
ORIGINAL ARTICLE

Robustness of thermal error compensation modeling models
of CNC machine tools

En-Ming Miao & Ya-Yun Gong & Peng-Cheng Niu &

Chang-Zhu Ji & Hai-Dong Chen

Received: 18 March 2013 /Accepted: 26 July 2013 /Published online: 13 August 2013
# Springer-Verlag London 2013

Abstract In order to achieve effective control of thermal error
compensation of computer numerical control (CNC) machine
tools, the prediction accuracy and robustness of the compen-
sation model is particularly important. In this paper, the tem-
perature of sensitive points and thermal error of the spindle in
Z direction are measured. Using a combination of fuzzy
clustering analysis and gray correlation method to select
temperature-sensitive points and then using multiple linear
regression of least squares and least absolute estimation
methods, distributed lag model, and support vector regression
machine to establish prediction models of the relationship
between temperature of sensitive points and the thermal error.
Also, the temperature values of sensitive points and the ther-
mal error in the experimental conditions of different ambient
temperatures and different spindle speeds are measured. By
comparing the prediction accuracy of various prediction
models under different experimental conditions verify the
robustness of the models. Experimental results show that
when the modeling data are less, the prediction accuracy of
multiple linear regression of least squares and least absolute
estimation methods and distributed lag model is declined, and
their robustness are poor, while support vector regression
model has good prediction accuracy and its robustness re-
mains strong when changing the experimental conditions.
However, when modeling data are rich, the prediction accu-
racy of various algorithms is improved, but the robustness of
support vector regression model is volatile. The robustness
analysis of different models provides a useful reference for the
thermal error compensation model, selection of CNCmachine
tools, and has good engineering applications.

Keywords Machine tools . Thermal error . Multiple linear
regressionmodel . Distributed lagmodel . Support vector
regressionmodel . Robustness

1 Introduction

In various sources of error in computer numerical control
(CNC) machining accuracy, thermal error has been the major
one [1]. Reducing thermal error is the key to improve CNC
machining accuracy. In thermal error compensation, modeling
technology is emphasized. As the CNC thermal error depends
largely on the processing conditions, the processing cycle, the
usage of coolant, and surrounding environment, etc. and its
nonlinear and interaction, it is quite difficult to establish an
accurate mathematical model of thermal error just with theo-
retical analysis [2]. The most common method of thermal
error modeling is experimental modeling method, which ana-
lyzes thermal error and temperature based on statistical theory
[3]. Jianguo Yang et al. put forward CNC packet optimization
modeling. According to the relationship between variable
temperatures, this method divides the temperature into groups,
then permutates and combines with thermal error, and selects
temperature-sensitive points for modeling [4–6]. In South
Korea, SK Kim et al. establish temperature field of CNC ball
screw system with finite element method [7]. At the Univer-
sity of Michigan, S. Yang et al. establish thermal error model
with the use of cerebella model arithmetic computer neural
network [8]. Huanglin Zeng et al. use rough artificial neural
network for thermal error analysis and modeling [9]. Chen
Cheng et al. select the temperature-sensitive points with clus-
tering analysis theory, measure the temperature with PT100
and thermal error with laser interferometer, and establish a
multivariate linear model [10]. Since these modeling methods
are offline and pre-modeled, the modeling data measured in a
certain period of time and the thermal error mathematical
model, based on these methods, lack robustness and cannot
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forecast thermal error correctly in a long term with the change
of seasons [11]. In recent years, support vector machine, a
machine learning theory just for small sample, is developed as
the best theory in small sample statistics and forecast [12].
Support vector machine was based on VC dimension, and it
reduced structural risk. It effectively solves the problem be-
tween model selection and owe-learning, over-learning, small
simple, nonlinear, local optimum, and dimension disasters
with a simple structure, thus greatly improving generalization
ability [13, 14]. In this paper, measuring thermal error of
Leaderway V-450 of CNC machining center, selecting
temperature-sensitive points with the combination of fuzzy
clustering and gray correlation theory, establishing compen-
sation model separately with multiple linear regression model,
distributed lag model, and support vector machine, and esti-
mating the multiple linear regression model with the least
squares and the least absolute deviation are the objectives of
this study. By analysis of robustness of these models, a refer-
ence of thermal error compensation modeling is provided, and
it has actual engineering application value.

2 Thermal error modeling models

2.1 Multiple linear regression model

Multiple linear regression model is a statistical method to seek
relationship between multi-input and single-output. The tem-
perature increments of temperature-sensitive points are as
independent variable and thermal error as dependent variable
to establish the multiple linear regression model of machine
tools. The general equation is as follows:

yi ¼ b0 þ b1xi1 þ b2xi2 þ⋯þ bkxik þ ei i ¼ 1; 2; ::; nð Þ ð1Þ

From Eq. (1), (xi1,xi2,⋯,xik) are temperature increments of
the sensitive points, b0,b1,⋯,bk are the coefficient of temper-
ature variables, yi is the measurement value of thermal defor-
mation, and ei is the deviation of yi.

At the same time, using the least absolute deviation and
least squares estimation criteria, we calculated the multiple
linear regression model. The least squares method is more
mature in terms of methods and more perfect in terms of
theory, and a commonly used method. It is widely used in
many practical problems in the field of science and technology
and also applied in modeling technique of machine tools. The
least absolute deviation method has small influence of out-
liers, and its robustness is better than the least squares method.
But the least absolute deviation method is nondifferentiable
and has great difficulty on calculation. In this paper, the
algorithm theory and program of the least absolute deviation
method use the reference [15].

The least squares criterion is as follows:

X
i¼1

n

yi− b0 þ b1xi1 þ b2xi2 þ⋯þ bkxikð Þ½ �2 ¼ min ð2Þ

The least absolute deviation criterion is as follows:

X
i¼1

n

yi− b0 þ b1xi1 þ b2xi2 þ⋯þ bkxikð Þj j ¼ min ð3Þ

2.2 Distributed lag model

If the dependent variable is not only related to one or more
current value of explanatory variables but also related to its
certain lag value, this is called distributed lag model and
denoted by:

yt ¼ α0 þ
X
j¼1

u X
i¼0

n

β j;ix j;t−i þ εt; εt e IID 0;σ2
� � ð4Þ

FromEq.(4), n is the maximum lag order, a0 is a constant, u
is the number of exogenous variables, yt is the dependent
variable, βj,i is the coefficient, and xj,t−i is the ith lag order
value of the jth independent variable.

Due to the great amount of experimental data, using the
simple expedient estimation method determined the lag order
n. That is to take n=1,2…i, and then using the least squares
fits data in different conditions of i. When the lag variable
regression coefficients become statistically insignificant or
there is a variable coefficient change sign, the i-1 is the final
lag order.

Fig. 1 Measurement experiment of thermal error
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2.3 ε − support vector regression model

Statistical learning theory established by Vapnik is a special-
ized theory which researches the machine learning law in the
case of finite sample theory. The support vector machine is a
new classification and regression tool on the basis of this
theory [13]. Support vector machine improves the generaliza-
tion ability through structural risk minimization principle, and
it can solve the practical problems better, such as small sample
size, nonlinear, high dimension, and local minima point. It has
been applied in pattern recognition, signal processing, func-
tion approximation, and other fields.

2.3.1 The principle of ε − SVR

The corresponding vector machine is called support vector ma-
chine, when insensitive function ε is introduced, and its
constrained optimization problem can be expressed as follows:

min
1

2
wk k2 þ C

X
i¼1

l

ξi þ ξ�i
� �

s:t: w⋅xi þ b−yi≤εþ ξi

yi−w⋅xi−b≤εþ ξ�i i ¼ 1; 2;⋯; l

ξi≥0

ξ�i ≥0

g ð5Þ

From Eq. (5), w is the weight vector, C is the penalty
parameter, l is the number of inputs, ξi,ξi

* are the slack
variables, xi are inputs, b is the deviation, and yi are target
values.

Introducing Lagrange function will convert it to the dual
problem, and it can be expressed as follows:

min
1

2

X
i; j¼1

l

a�i −ai
� �

a�j−a j

� �
xi⋅x j
� �þ ε

X
i¼1

l

a�i þ ai
� �

−
X
i¼1

l

yi a
�
i −ai

� �

s:t:
X
i¼1

l

a�i −ai
� � ¼ 0

0≤a�i ≤C; 0≤ai≤C i ¼ 1; 2;⋯; l

g ð6Þ

From Eq. (6), a,a* are Lagrange multipliers.
According to the Mercer conditions [13] and using

the kernel function K(xi,x), the decision function of ε −
support vector regression (SVR) machine can be expressed as
follows:

f xð Þ ¼
X
i¼1

l

a�i −ai
� �

K xi; xð Þ þ b ð7Þ

From Eq. (7), a*,a,b are calculated by Eq. (6).
The common kernel functions that satisfy the Mercer

condition are linear kernel function, polynomial kernel

Table 1 The installation locations and functions of sensors

Sensor Location Function

T1, T2 Z-axis motor Temperature measurement of motor

T3, T4 Spindle sleeve Temperature measurement of spindle

T5, T6 Front bearing of Spindle Temperature measurement of spindle

T7 Machine casing Ambient temperature measurement

S Under the spindle Thermal deformationmeasurement of
Z direction of spindle
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Fig. 2 The temperature values of
sensors

Table 2 The results of Gray Correlation

Sensors T1 T2 T3 T4 T5 T6

Correlation γ 0.611 0.589 0.569 0.576 0.602 0.634
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function, radial basis function (RBF), Fourier kernel function,
and so on.

2.3.2 The parameter selection of ε − SVR

In this paper, selecting the RBF kernel function is as follows:

K x; x
0

� �
¼ exp − x−x

0�� ��2.σ2
� �

ð8Þ

From Eq. (8), σ is the width parameter of function and it
controls the radial range of function, and 1/σ2 is recorded as
parameter g. Usually, we use Gaussian RBF kernel function
for modeling since it has high training speed and high preci-
sion [16]. In this paper, the Gaussian RBF kernel function is
used for thermal error modeling; the training prediction accu-
racy and robustness depend on the values of g and C. The
parameter selection methods of support vector machine typi-
cally includes homing-based network traversal algorithm,
cross-validation method, and so on. This paper chooses the
cross-validation method [17] to optimize the model parame-
ters because of its relatively simple application, and it has
good practicability.

3 Thermal error measurement experiment
and temperature sensitive point selection

3.1 Experimental design

Experimental system of Leaderway V-450 CNC machine tool
is shown in Fig. 1. It is used to measure temperature and
thermal error of Z direction of spindle. The installation loca-
tions and functions of temperature sensors and displacement
sensor are shown as Table 1.

3.2 The temperature-sensitive point selection

Reducing the complexity of the model is conducive to the
application, so it is better to minimize the number of indepen-
dent variables to establish the model. In this paper, the com-
bination of fuzzy clustering [18] and gray correlation degree
are used to select temperature-sensitive points [19].

3.2.1 Fuzzy clustering

Fuzzy clustering method is based on fuzzy matrix to classify
all of the research objects; the objects in the same cluster are
very similar, while objects in different clusters have large
dissimilarity. Assumption domain U={ui|i=0,1,⋯N}, where
ui is the temperature point. In order to classify U, it is neces-
sary to calculate the correlation coefficient rij of the statistics
relationship between objects which are classified and then
determine the fuzzy matrix. By the transitive closure method,
the fuzzy matrix is transferred into an equivalent matrix, and
the fuzzy classification is finished.

Table 3 The spindle speed and ambient temperature of experiments

Batches Spindle Speed (rpm) Ambient Temperature (°C)

K12000 2,000 5.6∼8.1
K14000 4,000 6.2∼10.6
K16000 6,000 6.5∼10.0
K22000 2,000 7.0∼9.4
K24000 4,000 9.4∼12.4
K26000 6,000 8.3∼12.5
K32000 2,000 23.9∼26.1
K34000 4,000 24.9∼31.7
K36000 6,000 27.3∼31.5
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Fig. 3 The fitting effect of
K16000

Table 4 The fitting standard deviation S of models

Models LS-MLR LA-MLR DL SVR

S (um) 1.5577 1.8402 0.8644 0.4729

2596 Int J Adv Manuf Technol (2013) 69:2593–2603



Setting up ui∊U,uik(k=1,2,⋯n) is the kth measurement
value of ui, the correlation coefficient is as follows:

rij ¼

X
k¼1

n

uik−ui
� �

ujk−uj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uik−ui

� �2
ujk−uj

� �2
r i ¼ 0; 1;⋯N ð9Þ

From Eq. (9), ui ¼ 1
n ∑
k¼1

n
uik ; uj ¼ 1

n ∑
k¼1

n
ujk .

So, the fuzzy matrix is R=(rij)N×N, by square method; the
fuzzy matrix R is transferred into equivalent fuzzy matrix t(R).
The fuzzy clustering is done forUwith t(R). Where R ¼ t Rð Þ
is the cut set at λ(0≤λ≤1) of t(R), note R ¼ rij

� �
N�N . When

rij ¼ 1 , ui, and uj are the same class.

3.2.2 Gray correlation degree

Gray system theory proposes the concept of gray correla-
tion analysis for the various subsystems and seeks numerical
relationship between the various factors in the system by a

certain method. The equation of gray correlation degree is
as follows:

γ x0; xið Þ ¼ 1

n

X
i¼1

n

r x0 kð Þ; xi kð Þ� � ð10Þ

r x0 kð Þ; xi kð Þ� �

¼
min

i
min

k
x0 kð Þ−xi kð Þ�� ��þ ρmax

i
max

k
x0 kð Þ−xi kð Þ�� ��

x0 kð Þ−xi kð Þ�� ��þ ρmax
i

max
k

x0 kð Þ−xi kð Þ�� ��
ð11Þ

From Eq. (11), ρ is the resolution coefficient, ρ∊[0,1].
According to the above equations, the correlation degree

γ(x0,xi) between thermal error of CNC machine tool and the
various temperature measurement data are calculated. The
greater the correlation degree, the greater impact on thermal
error, and this temperature point can be regarded as the
modeling point.

The combination of fuzzy clustering and gray correlation
degree are used to select temperature-sensitive points. The
temperature values collection are shown as Fig. 2.
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Fig. 4 The prediction effect of
K26000
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Fig. 5 The prediction effect of
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The equivalent fuzzy matrix of the temperature points
T1∼T7 is as follows:

R ¼

1:0000 0:9978 0:9875 0:9875 0:9898 0:9898 0:9596
0:9978 1:0000 0:9875 0:9875 0:9898 0:9898 0:9596
0:9875 0:9875 1:0000 0:9953 0:9898 0:9898 0:9531
0:9875 0:9875 0:9953 1:0000 0:9898 0:9898 0:9531
0:9898 0:9898 0:9898 0:9898 1:0000 0:9885 0:9643
0:9898 0:9898 0:9898 0:9898 0:9885 1:0000 0:9643
0:9596 0:9596 0:9531 0:9531 0:9643 0:9643 1:0000

2
666666664

3
777777775

Set λ=0.98 and the result of classification are as follows:

e Rð Þ ¼

1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 1 1 1 1 1 0
0 0 0 0 0 0 1

2
666666664

3
777777775

According to the results of fuzzy clustering analysis, the
sensor T1, T2, T3, T4, T5, and T6 are classified as Group I,
and T7 as Group II. The correlation degree between each
sensor temperature value of Group I and thermal error are
calculated, and the results are shown as Table 2.

From Table 2, the gray correlation degree between sensor
T6 and thermal error S is the highest, so T6 of Group I is

selected as sensitive point. So the sensor T6 and T7 are
selected as temperature-sensitive points to modeling.

Similarly, the results of temperature-sensitive points selec-
tion of other sample data are the same with the above, and
sensors T6 and T7 are used for modeling.

3.3 Experimental scheme

The thermal error measurement experiment is done nine times
in different seasons (different ambient temperature) and dif-
ferent spindle speeds of CNC machining center. The ambient
temperature and spindle speed of every experiment is shown
as Table 3.

From Table 3, the meaning of Knm is the nth test data
measured in meters per revolution per minute of spindle
speed. For example, K12000 is the first test data measured in
2,000 rpm of spindle speed, K22000 is the second test data
measured in 2,000 rpm of spindle speed, and K32000 is the
third test data measured in 2,000 rpm of spindle speed.

4 The robustness analysis of modeling models

Robustness means there are some gaps in the model and the
actual object; the model still has a satisfactory performance of
simulation and prediction. In this paper, a multiple linear
regression of least squares (LS-MLR) and least absolute
(LA-MLR) estimation models, distributed lag (DL) model,
and SVR model are used to establish prediction model of the
data K16000; the fitting accuracy of every model is analyzed,
and then the prediction model is used to forecast other batches
of data to determine the robustness of every model. At the
same time, according to the modeling data sources character-
istics, each algorithm robustness analysis is given.

Table 5 The prediction standard deviation S of models

Models LS-MLR LA-MLR DL SVR

S of K26000 (um) 4.9317 5.8966 6.9904 3.7914

S of K36000 (um) 16.8501 21.7091 35.2822 1.4765
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Fig. 6 The prediction effect of
K14000
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4.1 The fitting accuracy of different models

The equations of models are shown as follows:
The equation of LS-MLR model:

y ¼ −3:9304þ 4:9095T6−7:1656T 7 ð12Þ

From Eq. (12), T6 is the temperature increments of sensor
T6, and T7 is the temperature increments of sensor T7.

The equation of LA-MLR model:

y ¼ −10:025þ 5:4606T6−8:7339T 7 ð13Þ

From Eq. (13), T6 is the temperature increments of sensor
T6, and T7 is the temperature increments of sensor T7.

The equation of DL model (the lag order of DL model is 2
by expediency estimation method):

yt ¼ −34:4798þ 9:5056T6t−0:4002T6t−1−2:0641T6t−2
−5:0974T7t−3:1364T 7t−1−2:5486T 7t−2

ð14Þ

From Eq. (14), T6 t is the temperature increments of sensor
T6, T6 t-1 is the lag 1-order temperature increments of sensor
T6, T6 t-2 is the lag 2-order temperature increments of sensor
T6, T7 t is the temperature increments of sensor T7, T7 t-1 is the

lag 1-order temperature increments of sensor T7, and T7 t-2 is
the lag 2-order temperature increments of sensor T7.

The equation of SVR model:

y ¼ f xð Þ ¼
X
i¼1

l

a�i −ai
� �

exp −0:0026 xi−xk k2
� �

þ 49:551 ð15Þ
From Eq. (15), by cross-validation method to optimize the

parameters, sensitivity function g=0.0026 and punishment
coefficient C=24,834. By using LIBSVM in Matlab, support
vector, support vector corresponding coefficient (ai

*−ai), and
constant b=49.551 are obtained; l is the amount of data (the
number is 110 of this batch data).

The fitting standard deviations of models for K16000 are
shown as Table 4 and fitting effect as Fig. 3.

From Table 4, the fitting accuracy of SVR is the best, DL is
the second, and the LA-MLR is the worst.

In order to analyze the robustness of each model, every
prediction model is used to forecast other batches of data
according to the same spindle speed at different tempera-
tures (ambient temperature vary greatly), the same tem-
perature (ambient temperature vary small) in different
spindle speeds, and the different temperatures and different
spindle speeds.
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Fig. 7 The prediction effect
of K12000

Table 6 The prediction standard deviation S of models

Models LS-MLR LA-MLR DL SVR

S of K14000 (um) 6.1024 7.9943 12.7225 1.3758

S of K12000 (um) 6.3962 9.5209 21.4321 3.6063

Table 7 The prediction standard deviation S of models

Models LS-MLR LA-MLR DL SVR

S of K24000(um) 3.0338 4.0081 8.8666 4.3273

S of K22000(um) 4.3945 7.0063 17.0858 3.6476

S of K34000(um) 25.2375 32.9404 52.1711 4.6328

S of K32000(um) 10.2685 14.8759 31.6701 3.5465
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4.2 The same spindle speed at different ambient temperature

The prediction model established by K16000 is used to forecast
the data of K26000 and K36000, and the prediction effects are
shown as Figs. 4 and 5. The prediction standard deviations of
models are shown as Table 5.

According to the analysis of prediction standard deviations
of models, it is known that spindle speed remains unchanged
and ambient temperature increases a little; the prediction
accuracy of models remain better, but as ambient temperature
increases, the prediction effects of LS-MLR, LA-MLR, and
DL models are worse; LS-MLR model is relatively good, and
DL model is the worst. In addition, SVR model maintains
good prediction accuracy.

4.3 The same ambient temperature in different spindle speeds

The prediction model established by K16000 is used to forecast
the data of K14000 and K12000, and the prediction effects are
shown as Figs. 6 and 7. The prediction standard deviations of
models are shown as Table 6.

According to the analysis of prediction standard deviations
of models, it is known that ambient temperature remains
unchanged, and spindle speed is gradually reduced. LS-
MLR and LA-MLR models still have certain prediction accu-
racy; the prediction accuracy of DL model is getting worse,
and SVR model always maintain good prediction accuracy.
The stability of the pros and cons of models are followed by
SVR, LS-MLR, LA-MLR, and DL.

4.4 The different ambient temperature and different spindle
speeds

The prediction model established by K16000 is used to forecast
the data of K24000, K22000, K34000, and K32000, and the
prediction standard deviations of models are shown as
Table 7.

According to the analysis of prediction standard deviations
of models, it is known that ambient temperature changes
small, and spindle speed is gradually reduced; LS-MLR mod-
el and SVR model have high prediction accuracy, the predic-
tion accuracy of LA-MLRmodel is gradually reduced, and the
prediction effect of DL model is gradually worse; ambient
temperature vary greatly (over 10 °C) and spindle speed is
gradually reduced, only the prediction accuracy of SVR
model remains better, others are poor. The stability of the
pros and cons of models are followed by SVR, LS-MLR,
LA-MLR, and DL.

4.5 Model robustness analysis of modeling data source
characteristics change

In the above analysis, the fitting accuracy of DL model is
higher, while its robustness is poor. Taking the model algo-
rithm differences into account, especially the multicollinearity
problem of DL model, making the algorithm prediction accu-
racy will be greatly affected in the case of comprehensive data
information. Because the establishment of the above models
are based on sample data at 6,000 rpm under certain condi-
tions, the ambient temperature and spindle speed changes
have a greater impact on the variation of the thermal error of
CNC machine tools, and it is difficult to reflect these
effects in a single batch sample data and greatly affects
the robustness of DL model. In order to improve this
situation, it can be increased to give a solution that con-
tains a variety of modeling sample data under the different
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Fig. 8 The prediction effect of
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Table 8 The fitting standard deviation S of models

Models LS-MLR LA-MLR DL SVR

S (um) 2.7329 2.7664 2.6638 0.6355
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conditions which consist of the more influential factors,
i.e., as much as possible, consolidated different speeds
and in different ambient temperature conditions of the
data modeling. These data contain relatively comprehensive
information to overcome the multicollinearity problem in the
DL model.

The difference of ambient temperature between the first
batch data and the second batch data are smaller, so the second
batch and the third batch data are used to establish prediction
model to forecast the first batch data. The prediction model
established by comprehensive data of K26000, K36000, K24000,
K34000, K22000, and K32000 is used to forecast the data of
K16000, K14000, and K12000. According to the analysis of
prediction accuracy of each model, the robustness of models
established by different algorithms is determined.

The equations of prediction models established by the test
data of K26000, K36000, K24000, K34000, K22000, and K32000 are
shown as follows:

The equation of LS-MLR model:

y ¼ 6:053þ 3:5585T6−0:8386T7 ð16Þ

From Eq. (16), T6 is the temperature increments of sensor
T6, and T7 is the temperature increments of sensor T7.

The equation of LA-MLR model:

y ¼ 5:6132þ 3:6287T 6−0:8565T7 ð17Þ

From Eq. (17), T6 is the temperature increments of sensor
T6, and T7 is the temperature increments of sensor T7.

The equation of DL model (the lag order of DL model is 2
by expediency estimation method):

yt ¼ 6:6099þ 3:531T 7t−0:4715T7t−1 þ 0:4653T 7t−2
þ0:5654T9t þ 0:3749T9t−1−1:8522T9t−2

ð18Þ

From Eq. (18), T6 t is the temperature increments of sensor
T6, T6 t-1 is the lag 1-order temperature increments of sensor
T6, T6 t-2 is the lag 2-order temperature increments of sensor
T6, T7 t is the temperature increments of sensor T7, T7 t-1 is the
lag 1-order temperature increments of sensor T7, and T7 t-2 is
the lag 2-order temperature increments of sensor T7.
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Fig. 9 The prediction effect of
K14000
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The equation of SVR model:

y ¼ f xð Þ ¼
X
i¼1

l

a�i −ai
� �

exp −0:6598 xi−xk k2
� �

−39:911 ð19Þ

From Eq. (19), by cross-validation method to optimize the
parameters, sensitivity function g=0.6598, and punishment
coefficient C=97.0059. By running the software LIBSVM
in Matlab, support vector, support vector corresponding coef-
ficient (ai

*−ai), and constant b=39.911 are obtained; l is the
amount of data (the number is 679 of this batch data).

The fitting standard deviations of prediction models are
shown as Table 8. The prediction models are used to forecast
the data of K16000, K14000, and K12000, and the prediction
effects are shown as Figs. 8, 9, and 10. The prediction standard
deviations of models are shown as Table 9.

The prediction models are established by comprehensive
data of K26000, K36000, K24000, K34000, K22000, and K32000.
The fitting accuracy and prediction accuracy of LS-MLR
model, LA-MLR model, and DL model have been greatly
improved, and their robustness has been markedly enhanced.
The fitting accuracy of SVR model remains high, but
comparing with other algorithms, the prediction accuracy is
volatile and the robustness is declined.

4.6 Applicability analysis of the models

The robustness analysis of thermal error compensation
models are only for the thermal error of Z direction of Leaderway

V-450CNCmachining center spindle. The thermal error of X,Y,
and Z directions of spindle are shown as Fig. 11.

From Fig. 11, the thermal error variation of Z direction is
significantly different with thermal error variation of X and Y
directions, so the thermal error compensation models of Z
direction cannot be applied to the modeling of X and Y
directions. Also, the thermal error of X and Y directions are
all much smaller than that of Z direction; only by compensating
the thermal error of Z direction can the modeling requirements
of high precision and high robustness be met.

5 Conclusions

By the long-term measuring of thermal error and the temper-
ature in the sensitive point, multi batches of experiment data
are obtained, and the prediction models with various algo-
rithms are established. Aiming at the three conditions of
different ambient temperature with same spindle speed, dif-
ferent spindle speeds with same ambient temperature, and
different spindle speeds with different ambient temperature,
the accuracy and stability of prediction models are analyzed.
According to the analysis of experiment results, when model-
ing for one batch data, DL model has good fitting accuracy,
but its robustness is poor. The robustness of LA-MLR model
is not superior but worse than LS-MLR model. The view that
the robustness of LA-MLR model is superior to LS-MLR
model is based on themanagement of abnormal data. However,
the probability of abnormal data in the thermal error measure-
ment of CNC machine tool is very small. So, the advantage of
LA-MLRmodel is not embodied. Because of the large quantity
of data in the thermal error sample and the complexity of LA-
MLR model, the effect of LA-MLR model in practical appli-
cation in thermal error modeling is relatively worse than LS-
MLR model. SVR model has high fitting accuracy, good
retaining ability in prediction effect, and strong robustness; it
has relatively good engineering application in the thermal error
compensation modeling of CNC machine tools. When using

Table 9 The prediction standard deviation S of models

Models LS-MLR LA-MLR DL SVR

S of K16000 (um) 3.6668 3.8228 3.6205 3.2881

S of K14000 (um) 3.1649 3.3663 3.0717 6.6150

S of K12000 (um) 2.9429 3.0080 2.9186 3.7922
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multiple batches of data to establish prediction models, the
fitting accuracy and prediction accuracy of LS-MLR model,
LA-MLRmodel, and DLmodel have been improved a lot, and
their robustness have obviously enhanced. However, compar-
ing with the former model, the prediction accuracy of SVR
model is volatile and its robustness is declined.

For the selection of the thermal error compensation model-
ing of CNC machine tools, according to the feature of data
source and the theory of modeling, different models on differ-
ent conditions would change a lot on accuracy and robustness.
In this paper, the accuracy and robustness of some modeling
methods which are just referred to different spindle speeds and
ambient temperature have been analyzed. The factors of cut-
ting conditions and other modeling algorithms are out of
consideration, and these details need further research.
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