increase in flank wear.

The K-SVD approach, which was originally applied to
remove additive Gaussian noise in image [44], is also adapted
to this denoising problem. The parameters are optimized, and
the denoised force STFT is shown in Fig. 13. As can be seen
from the figure, the significant low frequency noises are not
removed. Basically, the K-SVD approach removes Gaussian
noise and all the harmonics are compressed almost evenly.
The denoising performance of K-SVD is essentially similar to
that of wavelet thresholding approach, which is related to the
current approach as discussed in the next section.

Fig. 13 Tool wear with K-SVD
denoised force
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On the other hand, besides denoising, the proposed algorithm
can also be applied to tool condition estimation. The aim of this
research is TCM in micromachining, and denoising is only the
first step. In fact, the proposed sparse decomposition algorithm
can be further slightly modified to learn various dictionaries from
different tool conditions and these dictionaries are constrained to
be discriminant in the learning process. The learnt basis can be
applied to the tool state estimation when the force features are
matched to the respective dictionaries. The detail study of this
approach is to be presented in another work.

4.3 The proposed approach and its relation to other methods

4.3.1 Sparse decomposition and its relation to wavelet
thresholding for noisy data

An important feature of compressed sensing is that it is robust
to noise. For a signal contaminated with noise, the signal
model is given by
y ¼ Axþ w ð19Þ
where w represents noise

In the theory of sparse decomposition, signal x in (19) may
be estimated from noisy measurement y by solving the convex
minimization problem, as follows:

Minimize ‖x‖1,
subject to ‖Ax −y‖2≤ε ,
Where ε is bound of the amount of noise in the data.
The above convex minimization problem is in fact the

same as formula (8), the Lasso problem. Under a special
condition, when the noise is assumed both Gaussian and
white, a proper choice of ε leads to the celebrated wavelet
thresholding approach [45]. It is a special form of this study in
case the first term of formula (18) diminishes. In this study, the
noise is neither Gaussian nor white and it is not effective with
wavelet thresholding.

Figure 14 shows the residue of the denoised force with
wavelet thresholding, which is the noise separated. From
Fig. 14c, the PSD harmonics distribute nearly evenly in all
frequency bands; this explains why it cannot be separated
even in the low frequency noise environmental. In
Fig. 14d, the autocorrelation is close to zero; this means
that the estimated noise is purely random, not as shown in
Fig. 14d. Figure 14b shows that it is typically a Gaussian
noise. The Donoho's universal thresholding is not as ef-
fective in non-Gaussian noise separation. The noise is
identified to be Laplace distribution in this study, and
under this condition, the wavelet decomposition coeffi-
cients for noise are not evenly distributed among all scales
as Gaussian noise. As a result, some of the noise coeffi-
cients are not small in certain scales and the threshold is
too low under this condition. This is similar to the
findings in [46].

4.3.2 Sparse representation and ICA

In the ICA approach, the extracted signals are measured by
their Gaussianity (kurtosis). Super Gaussian is defined as with
normalized kurtosis K>3 (see [47] for the definition of kur-
tosis). The intuitive idea is that the super-Gaussian density has
heavy tails and a peak at mean. The data distribute densely
around the mean while most other areas have small values or
close to zero. This property is in fact closely related to the
definition of sparseness. Figure 15 shows an example of
probability density functions with different values of kurtosis.
Kurtosis can be used to check if a distribution is Gaussian. For
a symmetrical distribution, super Gaussian has kurtosis higher
than 3, while sub-Gaussian lower than 3. In [37], Daubechies
et al. have found that the solution to the ICA approach is in
fact the sparse solution.

5 Conclusion and future works

In micro-milling, there is machining noise that is relatively
heavy with non-Gaussian distribution and has wide harmonics.
This study has developed a denoising approach that imposes
the constraints on the signal and force's representation in the
time–frequency domain. The results show that the developed
sparse coding approach separates the non-Gaussian noise, and
the noise is found to be consistent with the reference noise. The
approach has potential in any non-Gaussian noise separation
provided it has sparse representation in the time–frequency
domain. Further studies will be carried out on the approach to
other precision machining types such as micro-drilling and
micro-turning and on how to simultaneously denoise signal
and learn different dictionaries for tool condition estimation.
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