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Abstract In this paper, the unrelated parallel machine sched-
uling problem with sequence-dependent setup times and lim-
ited human resources is addressed with reference to the
makespan minimisation objective. Workers needed for setup
operations are supposed to be a critical resource as their
number is assumed to be lower than the number of worksta-
tions. In addition, each worker is characterised by a specific
skill level, which affects setup times. Firstly, a mathematical
model able to optimally solve small instances of the problem
in hand is illustrated. Then, to deal with large-sized test cases,
three different optimisation procedures equipped by different
encoding methods are proposed: a permutation encoding-
based genetic algorithm (GA), a multi-encoding GA and a
hybrid GA that properly moves from a permutation encoding
to a multi-encoding once a given threshold on the number of
generations is achieved. In particular, three different hybrid
GAs featured by different encoding switch thresholds were
implemented. An extensive benchmark including both small-
and large-sized instances was generated with the aim of both
calibrating the genetic parameters and comparing the alterna-
tive GAs through distinct ANOVA analyses. Numerical re-
sults confirm the effectiveness of the hybrid genetic approach
whose encoding switch threshold is fixed to 25 % of the
overall generations. Finally, a further analysis concerning the
impact of multi-skilled workforce on the performance of both
production system and optimisation strategy is presented.

Keywords Parallel machines . Sequencing .Worker
allocation . Genetic algorithms . Linear programming

1 Introduction

During the last few decades, the parallel machine problem has
encountered an increasing interest in literature, as many real-
world manufacturing systems can be described by means of
such theoretical model [32]. Based on the regular parallel
machine production environment, each job j=1, … , N has
to be processed by only one machine m=1, … , M; each
workstation cannot process more than one job at a time. In
addition, pre-emption is not allowed, i.e. each job cannot leave
a particular machine until its processing is finished.

A pioneer study concerning the identical parallel machine
scheduling problem has been carried out by Lenstra et al. [23]
who demonstrated as makespan minimisation in such a kind of
production system a nondeterministic polynomial (NP)-hard
problem, even in the case of only two machines. Since then,
various studies involving the use of heuristic techniques for
tackling this scheduling issue have been presented. Cheng and
Gen [9] proposed a Memetic Algorithm for minimising the
maximum weighted absolute lateness. Cochran et al. [10] devel-
oped a two-stage Multi-population Genetic Algorithm with ref-
erence to various concurrent objectives: makespan, total weight-
ed tardiness and total weighted completion time. Anghinolfi and
Paolucci [1] presented a hybrid metaheuristic integrating features
from a tabu search, simulated annealing (SA) and variable
neighbourhood search with the aim of minimising the total
tardiness. Recently, Gokhale and Mathirajan [14] proposed five
different heuristic techniques for minimising the total weighted
flowtime for a production systemwith identical parallelmachines
operating within an automotive manufacturing firm.

As concerns the most of recent literature focusing on
unrelated parallel machines scheduling problem, job process-
ing times are supposed to be machine dependent. In such kind
of problems, assignment of jobs to workstations represents a
crucial issue for determining the overall performances of the
production system along with job sequencing issue. Thus, the
degree of complexity gets considerably higher with respect to

A. Costa (*) : S. Fichera
Dipartimento di Ingegneria Industriale, University of Catania,
Catania, Italy
e-mail: costa@diim.unict.it

F. A. Cappadonna
Dipartimento di Ingegneria Elettrica, Elettronica e Informatica,
University of Catania, Catania, Italy

Int J Adv Manuf Technol (2013) 69:2799–2817
DOI 10.1007/s00170-013-5221-5



the identical machine case. Kim et al. [21] coped with a batch-
scheduling problem for an unrelated parallel machine system
observed within a semiconductor-manufacturing environ-
ment. They developed a two-level heuristic and a SA for
minimising the total weighted tardiness and compared those
methods with two dispatching rules, namely the Earliest
Weighted Due Date and the Shortest Weighted Processing
Time. Pereira Lopes and Valério de Carvalho [30] studied an
unrelated parallel machine system with sequence-dependent
setup times, machine availability dates and jobs release dates
with the aim of minimising the total weighted tardiness. They
followed a branch-and-price approach elaborating a proper
procedure able to solve instances of up to 50 machines and
150 jobs within a reasonable computational time. An unrelated
parallel machine scheduling problem with sequence-dependent
setup times was tackled also by Tavakkoli-Moghaddam et al.
[35]. In addition, they considered precedence constraints
among jobs and developed a two-step linear programming
model, together with a genetic algorithm (GA) for minimising
the number of tardy jobs primarily and the total completion
time secondly. A GA-based approach has also been adopted by
Vallada and Ruiz [37] with the aim ofminimisingmakespan for
an unrelated parallel machine scheduling problem with
sequence-dependent setup times. After a proper calibration
phase, they carried out an extensive comparison campaign
involving both small and large instances to assess the perfor-
mance of the proposed metaheuristic against a Mixed Integer
Linear Programming (MILP) model and other algorithms aris-
en from literature, for small- and large-sized problems, respec-
tively. The use of a GA approach for minimising makespan in
an unrelated parallel machine production system has also been
investigated by Balin [3] who developed a specific crossover
operator along with a new optimality criterion and assessed the
performance of the obtained algorithm against the Longest
Processing Time rule. A new approach for the resolution of
the unrelated parallel machine scheduling issue, though not
involving sequence dependent setup times, has been given
recently by Fanjul-Peyro and Ruiz [12] who developed several
hybrid heuristic methods and algorithms for reducing the size
of a given problem before solving it through a linear program-
ming model. Fanjul-Peyro and Ruiz [13] have also studied two
generalisations of the unrelated parallel machine model, name-
ly the Not All Machine (NAM) and Not All Jobs variants; the
former model allows one or more machines to be excluded by
the production shop, whereas the latter handles as unnecessary
some jobs to be processed. In both cases, a MILP model is
given. In addition, three different algorithms are presented for
the NAM model, as the complexity of the problem makes it
difficult finding an exact solution within a polynomial time.

Whenever a scheduling theoretical model should be ap-
plied to the real-world manufacturing environment, the human
factor should be taken into account to generate any reliable
schedule. Indeed, a well-established literary trend known as

Dual-Resource Constrained (DRC) focuses on the study of
production systems wherein capacity constraints depend on
both machines and human operators. Starting from the semi-
nal work of Nelson [26], DRC systems have received many
attentions by literature over the years. Treleven [36] and
Hottenstein and Bowman [16] have thoroughly categorised
the main topics and issues concerned with suchmanufacturing
models. Recently, Xu et al. [38] provided a comprehensive
review regarding the research works dealing with DRC sys-
tems presented during the last two decades.

Basically, the effect of humanworkers onDRC systemsmay
be studied under two different viewpoints, i.e. worker flexibility
and worker assignment. As far as the worker flexibility is
concerned, it consists in taking into account the different tech-
nical skills related to every worker. Part of the relevant literature
used a so-called flexibility level to consider the worker flexi-
bility in manufacturing environments; it is a numerical index
representing the number of machines where a worker may
operate [11, 22]. Another research trend considered the so-
called skill levels, i.e. numerical parameters able to characterise
the efficiency of each worker in respecting specific quality
requirements or productivity targets. This latter topic appears
to be extremely relevant in fact, whenever manual operations
should be executed, e.g. setups or removals, it could be crucial
taking into account the impact of the different workers’ skills on
the production system performance. Kim and Bobrowsky [20]
considered the crew skills as a random factor affecting setup
times on a job-shop production system. Askin and Huang [2]
proposed a mixed integer goal programmingmodel for creating
worker teams with high team synergy and proper technical and
administrative skills in a cellular manufacturing environment.
The same kind of production systemwas addressed by Norman
et al. [27] who developed a mixed integer programming prob-
lem for assigning workers to manufacturing cells, to maximise
the effectiveness of the organisation, also emphasising the
possibility of enhancing skill levels through additional training.
Pan et al. [29] tackled a job-shop scheduling problem pertaining
to the precision engineering industry, in which each job requires
specific technical skills as well as a certain grade of experience
and seniority to be performed.

With regard to DRC systems entailing the worker assign-
ment issue, two main trends may be noticed in the relevant
literature as well. A first research area is concerned with the
study of manufacturing configurations where each job pro-
cessing time depends on the number of operators assigned to
the machines where it has to be processed. Hu [17–19],
Chaudhry and Drake [8] and Chaudhry [7] applied the same
strategy to an identical parallel machine scheduling problem.
Celano et al. [5] studied a mixed-model assembly line se-
quencing problem where the total line stoppage time may be
reduced by applying specific help policies among workers.
Further literary research involve the study of production sys-
temswhere workers represent a critical resource, i.e. where the
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number of operators is significantly lower than the number of
available workstations. Celano et al. [4] studied the effect of
reducing the human resource capacity on unrelated parallel
manufacturing cells through an integrated simulation frame-
work, also taking into account several performance measures.
Zouba et al. [39] addressed the problem of scheduling jobs on
an identical parallel machine manufacturing environment with
less workers than machines, so that operators have simulta-
neously to supervise several machines.

The present paper focuses on the unrelated parallel ma-
chine scheduling problem with sequence dependent setup
times along with limited and multi-skilled human resource
that, to the best of our knowledge, never has been faced by
literature. Making use of the well-known three-field notation
α | β | γ proposed by Pinedo [31], it may be classified as Rm|
Sikjl|Cmax wherein setup time of each job l depends on the
machine i, on the skills of the operator k and on the preceding
job j. It is worth pointing out that in the proposed sequencing-
allocation problem, each worker is not assigned to a specific
machine once and for all but, on the contrary, he may visit
different machines along the production time horizon as the
final schedule allocates each worker to a set of jobs and then
jobs to machines.

A GA-based optimisation framework has been developed
for the makespan minimisation of the aforementioned prob-
lem. As recognised by the body of literature over the past
decades, GAs ensure a significance level of both efficacy and
efficiency in solving NP-hard combinatorial scheduling prob-
lems. Furthermore, the aforementioned literary overview,
which focuses on the parallel machine scheduling problem,
highlights the extensive use of GAs for tackling such kind of
topic [38].

In particular, three different hybrid GAs, each one involv-
ing two distinct encodings, have been compared with two
regular single-encoding GAs in terms of makespan
minimisation. Performance evaluation of the proposed
metaheuristics was carried out by means of an ANOVA anal-
ysis [25] over a wide set of test cases. Finally, a further step of
analysis highlights the impact of the multi-skilled human
resources on the performance of the production system, as
well as on the sequencing/allocation strategy of the proposed
hybrid optimisation tool.

The remainder of the paper is organised as follows: in
Section 2, a brief introduction to the proposed issue is
presented; Section 3 deals with the MILP model describing
the problem. In Section 4, all proposed GAs are discussed.
Section 5 illustrates the calibration procedure applied to such
metaheuristics, whereas in Section 6 numerical results arising
from an extensive experimental campaign are presented. In
Section 7, results obtained by taking into account multi-skilled
human resources are compared with those pertaining to three
different scenarios whose workers have identical skills. Final-
ly, Section 7 concludes the paper.

2 Problem description

The proposed unrelated parallel machine problemwith limited
human resources can be stated as follows. A set of j=1,… , N
jobs that has to be processed in a single production stage
composed by m=1, … , M unrelated workstations, aiming at
minimising the makespan, i.e. the maximum completion time
among the scheduled jobs. Each job has to be processed by
only one machine before it leaves the production system, and
each machine cannot process more than one job at a time.

Setup operations performed on a given workstation by a
single worker must precede each job processing on the same
workstation. Setup times are sequence and machine dependent.
Furthermore, a team w=1, … , W of workers, being w ≤m, is
assumed to be involved just to setup operations. As a conse-
quence, workers represent a critical resource as each setup
operation required by a given job on a given machine could
wait for a worker currently employed in another workstation for
the setup of a different job. In addition, each worker is featured
by a certain skill level, on the basis of which he is able to
perform setup operations slower or faster than his colleagues.
Thoroughly, setup time of a job l to be processed after a job j, on
a specific machine i, by a worker k,may be defined as follows:

Sikjl ¼ ηk ⋅Sijl; ð1Þ

where Sijl is the standard setup time required by an average-
skilled worker and ηk ∈[0.5,1.5] is a coefficient reflecting the
skill level of operator kth. Expert workers are supposed to
have ηk lower than 1 while novice workers are characterised
by ηk greater than 1. It is worth pointing out that the way the
skill levels have been modelled arises from the observation of
a real manufacturing environment typified by different tech-
nologies like: injection moulding, compression moulding and
HDPE pipe extrusion. To optimise the workforce utilisation
and, at the same time, to be more flexible towards the chang-
ing customer demands, the observed firm adopts a sort of
flexible labour management strategy. Instead of employing a
number of workers equal to the total amount of production
resources, the firm’s policy aims to use a lower number of
operators characterised by different skills, conforming to the
different technologies installed in the shop floor.

3 MILP model

A first goal of the proposed research was the development of a
MILP model, aiming both at optimally solving a set of small
instances of the aforementioned problem and validating the
performance of the provided GAs. The reported mathematical
model includes a dummy job (denoted as job 0), which must be
the first to be processed by all machines, though it has a
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processing time equal to zero. Such approach is necessary to run
setup times of each first job to be processed in a specificmachine;
thus, job 0 precedes each first job processed by each machine.
The aforementioned mathematical model is reported as follows.

3.1 Indices

h,j,l=0,1,…,n Jobs
i=1,2,…,m Machines
k=1,2,…,w Workers

3.2 Parameters

Til Processing time of job l on machine i
Sikjl Setup time of job l performed byworker k onmachine i,

after machine i has processed job j
B A big number

3.3 Binary variables

Xikjl f 1 if job l is processed on machine i after job j and
setup is performed by worker k

0 otherwise
Qjl Auxiliary variable for either–or constraint

3.4 Continuous variables

CSl Setup completion time of job l

Cl Processing completion time of job l
Cmax Makespan

3.5 Model

Minimise Cmax

Subject to:

X
i¼1

m X
k¼1

w X
j¼0

n

X ikjl ¼ 1 ∀l ¼ 1;2;…;n: ð2Þ

X
i¼1

m X
k¼1

w X
l¼1

n

X ikjl ≤ 1 ∀j ¼ 1;2;…;n: ð3Þ

X
k¼1

w X
l¼1

n

X ik0l ≤ 1 ∀i ¼ 1; 2;…; m: ð4Þ

X
i¼1

m X
k¼1

w X
l¼1

n

X ikll ¼ 0 ð5Þ

X
k¼1

w X
j¼0

n

X ikjl ≥
X
k¼1

w X
h¼1

n

X iklh ∀i ¼ 1; 2;…;m; l

¼ 1; 2;…; n: ð6Þ

Cl − CSl ≥
X
i¼1

m X
k¼1

w X
j¼0

n

T il ⋅ X ikjl ∀l ¼ 1; 2;…; n: ð7Þ

CSl − C j ≥
X
i¼1

m X
k¼1

w

Sikjl ⋅ X ikjl−B⋅ 1−
X
i¼1

m X
k¼1

w

X ikjl

 !
∀ j ¼ 0; 1;…; n; l ¼ 1; 2;…; n: ð8Þ

CSl − CS j ≥
X
i¼1

m X
h¼0
n

Sikhl ⋅ X ikhl − B ⋅ 2 −
X
i¼1

m X
h¼0

n

X ikhl þ X ikhj

� �þ Qjl

 !

CS j − CSl ≥
X
i¼1

m X
h¼0

n

Sikhj ⋅ X ikhj − B ⋅ 2 −
X
i¼1

m X
h¼0

n

X ikhl þ X ikhj

� �þ 1 −Qjl

 !

8>>>>>>>>><
>>>>>>>>>:

∀k ¼ 1; 2;…w; j ¼ 1; 2;…; n;
l ¼ jþ 1; jþ 2;…; n:

C0 ¼ 0 ð10Þ

Cmax ≥ C j ∀ j ¼ 1; 2;…; n: ð11Þ

X ikjl ∈ 0; 1f g ∀i ¼ 1; 2;…;m; k ¼ 1; 2;…;w; j ¼ 0; 1;…; n; l ¼ 1; 2;…; n: ð12Þ

(9)
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Qjl ∈ 0; 1f g ∀ j ¼ 1; 2;…; n; l ¼ jþ 1; jþ 2;…; n; ð13Þ

Constraint (2) ensures each job is assigned to only one
machine and is preceded by only one job, and only one worker
performs its setup. Constraint (3) states that each job must
precede at most one other job. Constraint (4) forces job 0 to
precede at most one other job in each machine. Constraint (5)
denotes that each job cannot precede itself. Constraint (6)
ensures the feasibility of a job sequence for each machine: if
job l precedes some other job, it must have a predecessor on
the same machine. Constraint (7) states as, for a given job, the
minimum time lag between the end of a setup task and the end
of the corresponding processing task must be equal to the
processing time required by the job itself. Constraint (8)
ensures that if job l is processed immediately after job j on a
given machine, the end of the processing task of job j and the
end of the setup task of job l must be separated by a time
interval equal to the setup time of job l, at least. The twofold
constraints (9) handles the limited human resources: if setups
of jobs j and l are performed by the same worker k, then setup
of job j must be completed before setup of job l starts, or vice
versa. Constraint (10) assigns a null completion time to job 0.
Constraint (11) forces makespan to be equal to or greater than
any job completion time. Finally, constraints (12) and (13)
define the corresponding binary variables.

4 The proposed GAs

Three kinds of different metaheuristic procedures based on
Gas have been developed to address the large-sized instances
of the proposed problem.

GAs [15] are computational methods inspired by the process
of natural evolution, which have largely been used to solve
scheduling problems so far. Generally, a GAworks with a set of
solutions to the problem called population. At every iteration, a
new population is generated from the previous one bymeans of
two operators, crossover and mutation, applied to solutions
(chromosomes) selected on the basis of their fitness, which is
derived from the objective function value; thus, best solutions
have greater chances of being selected. Crossover operator
generates new solutions (offspring) by combining the genetic
material of a couple of chromosomes (parents), whereas mu-
tation operator generates a change into the genetic scheme of
selected chromosomes, with the aim to avoid the procedure to
remain trapped into local optima. The algorithm evolutionary
process proceeds until a given stopping criterion is achieved.

Whenever an optimisation problem is addressed through
evolutionary algorithms, the choice of a proper encoding scheme
(i.e. the way a solution of a given problem is represented by a
string of genes) plays a key role under the metaheuristics

performance viewpoint; thus, the problem encoding strongly
may affect both efficacy and efficiency of GAs [6]. In addition,
a valid decoding procedure to be applied to every encoded
solution needs to be provided.

In the following subsections, a detailed description of the
GAs developed for solving the aforementioned unrelated par-
allel machine scheduling problem is reported.

4.1 Permutation-based GA

A first approach towards the resolution of the scheduling problem
here investigated consisted in the development of a GA equipped
with a permutation-based encoding scheme (PGA). In such
optimisation procedure, each chromosome directly describes the
order in which jobs have to be processed in the manufacturing
stage, whereas both the jobs and theworkers assignment issue are
performed by means of a proper decoding procedure, based on
the so-called list-scheduling method. A detailed description of
such algorithm is reported in the following section.

4.1.1 Encoding/decoding scheme

In PGA, each solution is represented by a permutation string π
of n elements, where n is the number of jobs to be scheduled.
In detail, l =π(r) is the job in the rth position (r=1,2,… , n) of
the considered permutation string; the unrelated parallel ma-
chine production system holds m machines and w workers,
with w ≤ m; Sikjl denotes the time required by worker k (k=1,
2, … , w) to perform setup of job l on machine i (i=1, 2, …
m), after machine i has processed job j (j=0, 1, … , n); Til is
the processing time of job l on machine i. The decoding
procedure considers jobs in the order they appear in the
permutation and assigns them to the couple machine-worker
that can complete them earlier than any other, according to the
aforementioned list-scheduling method. Once all decoding
steps for scheduling jobs preceding l in the permutation π
have been completed, TMi indicates the time at which ma-
chine i is ready to accept a new job; l is the current job
processed by machine i; TWk denotes the time at which
worker k is ready to start a new setup operation. At first
decoding iteration: TMi=0; l=0; TWk=0. Completion time
Cl of job l =π(r) is calculated as follows:

Cl ¼ min
i;k

E
ikl

� �
ð14Þ

where, Eikl indicates the estimated completion time of job
l =π(r), whether it is processed on machine i and its setup is
performed by worker k. Hence:
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E
ikl

¼ max TMi; TWkf g þ S
ikλl

þ T
il

ð15Þ

Then, denoting with i* and k* machine and worker to
which job l is assigned, respectively (i.e., those able to min-
imise Eikl ), quantities TMi* and TWk* are updated as follows:

TMi* ¼ C
l

ð16Þ

TMk*Cl
−T

i�l ð17Þ

Finally, after the aforementioned procedure has been
performed for the entire permutation string, the makespan is
calculated according to the following formula:

Cmax ¼ max
l∈π 1ð Þ;…;π nð Þ

C
l

� �
ð18Þ

To provide a clear insight into the aforementioned
encoding/decoding procedure, a brief example is reported. It
consists of four jobs (n=4) to be scheduled on an unrelated
parallel machine manufacturing system composed by three
workstations (m=3) and characterised by having a workforce
team with two workers (w=2) to be employed for setup
operations. For the sake of simplicity, setup times are assumed
to be sequence-independent. For each job j, Table 1 illustrates
processing times as i (index of machine) changes, and setup
times as i and k (indices of worker) change.

As the reader can notice, setup times concerning the first
operator are always half of the corresponding times concerning
the second one, as the two workers are supposed to be differently
skilled and, in particular, the first worker has a greater level of
expertise with respect to the second worker. Furthermore, it is
worth highlighting that job processing times do not depend on the
workers, as in the proposed model the human factor affects only
setup operations. Whether solution π={4,1,2,3} is taken into
account, Table 2 summarises the proposed decoding procedure
applied to π. At each iteration r (r=1,2, … , n), the minimum

value of Eikl , calculated according to Eq. (15), is denoted in
italics. Both the corresponding machine and worker, denoted as
i* and k*, are selected for processing job l =π(r), whereas TMi*

and TWk* are updated according to Eqs. (16) and (17), respec-
tively. Finally, a makespan equal to 11 occurs for the given
solution, according to Eq. (18). Figure 1 shows the Gantt chart
obtained by applying such decoding procedure.

4.1.2 Selection, crossover and mutation operators for PGA

With regard to the selection mechanism, the well-known
roulette-wheel scheme [24] has been considered, thus assigning
to each solution a probability of being selected inversely pro-
portional to makespan value. A position-based crossover [34]
has been employed for generating new offspring from a couple
of selected parents. In such procedure all selected genes from a
parent are copied in the offspring, just preserving corresponding
position and relative order; unselected genes are instead copied
in the order they appear in the other parent, thus completing the
structure of the new generated individual. Figure 2 shows an
example of position-based crossover for an instance with n=10.

As far as the mutation procedure is concerned, a simple
swap operator [28] has been chosen. Based on this technique,
two genes randomly selected from the chromosome are mutu-
ally exchanged. However, the proposed algorithm has also been
equipped with an elitism procedure, aiming to preserve the best
two individuals of each generation from any alteration caused
by crossover and mutation operators. Finally, a fixed number of
makespan evaluations has been chosen as stopping criterion.

4.2 Multi-encoding GA

The main characteristic of the proposed PGA is reducing the
computational burden by means of a basic problem encoding.

Table 1 Processing and setup times for an example with n=4, m=3 and
w=2

Tij j=1 j=2 j=3 j=4

i=1 4 2 1 5

i=2 3 5 8 2

i=3 1 5 4 4

Sikj k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

i=1 3 6 5 10 2 4 2 4

i=2 1 2 1 2 5 10 3 6

i=3 1 2 5 10 2 4 3 6

Table 2 PGA decoding procedure for π={4,1,2,3}

r
l Eikl

i* k* TMi TWk

k=1 k=2 i=1 i=2 i=3 k=1 k=2

1 4 i=1 7 9 2 1 0 5 0 3 0
i=2 5 8

i=3 7 10

2 1 i=1 10 10 3 2 0 5 3 3 2
i=2 9 10

i=3 5 3

3 2 i=1 10 14 1 1 10 5 3 8 2
i=2 11 12

i=3 13 18

4 3 i=1 13 15 3 2 10 5 11 8 7
i=2 21 23

i=3 14 11

Numbers in italics match the job completion times in Fig. 1
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Nevertheless, such algorithm moves over a search space that
cannot embrace the overall set of solutions, due to the corre-
sponding decoding procedure that, for each permutation,
adopts a rigid criterion for assigning jobs to machines and
workers. Hence, an alternative approach, towards the resolu-
tion of the proposed sequencing-allocation problem by means
of metaheuristics, consisted in the development of a GA
(MGA) equipped with a multi-stage encoding able to investi-
gate a wider space of solution if compared with PGA. Three
substrings compose such multi-stage encoding, the former
being a regular permutation string to manage the job sequenc-
ing issue, and two adding strings necessary to drive the
assignment of jobs to machines and workers, respectively.
The following paragraph illustrates the proposed multi-stage
encoding-based approach.

4.2.1 Encoding/decoding scheme for MGA

To illustrate the encoding procedure exploited by MGA, the
same nomenclature already defined for PGA may be adopted.
Thus, assuming to have n jobs to be scheduled on an unrelated
parallel machine system with m workstations and w workers
(w≤m), each chromosome is represented by the following
substrings:

& A permutation string α of n elements;
& A string β of n integers ranging from 0 to m, driving the

assignment of jobs to machines;
& A string γ οf n integers ranging from 0 to w, driving the

assignment of jobs to workers.

With regard to the initial population, it is worth highlight-
ing that the maximum number of non-zero genes within each
assignment substring (i.e. β and γ) is fixed a priori and equal
to a fraction pnz of the total amount of genes every substring
holds, i.e. n. In case the fraction of non-zero values is a real
number, such number must be rounded up to the next integer.
As for example, for a problem with ten machines, if pnz is
equal to 1 % just one digit may assume a non-zero value
within the β substring. Before introducing the decoding pro-
cedure, let l =α(r) be the job on the rth position of the
permutation α (r=1, 2, … , n); i ¼ β l

� �
indicates the digit

at position l of string β; k ¼ γ l
� �

indicates the digit at
position l of array γ. Sikjl denotes the time required by worker
k (k=1,2, … , w) to perform setup of job l on machine i
(i=1,2,…m), after machine i has processed job j (j=0,1,… , n);
Til indicates processing time of job l on machine i. The
decoding procedure considers jobs in the order they appear in
the permutation string α and uses corresponding information
from arrays β and γ to perform the assignment of jobs to
machines and workers; if no information is given by one or
both arrays (i.e. if i =0 and/or k =0), the same list-scheduling

Fig. 1 Gantt chart obtained by
PGA decoding procedure for
π={4,1,2,3}

Fig. 2 Position-based crossover
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rule of PGA is used. Thus, let us assume to have completed all
decoding steps for scheduling jobs preceding l in the permuta-
tion α. TMi indicates the time at which machine i is ready to
accept a new job; l is the last job processed by machine i; TWk

denotes the time at which worker k is ready to start a new setup
operation; first iteration states: TMi=0, l=0 and TWk=0.
Completion time Cl of job α(r) is calculated as follows:

C
l
¼

Ei
�
k
�
l
� if i

�
≠ 0 and k

�
≠ 0

min
k

Ei
�
kl
�� �

if i
�
≠ 0 and k

� ¼ 0

min
i

Eik
�
l
�� �

if i
� ¼ 0 and k

�
≠ 0

min
i;k

Eikl
�� �

if i
� ¼ 0 and k

� ¼ 0

8>>>>><
>>>>>:

ð19Þ

where Eikl indicates the estimated completion time of job l if
processed on machine i with setup performed by worker k. Its
value is calculated according to the following formula:

E
ikl

¼ max TMi; TWkf g þ S
ikll

þ T
il

ð20Þ

According to the decoding procedure above described, the
job is assigned to machine i if i ≠ 0 and to worker k if k ≠ 0;
in case either β or γ do not hold any specific value, job i
allocation to machines and workers is managed byminimising
the estimated completion time calculated through equation
(20). Whether i* and k* denote machine and worker to which
job i have to be assigned, TMi* and TWk* can be updated as
follows:

TMi* ¼ C
l

ð21Þ

TWk* ¼ C
l
−T

i�l ð22Þ

Finally, after the aforementioned procedure has been
performed for the entire set of jobs, the makespan is computed
as follows:

Cmax ¼ max
l∈α 1ð Þ;…;α nð Þ

C
l

� �
ð23Þ

To better explain the proposed decoding procedure, the
same example reported in Section 4.1.1 (see Table 1) can be
taken into account. Supposing the solution to be decoded is
π={4,1,2,3|1,0,0,3|0,1,0,0}, Table 3 summarises the proposed
decoding procedure. For each iteration r, the corresponding
values of Eikl are reported. Among these, the actual value of
Cl , calculated based on Eq. (19), is captured in italics; i* and
k* are the selected machine and worker to process job l =α(r),
so that TMi and TWk can be updated conforming to Eqs. (21)

and (22), respectively. Finally, a makespan equal to 10 is
obtained by applying Eq. (23). Figure 3 shows the Gantt chart
obtained by the proposed decoding procedure.

The proposed quantitative example puts in evidence the
potential improvements that could arise from a more structured
encoding scheme with respect to PGA. In fact, the same se-
quence of jobs elaborated by the PGA encoding/decoding gen-
erates a makespan equal to 11 (see Fig. 1), whereas MGA
encoding/decoding yields a makespan equal to 10 times. For a
given sequence of jobsα, a number of alternative solutions equal
to (m+1)n(w+1)n exist, thus emphasising the wider solution
space that can be investigated by theMGAwith respect to PGA.

4.2.2 Selection, crossover and mutation operators for MGA

Similarly being done by PGA, the same roulette wheel-based
mechanism has been adopted as selection operator which
assigns to each solution a probability of being selected inverse-
ly proportional to its makespan value. Conversely, crossover
operator has been developed to separately run the mating
between the three distinct parts composing the parents’ struc-
tures (i.e. α, β and γ), with three distinct probabilities pαcross,
pβcross and pγcross. Crossover between two parent α-substrings
may be executed through a regular position-based operator
conforming to PGA. As far as assignment substrings β and γ
are concerned, a simple uniform crossover operator [33] has
been employed. Such technique generates a couple of offspring
by choosing, for each position, if the parents’ genes will be
swapped or not. Without loss of generality, Fig. 4 illustrates the
application of such genetic operator for the β-substrings of two
parents; bold-bordering genes are those to be swapped.

Similarly to crossover, mutation procedure has been
performed by separately managing the three parts of the

Table 3 MGA decoding procedure for π={4,1,2,3|1,0,0,3|0,1,0,0}

r
l =α(r) i k Eikl

i* k* TMi TWk

k=1 k=2 i=1 i=2 i=3 k=1 k=2

1 4 1 0 i=1 7 9 1 1 7 0 0 2 0
i=2 5 8

i=3 7 10

2 1 0 1 i=1 14 17 3 1 7 0 4 3 0
i=2 6 5

i=3 4 3

3 2 0 0 i=1 14 19 2 2 7 7 4 3 2
i=2 9 7

i=3 14 19

4 3 3 0 i=1 10 16 3 1 7 7 10 6 2
i=2 20 25

i=3 10 12

Numbers in italics match the job completion times in Fig. 3

2806 Int J Adv Manuf Technol (2013) 69:2799–2817



chromosome, using three distinct probabilities pαmut, pβmut and
pγmut. Mutation of the permutational substring has been
performed through the same swap operator used in the PGA
procedure. With reference to the assignment arrays, a simple
uniform mutation operator [24] has been adopted. This tech-
nique randomly picks a gene and replaces it with a random
value drawn from a uniform distribution in the provided do-
main (i.e. (0, m) for the first array, (0, w) for the second one).
The same elitism procedure employed in PGAwas embedded
into the MGA so that, for each generation, the best two indi-
viduals are copied within the new population. The total number
of makespan evaluations represents again the stopping criterion
of the proposed MGA.

4.3 Hybrid GA

A hybrid genetic algorithm (HGA) which combines both the
aforementioned meta-heuristics was developed as an alterna-
tive approach for solving the proposed unrelated parallel
machine problem with limited human resources. In words, a

twofold encoding-based GA has been arranged with the aim
of combining the search and computational rapidity of PGA in
the first phase and the ability of MGA in investigating a
greater number of solutions in the second phase. PGA per-
forms the first optimisation phase then, after a provided
threshold is achieved and a proper encoding conversion pro-
cedure is executed, MGA starts until the stopping criterion is
encountered. The encoding conversion procedure operates by
adding the two assignment substrings to the chromosomes
characterising the last population. Firstly, all values of new
added assignment substring are set to zero; then, a fraction pnz
of genes for each substring are replaced by elements drawn
from an uniform distribution in the interval (1,m) or (1, w) for
the first and the second substring, respectively. Figure 5 shows
an example of such procedure for an instance having n=10,
m=5 and w=2.

An elitism mechanism has been ensured whenever the
population based on single-stage encoding must be converted
into a multi-stage encoding-based population. In fact, the best
two individuals included in the PGA final population are

Fig. 4 Uniform crossover operator

Fig. 3 Gantt chart obtained by
MGA decoding procedure for
π={4,1,2,3|1,0,0,3|0,1,0,0}
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copied and updated into the new MGA population just by
adding them two null assignment substrings (i.e. substring
with only zeros). Once the encoding conversion procedure is
completed, MGA cope with the second part of the optimisa-
tion process, until the total number of makespan evaluations is
achieved.

5 Experimental calibration and test cases

Before carrying out an extensive comparison among the afore-
mentioned metaheuristics, a comprehensive calibration phase
has been fulfilled, with the aim of properly defining the best
genetic parameters of the proposed algorithms. To this end, a
benchmark of 100 problems has been created, combining
number n of jobs, number m of machines and number w of
workers in a full factorial design as illustrated in Table 4. The
benchmark is characterised by 4×2×2=16 small problems
(with n ≤ 10) and 7×4×3=84 large problems (with n ≥ 20),
as to ensure the effectiveness of the tuned parameters over a
wide range of test cases.

For each problem, one instance has been generated by
extracting processing times from a uniform distribution in
the range (1, 99). Setup times have been obtained by a two-
steps procedure; first, a matrix Sijl of both sequence-dependent
and machine-dependent setup times was randomly generated
by an uniform distribution U (1, 99). Then, for each worker k
(k=1, 2,… , w), setup times have been multiplied by a factor
ηk representing the skill weights of the operator itself, ran-
domly extracted from the set {0.5, 0.75, 1, 1.25, 1.5}, thus
obtaining the input parameters Sikjl. A so configured set of

skill weights is due to the observed real manufacturing envi-
ronment wherein a highly skilled worker is able, on the
average, to carry out a setup task in one third time with respect
to a weakly skilled one.

Two separate calibration campaigns have been conducted
for PGA and MGA, respectively. Table 5 illustrates parame-
ters tested for each algorithm, and denotes in italics the best
combination of values, chosen after an ANOVA analysis [25]
at 95 % confidence level performed by means of Stat-Ease®
Design-Expert® 7.0.0 commercial tool. The employed re-
sponse variable was the relative percentage deviation (RPD),
calculated according to the following formula:

RPD ¼ GAsol−BESTsol

BESTsol
� 100 ð24Þ

where GAsol is the solution to be evaluated, i.e. corresponding to
aGAwith a specific setting of genetic parameters, and BESTsol is
the best solution among those provided by the other GAs with

Table 4 Proposed benchmark of test problems

Scenario Factor Indices Values

Small-sized problems Number of jobs n 7, 8, 9, 10

Number of machines m 4, 5

Number of workers w 2, 3

Large-sized problems Number of jobs n 20, 40, 60, 80,
100, 150, 200

Number of machines m 10, 12, 16, 20

Number of workers w 6, 8, 10

Table 5 Experimental calibration of PGA and MGA

Algorithm Parameter Notation Values

PGA Population size Psize 20, 50,
100

Crossover probability pcross 0.2, 0.5,
0.8

Mutation probability pmut 0.05,
0.1,
0.2

MGA Population size Psize 20, 50,
100

Percentage of non-zero genes of
substrings β and γ (initial
population)

pnz 1 %,
5 %,
10 %

Crossover probability (permutation
substring α)

pαcross 0.5, 0.8

Crossover probability (substring β) pβcross 0.5, 0.8

Crossover probability (substring γ) pγcross 0.5, 0.8

Mutation probability (permutation
substring α)

pαmut 0.05, 0.2

Mutation probability (substring β) pβmut 0.05, 0.2

Mutation probability (substring γ) pγmut 0.05, 0.2

Numbers in italics denote the most performing parameters to be adopted

Fig. 5 Encoding conversion procedure
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different settings, for the same instance. GAs have been coded in
MATLAB® language and executed on a 2-GB RAM PC
powered by a dual-core 2.39-GHz processor. Stopping criterion
was set to a total of 10,000 makespan evaluations. The use of
such a stopping criterion arises from a small test campaign over a
set of large-sized instances, wherein no any significant difference
of performance has been observed by adopting 10,000 and
15,000 evaluations as stopping criterion, respectively.

As far as the HGA procedure is concerned, no any calibra-
tion has been provided since it consists of the combination of
PGAwith MGA; for such a reason, the same best parameters
identified for the two distinct single-encoding algorithms (i.e.
PGA and MGA) have been used for the two-phase hybrid
metaheuristic. ANOVA outputs reported in Table 5 shows that
MGAwould require a smaller population than PGA; thus, the
encoding conversion procedure exploited by HGA works by
selecting the best performing 50 individuals of the final PGA
population and by adding them the two provided assignment
substrings, according to the procedure reported in Section 4.3.

6 Numerical examples and computational results

Once the calibration phase is completed, an extensive test
campaign has been performed to compare the proposed GAs.
In words, such comparison entails PGA, MGA and three
variants of HGA, hereinafter HGA25, HGA50 and HGA75,
whose encoding switch threshold pconv was set to 25, 50 and
75 % of the total number of makespan evaluations chosen as
stopping criterion, respectively. The same benchmark arrange-
ment exploited for the tuning parameters analysis has been
used. In particular, a total amount of ten different instances per
each problem has been generated, using the same method
employed in the calibration phase for defining both setup and
processing times. Thus, a comparison analysis has been ful-
filled over a total amount of 1,000 different instances. Indeed,
as five runs characterised by five different random seeds have
been considered for each metaheuristic algorithm, the effective
number of investigated numerical instances is equal to 5,000.

Stopping criterion of each algorithm was set to 10,000
makespan evaluations and the same ICT computational equip-
ment as described in Section 5 was employed for all
metaheuristics. The following subsections reports the obtained
results concerning small and large instances, respectively.

6.1 Small instances comparison analysis

Conforming to the calibration phase debated in Section 5,
small-sized instances (i.e. those having n≤10) have been
arranged in four scenario problems depending on the number
of jobs (n=7, 8, 9 and 10). Each scenario problem includes 4
classes of problems, each one involving a different number of
both machines (m=4 and 5) and workers (w=3 and 4). As

each class of problems holds ten instances and each instance
was replicated five times with different random seeds,
160×5=800 different runs have been considered. Both job
and worker descriptors, e.g. processing times and setup times
for each machine, have been randomly generated according to
the same criteria discussed in Section 5.

The overall set of instances was optimally solved by means
of the proposed MILP model, executed on an IBM® ILOG
CPLEX Optimisation Studio 12.0 64-bit platform installed
within a workstation powered by two quad-core 2.39-GHz
processors with 24-Gb RAM. The response variable used for
the comparison analysis was the RPD calculated according to
Eq. (24). Considering that the optimality of the MILP-based
approach BESTsol relates to the global optimum found by
CPLEX® tool, Table 6 reports the average value of RPD
obtained by each GA for a given class of problems
(encompassing ten different instances replicated five times),
together with the average computational time required,
expressed in seconds. In parenthesis is reported the number
of times out of 50 each algorithm hits the global optimum
provided by the CPLEX® optimiser. Final row of Table 6
reports the grand averages (g_ave) in terms of RPD and
number of optimal solutions concerning each metaheuristic.

Obtained results show that all the proposed metaheuristics
are able to achieve a high level of performance in terms of
both quality of solution and computational time. HGA25

seems to be very effective if compared with the other algo-
rithms, although the difference of performance appears to be
very narrow. To infer some statistical conclusion about the
aforementioned difference of performance, a proper ANOVA
analysis has been performed. Figure 6 reports the means plot
with LSD intervals (α=0.05) obtained through Design-
Expert® 7.0 platform.

The graph shows how MGA, HGA25 and HGA50 signifi-
cantly outperform PGA and HGA75 under a statistical view-
point, as LSD intervals of the winner algorithms are not
overlappedwith those of the looser ones. Nevertheless, ANOVA
results do not allow drawing any conclusion with regards to the
difference among the three best performing metaheuristics.
However, this is an expected outcome due to the small size of
problems addressed by the optimisation procedures. Larger-
sized problems surely may highlight a significant performance
difference among the GAs under examination.

6.2 Comparison for large instances

In this section a comparison among the proposed meta-
heuristics has been performed on the basis of an extended
benchmark of larger-sized problems. Conforming to the cali-
bration benchmark dealt with in Section 5, seven scenario
problems depending on the number of jobs (n=20, 40, 60,
80, 100, 150 and 200) to be scheduled have been arranged.
Each scenario problem includes four classes of problem at
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varying number of machines (m=10, 12, 16 and 20). As far as
the number of worker is concerned, it was varied according to
three levels per each class of problems (w=6, 8 and 10). As ten
randomly generated instances have been provided for class of
problems and five replications with different random seeds
have been arranged for each instance, a total amount of
840×5=4,200 runs have been considered for the proposed
comparison analysis. Both job and worker descriptors, e.g.
processing times and setup times for each machine, have been
randomly generated according to the same criteria discussed
in Section 5. Given the size of the problems included within
this benchmark, MILP cannot achieve any global optimum.
The RPD (see Eq. 24) has been taken into account as a

performance indicator for the comparison in hand, the only
difference being that BESTsol is the best solution among those
obtained by the proposed metaheuristics for each instance.
Table 7 reports the average RPD numerical results for each
class of problems along with the related CPU time average
percentage deviation with respect to PGA (ΔCPU%PGA). Each
row encompasses the averages results of 50 different runs (i.e.
ten instances replicated five times). The last row shows the
grand average of both RPD and ΔCPU%PGA over the entire
set of investigated instances.

HGA25 outperforms on the average the other competitors
for optimising the proposed sequencing/allocation problem.
This time, the advantage of using a hybrid approach clearly
emerges, as all the three HGAs outperform both PGA and
MGA. Of course PGA remains the best method under the
computational time viewpoint because of the basic encoding
scheme it adopts; however, average CPU times required by all
other metaheuristics remain acceptable, especially in view of
the complexity of problems solved. Figure 7 reports the means
plot with 95 % confidence level LSD intervals.

Differently from the analysis concerning the small-sized
scenario problems, it can be seen how the difference between
HGA25 and other algorithms is statistically significant. MGA
performance sensibly decreases if compared with the small-
sized instances case.

Without loss of generality, Fig. 7 shows how all the three
versions of HGA significantly outperform the two single
encoding-based GAs (i.e. PGA and MGA). The reason of this
outcome can be explained if the differences among explorationFig. 6 Means plot and LSD intervals for small instances

Table 6 Average performances of GAs on small-sized instances

Problem (n×m×w) Average RPD Average CPU time (s)

PGA MGA HGA25 HGA50 HGA75 PGA MGA HGA25 HGA50 HGA75

7×4×2 3.25 (18) 1.50 (31) 1.30 (35) 1.92 (29) 2.28 (27) 2.3 3.4 3.1 2.9 2.5

7×4×3 1.98 (27) 0.89 (38) 0.84 (33) 0.96 (37) 1.61 (33) 2.3 3.4 3.1 2.9 2.6

7×5×2 3.12 (18) 1.56 (27) 1.15 (32) 2.36 (21) 2.66 (22) 2.3 3.4 3.1 2.9 2.5

7×5×3 2.47 (21) 1.33 (30) 1.15 (32) 1.26 (27) 2.05 (22) 2.4 3.4 3.1 2.9 2.6

8×4×2 4.05 (16) 2.65 (25) 2.85 (20) 2.72 (21) 3.96 (16) 2.5 3.6 3.3 3.0 2.7

8×4×3 3.00 (22) 1.94 (31) 1.59 (35) 2.14 (29) 2.60 (26) 2.5 3.7 3.3 3.1 2.7

8×5×2 4.99 (15) 3.68 (18) 2.62 (21) 3.97 (19) 4.60 (16) 2.5 3.7 3.3 3.1 2.8

8×5×3 3.20 (22) 1.84 (28) 2.18 (26) 2.63 (26) 2.67 (25) 2.6 3.7 3.4 3.1 2.8

9×4×2 4.59 (13) 3.30 (19) 3.12 (20) 3.36 (18) 4.47 (14) 2.7 3.9 3.5 3.3 2.9

9×4×3 3.01 (15) 1.91 (26) 2.16 (19) 2.23 (23) 2.87 (16) 2.7 3.9 3.6 3.3 2.9

9×5×2 3.93 (18) 2.42 (29) 2.24 (30) 2.98 (25) 3.26 (20) 2.7 3.9 3.6 3.3 2.9

9×5×3 3.79 (13) 2.30 (24) 2.62 (19) 3.05 (17) 3.14 (14) 2.7 4.0 3.6 3.3 3.0

10×4×2 4.39 (10) 3.67 (12) 3.50 (12) 3.34 (14) 3.97 (13) 2.8 4.1 3.8 3.5 3.1

10×4×3 3.55 (18) 2.92 (23) 2.53 (29) 2.65 (23) 3.11 (22) 2.8 4.2 3.8 3.5 3.1

10×5×2 4.51 (12) 4.64 (12) 5.09 (15) 3.35 (16) 4.34 (14) 2.9 4.2 3.8 3.5 3.1

10×5×3 3.92 (12) 2.47 (23) 3.01 (19) 3.44 (17) 3.57 (14) 2.9 4.2 3.8 3.5 3.18

g_ave 3.61 (16.8) 2.44 (24.75) 2.37 (24.81) 2.65 (24.23) 3.20 (19.62) 2.6 3.5 3.2 2.9 3.8
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Table 7 Average performances of GAs on large-sized instances

Problem (n×m×w) Average RPD Average ΔCPU%PGA

PGA MGA HGA25 HGA50 HGA75 MGA (%) HGA25 (%) HGA50 (%) HGA75 (%)

20×10×6 4.56 4.37 2.82 3.24 3.80 40 28 19 8

20×10×8 3.87 3.14 3.15 3.63 3.13 38 27 18 8

20×10×10 1.81 3.47 2.05 1.79 1.95 36 26 18 6

20×12×6 3.01 2.83 2.35 1.71 2.70 38 27 18 7

20×12×8 2.38 3.87 2.74 1.60 2.21 36 26 17 7

20×12×10 2.24 2.07 1.54 1.76 1.89 34 25 17 8

20×16×6 1.72 4.13 1.94 2.16 1.51 35 25 18 8

20×16×8 2.07 2.09 1.31 2.00 1.74 33 24 16 8

20×16×10 2.66 2.63 2.57 3.80 2.38 31 23 15 7

20×20×6 2.22 3.76 2.23 1.75 1.76 33 24 16 7

20×20×8 1.96 1.59 1.47 2.91 1.63 31 22 15 6

20×20×10 2.47 1.74 1.74 1.76 2.83 29 21 14 6

40×10×6 5.58 7.34 4.31 5.66 5.61 42 30 20 9

40×10×8 6.19 5.77 4.70 3.99 5.19 40 28 19 9

40×10×10 4.54 5.60 3.37 5.74 4.64 38 27 19 8

40×12×6 6.60 2.74 5.71 5.33 6.11 39 27 19 8

40×12×8 5.30 6.16 4.39 5.22 5.22 37 26 19 8

40×12×10 5.54 3.79 4.45 4.58 5.16 36 25 17 8

40×16×6 5.02 8.22 4.23 4.57 3.72 36 25 18 8

40×16×8 5.42 5.31 5.18 5.36 4.38 34 24 17 7

40×16×10 3.47 5.10 3.06 2.91 2.79 32 22 16 7

40×20×6 5.39 4.24 4.93 5.00 5.30 34 24 16 7

40×20×8 6.67 2.86 4.09 4.88 6.09 31 22 15 7

40×20×10 5.33 3.11 4.94 5.77 4.61 29 21 14 6

60×10×6 4.48 4.63 3.33 3.02 4.35 42 29 20 9

60×10×8 5.61 4.96 2.79 3.60 5.52 40 28 20 8

60×10×10 3.68 6.05 2.77 2.75 3.42 37 26 18 8

60×12×6 3.78 2.93 3.46 4.36 3.45 40 27 19 9

60×12×8 4.50 3.02 4.94 3.79 4.93 37 26 19 8

60×12×10 4.25 4.82 3.83 3.43 3.90 36 25 17 8

60×16×6 5.68 5.16 5.85 5.93 5.00 36 25 17 7

60×16×8 3.56 4.35 2.88 3.08 4.00 34 23 17 8

60×16×10 4.27 7.27 4.08 3.75 3.42 33 23 16 8

60×20×6 4.85 6.75 3.18 4.56 4.14 35 23 16 8

60×20×8 4.69 5.21 3.85 4.96 4.38 31 21 15 7

60×20×10 4.42 4.79 3.75 4.11 4.28 30 21 15 8

80×10×6 3.87 2.75 3.62 2.92 3.57 43 29 20 10

80×10×8 4.61 4.71 2.96 4.52 3.01 41 28 19 9

80×10×10 4.33 4.20 2.83 3.88 3.69 39 27 19 9

80×12×6 4.43 3.03 3.84 3.87 3.49 41 27 19 9

80×12×8 4.93 3.40 3.70 4.18 5.10 38 25 18 9

80×12×10 4.09 3.32 2.10 3.08 4.32 36 25 18 9

80×16×6 6.44 4.25 3.69 3.73 5.71 36 25 18 8

80×16×8 4.71 4.59 4.28 3.08 3.98 34 24 16 8

80×16×10 4.48 2.97 2.72 4.05 4.51 32 22 15 8

80×20×6 3.72 4.64 3.99 3.91 3.09 34 24 17 9

80×20×8 3.62 3.38 2.85 3.18 2.75 31 22 15 8
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and exploitation abilities of the proposed approaches are
considered.

Regardless of the corresponding decoding procedure, the
permutation encoding employed by PGA enhances the speed
of the exploration phase. Indeed, as the same permutation
string drives both the job sequencing and the worker assign-
ment issue, every chromosome modification introduced by
crossover and mutation operators may generate significant

genetic distortions. As a consequence, there is a high proba-
bility that the search process moves towards entirely new areas
of the search space.

Conversely, the multi-encoding scheme adopted by MGA
may run a greater amount of information and an exploitation
mechanism within the neighbourhood of the previously visit-
ed points may occur. Mutation and crossover operators should
assist the exploitation phase as they can be applied to each

Table 7 (continued)

Problem (n×m×w) Average RPD Average ΔCPU%PGA

PGA MGA HGA25 HGA50 HGA75 MGA (%) HGA25 (%) HGA50 (%) HGA75 (%)

80×20×10 3.33 3.46 2.76 2.88 3.27 29 19 14 8

100×10×6 3.11 3.11 3.42 2.40 3.18 44 30 22 10

100×10×8 3.00 2.84 2.65 2.49 2.76 43 29 21 10

100×10×10 3.12 2.23 2.27 2.25 3.00 40 26 20 10

100×12×6 3.59 3.81 3.02 2.62 3.78 43 27 20 9

100×12×8 3.68 3.62 2.21 2.50 3.23 39 25 18 9

100×12×10 3.62 3.65 3.03 3.23 2.82 37 24 17 9

100×16×6 4.03 2.94 3.26 3.75 3.51 37 24 18 8

100×16×8 4.13 2.43 3.46 3.26 4.04 34 23 17 8

100×16×10 3.77 3.61 2.93 3.13 3.02 32 22 15 8

100×20×6 3.59 2.98 3.68 3.67 3.72 33 23 16 8

100×20×8 3.42 5.17 2.54 3.25 3.01 30 21 16 8

100×20×10 4.37 3.42 3.26 2.99 3.90 28 20 15 9

150×10×6 1.94 2.45 2.13 1.27 1.75 41 28 20 10

150×10×8 2.76 2.65 1.40 1.85 2.75 38 25 18 10

150×10×10 2.42 3.38 1.58 2.75 2.45 34 22 16 8

150×12×6 2.42 3.04 1.70 2.32 2.61 36 25 18 9

150×12×8 2.49 2.92 2.36 1.67 2.20 32 23 17 9

150×12×10 2.26 2.53 1.62 1.86 1.69 30 22 16 9

150×16×6 2.75 4.17 2.29 2.31 2.38 32 22 16 9

150×16×8 2.46 3.22 2.18 1.45 2.19 29 21 16 10

150×16×10 2.50 3.14 1.61 1.50 1.89 26 18 14 8

150×20×6 3.48 3.03 2.67 2.94 3.09 28 19 14 8

150×20×8 2.35 3.07 1.64 1.50 1.77 23 16 12 7

150×20×10 2.11 3.38 2.53 1.97 2.29 21 15 11 7

200×10×6 1.72 1.68 1.70 1.40 1.58 43 27 20 11

200×10×8 2.37 1.96 2.16 1.78 2.15 36 24 18 9

200×10×10 2.20 2.58 0.98 1.65 2.04 33 22 17 9

200×12×6 1.94 2.18 1.70 0.98 1.78 36 25 19 10

200×12×8 1.73 1.22 1.60 1.96 1.54 31 22 17 8

200×12×10 1.68 1.73 1.39 1.33 1.95 29 20 15 9

200×16×6 2.50 2.14 2.07 2.19 1.80 30 21 16 9

200×16×8 2.05 2.67 1.79 1.76 1.84 26 19 14 8

200×16×10 2.55 2.50 2.11 1.96 2.34 24 17 13 7

200×20×6 2.14 2.35 1.50 1.61 1.64 27 19 15 8

200×20×8 1.74 2.85 1.39 1.47 1.91 22 17 13 7

200×20×10 1.91 2.54 1.34 1.94 2.07 22 17 11 5

g_ave 3.57 3.62 2.89 3.06 3.25 34 24 17 8
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single portion of a multi-encoded chromosome. Nevertheless,
MGA keeps a fair ability in the exploration phase as demon-
strated by the large-sized instances related numerical results
(see Table 7; Fig. 7), where PGA and MGA achieve compa-
rable results.

The twofold encoding employed by HGA ensures the best
compromise between exploration and exploitation. In the first
evolutionary phase, before the provided threshold is reached,
the permutation encoding speed up the explorationmechanism
of HGA over the entire search space. Then, after the switch
threshold is reached, HGA may start to thoroughly investigate
smaller spaces of solutions, making full use of the greater
number of information included into the multi-encoded chro-
mosomes. A 25 % encoding switch threshold seems to ensure
the best trade-off between exploration and exploitation phases.

Fig. 7 Means plot and LSD intervals for the large instances campaign

Table 8 Average performances of HGA25 at varying of workforce scenarios

Problem (n×m×w) Average makespan Average ΔCmax%HS

HS AS LS MS AS (%) LS (%) MS (%)

20×10×6 63.46 85.52 104.78 78.16 34.9 65.6 23.3

20×10×8 62.4 84.62 102.12 75.32 35.8 64.0 20.9

20×10×10 65.38 86.94 103.7 74.74 33.2 59.4 14.6

20×12×6 56.2 75.56 92.72 67.56 34.9 65.5 20.2

20×12×8 55.76 73.16 90.82 67.24 31.8 64.0 21.0

20×12×10 54.58 72.54 89.98 64.72 33.5 65.9 19.2

20×16×6 47.52 65.16 80.12 58.3 37.3 69.2 23.1

20×16×8 45.74 61.24 73.84 53.7 34.9 63.0 18.1

20×16×10 43.7 59.52 73.64 54.18 36.9 69.7 24.6

20×20×6 42.78 58.08 73.2 53.1 36.2 72.3 25.2

20×20×8 39.42 54.82 67.3 49.06 39.9 72.5 24.8

20×20×10 42.36 57.12 68.62 48.94 35.6 63.1 16.3

40×10×6 120.98 164.9 203.3 151.52 36.9 68.7 25.8

40×10×8 114.96 158.28 189.32 139.94 37.9 65.2 22.1

40×10×10 115.9 154.64 191.2 137.18 33.7 65.4 18.8

40×12×6 100.76 135.74 166.64 128.46 35.3 66.5 28.5

40×12×8 94.22 127.2 156.78 114.3 35.3 66.9 21.5

40×12×10 90.78 124.8 151.7 111.98 37.7 67.9 23.8

40×16×6 77.4 103.82 131.1 101.78 34.3 69.6 31.8

40×16×8 68.3 93.86 116.96 90.06 37.7 71.5 32.1

40×16×10 67.82 94.62 112.54 83.68 40.1 66.5 23.5

40×20×6 65.86 91.3 115.42 85.42 39.0 75.6 30.1

40×20×8 57.4 78.98 99.2 76.28 38.0 73.5 33.6

40×20×10 55.72 75.36 92.94 71.64 35.7 67.1 28.6

60×10×6 187.28 259.7 323.4 236.94 39.0 73.2 26.8

60×10×8 179.2 245.76 297.18 219.14 37.4 66.2 22.5

60×10×10 177.44 242.94 297.04 212.22 37.1 67.6 19.6

60×12×6 155.54 213.54 266.44 197.74 37.5 71.6 27.4

60×12×8 142.06 196.8 240.14 183.9 38.8 69.4 29.7

60×12×10 139.7 190.94 235.48 172.38 37.0 68.9 23.6

60×16×6 116.72 163.12 197.24 151.7 40.1 69.7 30.4
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Table 8 (continued)

Problem (n×m×w) Average makespan Average ΔCmax%HS

HS AS LS MS AS (%) LS (%) MS (%)

60×16×8 104.3 143.68 179.5 137.32 37.9 72.5 31.9

60×16×10 96.56 135.94 166.92 125.12 41.0 73.4 29.9

60×20×6 96.9 135.42 166.9 124.64 40.2 72.8 28.8

60×20×8 85.54 116.98 147.42 114.48 37.0 72.6 34.0

60×20×10 79.02 111.6 137 103.88 41.5 73.7 31.7

80×10×6 252 354.04 434.78 337.14 40.7 72.8 33.9

80×10×8 240.16 326.56 404.2 296.38 36.3 68.7 23.5

80×10×10 238.76 327.72 401.86 292.08 37.6 68.7 22.7

80×12×6 209.12 292.2 362.18 268.72 39.9 73.4 28.7

80×12×8 191.5 264.12 327.24 247.66 38.1 71.1 29.5

80×12×10 189.26 260.5 318.4 235.7 37.8 68.5 24.7

80×16×6 160.24 223.14 276 216.1 39.4 72.4 34.9

80×16×8 140.08 196.18 242.66 184.36 40.3 73.6 31.9

80×16×10 133.1 184.76 227.88 168.1 39.0 71.5 26.5

80×20×6 131.82 183.22 230.06 176.18 39.4 75.0 34.1

80×20×8 115.68 160.08 201.28 151.08 38.6 74.3 30.7

80×20×10 106.9 147.88 183.56 135.3 38.6 72.2 26.8

100×10×6 320.92 447.42 551.2 422.5 39.5 71.9 31.8

100×10×8 304.68 423.18 520.92 392.04 39.1 71.2 28.9

100×10×10 308.66 420.36 511.48 374.62 36.3 65.9 21.5

100×12×6 269.58 375.48 464.26 344.12 39.4 72.3 27.7

100×12×8 242.44 341.62 415.04 306.72 41.0 71.4 26.7

100×12×10 236.24 331.44 401.34 297.04 40.4 70.0 26.0

100×16×6 205.74 289.54 353.36 276.72 40.9 71.9 34.7

100×16×8 178.76 248.62 307.66 234.06 39.2 72.3 31.0

100×16×10 165.88 231.34 285.66 213.38 39.6 72.3 28.7

100×20×6 169.5 241.74 300.28 235.98 42.8 77.4 39.4

100×20×8 144.78 203.72 253.46 192.36 40.9 75.3 33.0

100×20×10 131.34 184.4082 229.68 171.6 38.0 75.0 30.8

150×10×6 495.34 689.68 856.18 647.12 39.3 73.0 30.7

150×10×8 469.94 648.96 807.64 599.56 38.2 72.0 27.7

150×10×10 465.44 639.4 790.16 572.36 37.5 69.9 23.0

150×12×6 407.22 571.48 711.84 531.6 40.5 75.0 30.7

150×12×8 369.72 518.56 640.4 477.94 40.3 73.3 29.3

150×12×10 363.44 506.78 615.74 454 39.5 69.5 25.0

150×16×6 314.2 438.9 548.7 413.24 39.8 74.8 31.7

150×16×8 273.44 381.78 469.82 360.4 39.7 72.0 31.9

150×16×10 251.94 350.16 435.04 319.44 39.1 72.8 26.8

150×20×6 265.12 366.64 461.52 351.54 38.4 74.2 32.7

150×20×8 222.94 311.06 390.02 298.96 39.6 75.0 34.1

150×20×10 198.3 277.56 345.88 258.04 40.0 74.5 30.2

200×10×6 666.48 935.04 1,152.72 862.58 40.3 73.0 29.5

200×10×8 636.34 883.04 1,084.52 807.34 38.9 70.6 26.9

200×10×10 630.58 873.98 1,073.8 778.6 38.7 70.4 23.5

200×12×6 554.42 784.5 966.68 729.9 41.5 74.5 31.7

200×12×8 500.7 703.7 872.02 637.46 40.6 74.3 27.4

200×12×10 487.76 680.3 833.1 618.98 39.5 70.8 26.9
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7 How the multi-skilled workforce affects productivity

The aim of this section is to assess the way the difference of
technical skills among workers may influence the perfor-
mance of the unrelated parallel machine production system
under investigation. To this end, the results obtained by the
best optimisation algorithm among those tested, i.e. HGA25,
have been selected for a further step of analysis.

To highlight the effect of the non-homogeneous workforce
on the makespan minimisation objective, the proposed sce-
nario problem (hereinafter denoted as the multi-skill (MS)
scenario), which uses workers with skill levels randomly
varying in the rage (0.5, 1), was compared with the following
three configurations, each one featured by workers having
identical skill levels:

– High-skill scenario (HS): each worker k has skill level
ηk=0.5;

– Average-skill scenario (AS): each worker k has skill level
ηk=1; and

– Low-skill scenario (LS): each worker k has skill level
ηk=1.5.

For each one of the 840 large-sized instances included in
the reference benchmark, three adding sets of setup times have
been generated thus respecting the different skill levels
pertaining to each scenario, i.e. HS, AS and LS. To emphasise
the impact of the skill levels on the performance of the
production system, small-sized instances have been ignored.

For each new instance, five runs of HGA25 with different
random seeds have been carried out. As the three new scenar-
ios do not involve any skill difference among human re-
sources, substring-γ driving the assignment of jobs to workers
has been removed from themulti-encoding scheme of HGA25.
A simple “first available worker” rule has been adopted for
assigning each operator to each setup operation.

The average makespan values obtained for HS, AS, LS and
MS scenarios are reported in Table 8, along with the relative
percentage increment (ΔCmax%HS) of AS, LS and MS config-
urations with respect to the HS scenario.

Fig. 8 Average makespan values
at varying workforce scenarios

Table 8 (continued)

Problem (n×m×w) Average makespan Average ΔCmax%HS

HS AS LS MS AS (%) LS (%) MS (%)

200×16×6 431.56 607.48 753.12 559.34 40.8 74.6 29.7

200×16×8 366.78 515.7 634.38 477.58 40.7 73.1 30.3

200×16×10 339.22 473.58 585.82 431.62 39.7 72.8 27.2

200×20×6 360.78 505.88 630 471.58 40.3 74.7 30.8

200×20×8 300.68 420.12 522.52 404.52 39.8 73.9 34.6

200×20×10 268.52 373.54 465.26 349.56 39.2 73.4 30.2

g_ave 190.80 264.07 325.70 243.89 37.4 69.5 27.2
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A trivial remark concerning the effect of workforce teams
having different skill levels over the performances of the
production system is that the HS scenario yields the lowest
average makespan values for each class of problems. Con-
versely, LS configuration systematically provides the highest
completion times.

A more interesting conclusion should entail the comparing
between AS and MS scenarios. On the basis of what stated in
the previous sections, MS configuration employs teams of
workers whose skill levels are randomly extracted in the range
{0.5, 0.75, 1, 1.25, 1.5}. Thus, the average-skill level of
workforce teams generated for each problem is expected to
be approximately equal to one. As the reader can see in
Table 8, results obtained by the MS scenario always
outperform those provided by the AS configuration, which
involves workforce teams whose workers have a fixed skill
level equal to one.

The aforementioned remarks may be clarified in Fig. 8,
which reports the average makespan values for each scenario
as the number of jobs changes.

Outperformance of MS with respect to the AS scenario
should be justified by the optimisation strategy embedded
within the proposed metaheuristic procedure, which allows
to employ the best-skilled workers for the crucial activities,
whereas the worst-skilled workers may be directed to setup
tasks of other jobs that do not affect the entire system
performance.

In conclusion, workforce skills strongly may influence the
makespan minimisation issue for a parallel machine production
system. Furthermore, a smart optimisation tool like the proposed
HGA25 may ensure a significant exploitation of the skilled work-
force, by assigning the best-skilled workers to the setup tasks of
the key jobs that may affect the overall system performance.

8 Conclusions

In this paper, the unrelated parallel machine scheduling prob-
lem with limited and multi-skilled human resources has been
addressed with regard to the makespan minimisation objec-
tive. To this aim, three different kinds of metaheuristic proce-
dures based on GAs have been developed: a GA equipped
with a single-stage permutation encoding, a GA powered by a
multi-stage encoding, and a hybrid GA which encompasses
both the single-stage and the multi-stage encodings. A cali-
bration campaign has been carried out with the aim of
selecting the best setting parameters of the proposed optimi-
sation procedures; to this end, a benchmark of 100 classes of
problem entailing 1,000 instances differing for number of
jobs, workers and machines has been arranged. The proposed
metaheuristics extensively have been compared by taking into
account both small- and large-sized problems. In addition, a
statistical analysis based on the ANOVA method has been

fulfilled to evaluate the effects of the two kinds of encoding on
the metaheuristics’ performance.

Comparison regarding small instances revealed the effec-
tiveness and the efficiency of all proposed algorithms in ap-
proaching the global optimum provided by the MILP model
resolution. In particular, the hybrid GA, called HGA25, which
moves to themulti-stage encoding after 25% of total makespan
evaluations, outperformed all the other metaheuristics, though
not always in a statistically significant manner.

Comparison conducted with reference to large-sized in-
stances confirmed the effectiveness of the HGA25 hybrid
optimisation approach, which achieved a statistically signifi-
cant difference of performance with respect to any other com-
petitor. Without loss of generality, it can be stated that GAs
powered by a twofold encoding outperform the other optimi-
sation procedures for the proposed sequencing/allocation op-
timisation problem. In fact, permutation encoding allows a fast
exploration of the solution domain but it is not able to inspect
the overall set of available solutions. By contrast, the multi-
stage encoding makes full use of its larger string to investigate
a wider space of solutions but, at the same time, it pays the
penalty of a more complex encoding/decoding, which in-
creases the computational time.

After the best optimisation procedure was selected, a further
analysis comparing the production system performance at
varying average workforce skill levels has been carried out.
Such analysis highlighted the effect of a smart skilled-workers
assignation strategywith regards to themakespan optimisation.

Future research may involve a comparison of the proposed
hybrid approach with other kinds of metaheuristics or, alter-
natively, further methods of multi-encoding hybridisations
may be studied. With reference to the manpower skills issue,
the effects of training policies could be studied too.
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