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Abstract Machining of metal matrix composites (MMCs)
has been a big challenge for manufacturing industries due to
its superior mechanical properties. Unconventional machin-
ing methods have become an alternative to give desired
shapes with intricate profiles and stringent design require-
ments. The present research investigates the grinding perfor-
mance of copper–iron–graphite MMC using electric dis-
charge diamond face grinding (EDDFG), which is electric
discharge machining-based hybrid machining process.
Experiments have been performed on a self-developed ex-
perimental setup of EDDFG with scientifically designed ex-
periments. Effects of process input parameters on two impor-
tant performances, material removal rate (MRR) and surface
roughness (SR), have been analyzed. Genetic algorithm-based
optimization of MRR and SR models show considerable
improvements in both characteristics, as confirmed by verifi-
cation experiments. Results reveal that peak current is a com-
mon significant factor for both MRR and SR.

Keywords Metal matrix composite . Electric discharge
diamond face grinding . Material removal rate . Surface
roughness . Genetic algorithm . Optimization

1 Introduction

Metal matrix composites (MMCs) are in great demand in the
modern manufacturing industries due to its improved techno-
logical characteristics such as high strength/weight ratio, hot
hardness, and corrosion and wear resistance [1, 2]. Due to
enhanced mechanical properties, conventional machining
methods experience difficulties in machining these materials.

The unconventional machining processes are suitable for shap-
ing advanced difficult-to-cut materials with certain limitations.
The electric discharge machining (EDM) is such an unconven-
tional machining process used in modern manufacturing in-
dustries for machining electrically conductive difficult-to-cut
materials [3, 4].

A lot of research work has been done and is still going on
to explore the potential of EDM during machining of con-
ventional as well as difficult-to-cut materials. Ozgedik and
Can [5] performed an experimental study on steel workpiece
under varying current and flushing conditions to examine the
variations of material removal rate (MRR), tool wear rate
(TWR), and surface roughness (SR). They found increasing
trends in the MRR, TWR, and SR with the increase in
discharge current. They also reported that injection flushing
produces better surface quality but higher TWR, while suc-
tion flushing gives maximum MRR. Kansal et al. [6] opti-
mized the process parameters of powder-mixed EDM using
response surface methodology. They found positive effects
on MRR and SR by adding the silicon powder. They also
identified peak current and silicon powder concentration as
the most significant control factors.

Lauwers et al. [7] investigated the material removal mech-
anism of electrically conductive ceramic materials by analy-
sis of the debris and surface/sub-surface quality. They con-
cluded that beside melting and vaporization, the material
removal also occurs due to oxidation and dissolution of the
base material. Ramulu et al. [8] investigated the EDM effect
on the mechanical properties of whisker-SiCp aluminum
MMC and SiCp/A356 aluminum MMC. They observed that
EDM sparking reduces fatigue and ultimate strength by 15–
25 %. Mohan et al. [9] investigated EDM performance
of SiC/Al composite using rotary tube electrode and
found that peak current, polarity, pulse duration, hole diame-
ter, speed of rotation of electrode, and volume fraction of SiC-
reinforced particles have significant effects on MRR, TWR,
and SR.
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Poor machining efficiency in terms of low MRR, tool
wear, and high-specific energy of EDM restricts its further
applications. To address these problems, hybrid machining
processes are now gaining importance. The advantages of
both conventional and unconventional machining processes
can be utilized together by using hybrid machining process-
es. Ji et al. [10] proposed such an innovative hybrid machin-
ing process that combines end electrical discharge milling
(EDML) and grinding for machining silicon carbide ce-
ramics. They claimed that combined process is highly effi-
cient and cost effective in machining large surface area. They
also claimed that there is considerable improvement in the
process performances such as MRR, TWR, and surface
integrity as compared to pure electrical discharge milling.
Ji et al. [11, 12] elucidated the effects of input control factors
such as tool polarity, peak current, peak voltage, pulse-on
time and pulse-off time on the MRR, TWR, and SR during
combined EDML and grinding of silicon carbide ceramics.
They also found significant control factors and developed
mathematical models for the above mentioned quality char-
acteristics. Furthermore, they found optimum values of the
input control factors to improve the quality characteristics. In
another work, Ji et al. [13] observed the surface microstruc-
ture of silicon carbide ceramics machined by combined
EDML and grinding. The analysis by scanning electron
microscope, x-ray diffraction, and energy dispersive spec-
trometer revealed that finish machining mode results in
better surface integrity than that in rough machining mode.

Electric discharge abrasive grinding (EDAG) is another
EDM-based hybrid machining process which utilizes syner-
gistic interactive effect of EDM and conventional grinding.
In EDAG, metal-bonded abrasive wheel is used as tool
electrode. The whole workpiece and part of the wheel is
submerged in the dielectric and the spark is generated be-
tween the metal bond and the workpiece [3]. The spark in
EDAG (Fig. 1a) plays three roles: firstly, it does continuous
dressing of the wheel so that active grains are continuously
exposed and the wheel doesn't clog; secondly, it softens the
workpiece so the grain easily removes the material; and
thirdly, it may actually remove substantial amount of mate-
rial through melting and vaporization. The EDAG can be

operated in three different configurations i.e., electric dis-
charge abrasive surface grinding, electric discharge abrasive
cut-off grinding, and electric discharge abrasive face grind-
ing. If diamond is used as abrasive, then EDAG is known as
electric discharge diamond grinding (EDDG). In EDAG, the
grain protrusion height Ph and inter-electrode gap gw
(Fig. 1b) are very important parameters which significantly
affect the performance parameters, as these directly control
the depth of penetration (Ph–gw) of abrasive grain [14].

The performance of EDAG depends on many electrical
and non electrical input parameters. The proper control of
these parameters gives better performance such as high sur-
face quality, high MRR and low wheel wear rate (WWR).
Jain et al. [14] carried out experimental study on electric
discharge diamond cut-off grinding (EDDCG) of high-speed
steel with varying current, voltage, pulse-on time, and duty
factor (DF). They found that MRR increases with the in-
crease in the current or pulse-on time, and decreases with
increase in the voltage or DF. Similarly, the normal force
decreases with increase in current, voltage or DF. Koshy
et al. [15] presented the mechanism of material removal in
EDDCG using high-speed steel workpiece. They elucidated
the role of current and wheel speed onMRR, grinding forces,
and power. They reported considerable improvement in the
process performance as compared to EDM due to thermal
softening and continuous in-process dressing and declogging
of the wheel surface. Kumar and Choudhury [16] performed
EDDCG experiments on the high-speed steel using central
rotatable composite design of experiments and developed
response models for WWR and SR. Using these models,
they generated training data for the artificial neural network
(ANN) and found that ANN model suitably predict the
EDDCG process behavior. Chandrasekhar et al. [17] eluci-
dated the effect of input parameters such as discharge cur-
rent, pulse-on time, pulse-off time, and wheel speed on the
MRR and SR during electric discharge face grinding of high-
carbon steel and HSS workpiece. They found that both MRR
and surface finish improved by use of rotating wheel as
compared to the stationary wheel or electrode. Koshy et al.
[18] carried out EDDCG of cemented carbide with varying
current and pulse-on time. It was found that discharge
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enhances the grinding performance by increasing the MRR
and decreasing the grinding forces. Singh et al. [19]
performed electric discharge diamond face grinding
(EDDFG) experiments on tungsten carbide–cobalt compos-
ite by considering wheel speed, peak current, pulse-on time,
and DF as process input parameters. The quality character-
istics considered were MRR, WWR, and SR. They found
that wheel speed is the most significant factor which affects
the process performance during EDDFG of tungsten car-
bide–cobalt composite. They also suggested optimum pro-
cess parameters using gray relational analysis. Shrivastava
et al. [20] developed the computer-aided-hybrid-neural-GA
software for ANN modeling and genetic algorithm (GA)
optimization of EDDG process. They applied this software
for modeling and optimization of MRR and average temper-
ature during EDDG of high-speed steel. They claimed con-
siderable improvement in both quality characteristics.

It is evident from the review of literature presented that most
of the research works in the area of EDM and EDAG were
focused on machining of metals and alloys. Few works report-
ed on MMCs were mainly concentrated on aluminum-based
MMCs. Authors could not find any work on EDMor EDAG of
copper–iron–graphite composite. In the present research, an
attempt has been made to develop the EDDG setup with
rotating wheel and study the process performance of copper–
iron–graphite MMC by analyzingMRR and SR. The effects of
input parameters such as peak current, pulse-on time, pulse-off
time, and grit size on output characteristics MRR and SR have
been analyzed by developing response models. The MRR and
SR models have been optimized using GA-based artificial
intelligence tool. The predicted optimum results have been
verified by confirmation experiments.

2 Methodology

2.1 Taguchi methodology

Taguchi methodology (TM) is a widely acknowledged and
accepted method of robust parameter design. In this method,
main process parameters or control factors which influence
process results are taken as input parameters and the exper-
iment is performed as per specially designed orthogonal
arrays. Orthogonal arrays are two-dimensional arrays of
numbers which have the interesting quality that by choosing
any two columns in the array, one can receive an even
distribution of all the pair-wise combinations of values in
the array. Orthogonal array offers many benefits. Compared
to conventional experimental design, the TM-based orthog-
onal array examined the quality characteristics through a
minimum number of experiments so there is a large saving
in experimental efforts and data analysis is also easier. The
selection of appropriate orthogonal array is based on the total

degree of freedom which is computed as [21] follows:

Degreeof freedom ¼ number of levels−1ð Þfor each factor
þ number of levels−1ð Þ
� number of levels−1ð Þ

for each interaction þ 1:

2.2 Response surface methodology

Response surface methodology (RSM) is a collection of
mathematical and statistical techniques that are useful for
the modeling and analysis of problems in which a response
of interest is influenced by several variables. RSM quantifies
the relationship between the controllable input parameters
and the obtained responses [22]. In modeling and optimiza-
tion of manufacturing processes using RSM, the sufficient
data is collected through scientifically designed experiments.

In RSM, the relation between the process performance
and process input parameters is expressed as

y ¼ f x1; x2; x3;…………:xp
� �

; ð1Þ
Where, x1, x2, x3,…………., xp are input process param-

eters and y is the process performance or desired quality
characteristic. By plotting the expected response of y, a
surface, known as the response surface, is obtained. The
form of f is unknown and may be very complicated. Thus
RSM aims at approximating f by a suitable lower-order
polynomial in some region of the input process parameters.
Usually, a second order regression model, which includes
curvature effect, is utilized in RSM

y ¼ bo þ
Xp
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i¼1
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j
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Where, bois constant and all b's are regression coefficients
determined by the least square method using the following
equation:

b ¼

b0
b1
…
…
bn

2

66664

3

77775
¼ xTx

� �−1
xTy ð3Þ

Where xT is the transpose of matrix x and (xTx)−1 is the
inverse of matrix xTx.

2.3 Genetic algorithm

GA is quite suitable to solve the optimizationmodels that are non-
linear and complex. It is based on Darwin's principle of natural
selection and the concepts of natural genetics, especially “survival
of the fittest.” GA is able to search very large solution spaces
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efficiently by providing a lower computational cost, since they are
a probabilistic transition rules instead of deterministic ones and
most effectively applied to problems in which small changes
result in very non-linear behavior in the solution space [23].

The mechanism of GA is simple, involving copying of
binary strings. The computations are carried out in three
stages to get a result in one generation or iteration. The
working of GA has been shown with the help of block
diagram in Fig. 2 [24]. The searching process mimics the
natural evolution of biological creatures and turns out to be
an intelligent exploitation of a random search. In GA, the

control factors are typically encoded into a string (binary
coding) or chromosome structure. GA begin with a popula-
tion of strings (individuals) created at random. The fitness of
each individual string is evaluated with respect to the given
objective function. Then, this initial population is operated
by three main operators: reproduction, crossover, and muta-
tion to create a better population. Highly fit individuals or
solution are given opportunities to reproduce by exchanging
pieces of their genetic information in the crossover procedure
with other highly fit individuals. This produces new “off-
spring” solutions, which shares some characteristics taken
from both the parents. Mutation is often applied after crossover
by altering some genes in the offspring. This new population is
further evaluated and tested for some termination criteria. The
reproduction–crossover–mutation–evaluation cycle is repeated
until the termination criteria are met.

3 Experimental details

3.1 Development of experimental setup

The EDDFG setup (Fig. 3) has been developed and attached to
the ELEKTRA PULS die sinking spark erosion machine. The
setup consists of a shaft which holds the metal-bonded diamond
grinding wheel. The shaft was rotated by a D.C. motor, through
a belt and pulley arrangement. The designing of shaft and
fixture and selection of motor, bearing, pulley and belt were
done by considering all the design principles.Whilst machining,
the rotating wheel is fed downwards, towards the work, under
the servo control of the EDM machine. The down-feed of the
wheel is regulated automatically by the servo control such that
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diamond grinding 

wheel Workpiece
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Fig. 3 Experimental setup for
electric discharge diamond face
grinding
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the metallic bond and the work are physically separated by a
gap, the magnitude of which depends on the local breakdown
setting of the dielectric for a particular voltage setting.

The straight polarity has been used throughout the experi-
ments. The workpiece selected is copper–iron–graphite MMC.
The composition of the workpiece is shown in Table 1. Three
different metal-bonded diamond grinding wheels have been
selected to perform the experiments. The specifications of
wheels are shown in Table 2.

3.2 Orthogonal array experiments

This study considered four potential factors: peak current, pulse-
on time, pulse-off time, and grit number as input parameters,
each at level three (Table 3). The wheel speed was kept constant
at 900 rpm. The range of the process parameters were decided by
extensive pilot experiments. The total degree of freedom,without
considering interaction is (3–1)×4+1=9 so a minimum of nine
experiments are required as per orthogonal array; however, to get
higher resolution, L27 orthogonal array was selected. Degree of
freedom for experiments is 26. Each experiment was performed
for 30 min and amount of material removed was obtained by
finding mass difference before and after machining using preci-
sion electronic digital weight balance with 0.1-mg resolution.
TheMRR (in grams per minute) was calculated by the following
formula:

MRR ¼ mf −mi

tp
ð4Þ

Where mi is the initial mass of workpiece (before machin-
ing), and mf is the final mass of workpiece in gram (after
machining); tp is machining time in minutes. The SR was
measured using Talysurf Surtronic 25 using a cut-off value of
0.8 mm for each machined specimen. The observed qualities
values that are MRR and SR have been tabulated in Table 4.

4 Analysis of material removal rate

4.1 Modeling

Equation 5 shows the second order response model for
MRR. It has been developed by using the data of all 27 runs
as given in Table 4. The results of analysis of variance
(ANOVA) for model MRR is shown in Table 5. The model
F value 29.02 implies that the quadratic model is statically

Table 3 Control factors and their levels

Factors Peak current
(A)

Pulse-on time
(μs)

Pulse-off time
(μs)

Grit
No.

Symbol x1 x2 x3 x4
Level 1 2 10 15 80

Level 2 4 20 20 120

Level 3 6 30 25 240

Table 4 Experimental observation for MRR and SR using L27 OA

Experiment No. Control factors MRR (g/min) SR (μm)

x1 x2 x3 x4

1 1 1 1 1 0.0604 1.1

2 1 1 2 2 0.0541 0.9

3 1 1 3 3 0.0463 0.87

4 1 2 1 2 0.0629 0.94

5 1 2 2 3 0.0663 0.92

6 1 2 3 1 0.0671 1.30

7 1 3 1 3 0.0622 1.35

8 1 3 2 1 0.0814 1.42

9 1 3 3 2 0.0574 1.33

10 2 1 1 2 0.0984 1.42

11 2 1 2 3 0.0830 1.38

12 2 1 3 1 0.0863 0.89

13 2 2 1 3 0.0904 0.84

14 2 2 2 1 0.0971 1.39

15 2 2 3 2 0.0812 0.94

16 2 3 1 1 0.1081 1.35

17 2 3 2 2 0.0937 1.27

18 2 3 3 3 0.0837 1.46

19 3 1 1 3 0.1030 1.42

20 3 1 2 1 0.1077 1.53

21 3 1 3 2 0.0942 1.46

22 3 2 1 1 0.1157 1.68

23 3 2 2 2 0.1080 1.56

24 3 2 3 3 0.1037 1.40

25 3 3 1 2 0.1033 1.77

26 3 3 2 3 0.1041 1.62

27 3 3 3 1 0.1147 1.93

Table 2 Specification of grinding wheel

Abrasive Grit No Concentration
(%)

Bond
material

Wheel
diameter (mm)

Wheel
1

Diamond 80/100 75 Bronze 22

Wheel
2

Diamond 120/140 75 Bronze 22

Wheel
3

Diamond 240/270 75 Bronze 22

Table 1 Chemical
composition of work-
piece (%volume)

Copper Iron Graphite

60 30 10
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significant. There is negligible chances that a model F value
of this much magnitude could occur due to noise. The value
of coefficient of determination R2 and adjusted R2 are 97.1
and 93.88, respectively, which means a very high percent of
the variation in the response variable can be explained by the
explanatory variable. The negligible variation can be
explained by unknown or inherent variability. The S
value of the regression analysis is 0.005071, which is
smaller. The associated p value for the model, as well as
linear and square term, is lower than 0.05 (i.e. α=0.05,
or 95 % confidence) indicates that the model is consid-
ered to be statistically significant. Further ANOVA of
MRR (Table 6) identifies peak current as most significant
factor affecting MRR followed by grit size, pulse-on
time, and pulse -off time.

The final response surface equation for MRR (in grams
per minute), after removing the non-significant terms is
given as follows:

MRR ¼ 0:01257þ 0:02556x1 þ 0:001368x2−0:003825x3
−0:0005197x4−0:001820x21−0:00002362x

2
2

−0:0001152x23 þ 0:000001121x24

ð5Þ

Experimental results show that composite can be effec-
tively machined by EDDFG. High-electrical conductivity

and low-thermal resistance of all the constituents of com-
posite promotes good MRR. Figure 4 shows the estimated
response surface for MRR in relation to the design pa-
rameters of peak current and grit size since these param-
eters have the most significant influence on MRR. It can
be seen that for the given range of peak current, the MRR
tends to increase considerably with increase in peak cur-
rent. It may be due to different reasons. The increase in
the peak current increases input energy, since more num-
bers of electrons per unit time collides with the workpiece
so there is more conversion of kinetic energy of electrons
into heat energy. If EDDFG is grinding dominated, then
there will be more softening of the workpiece surface
which will result to more removal of material by abrasive
grains. Even if it is EDM dominated, there will be more
MRR due to melting and vaporization. Also, as the cur-
rent increases, the wheel wear increases; so more numbers
of active grains are exposed and also the depth of pene-
tration of active grain (Ph–gw) increases, so MRR in-
creases. As the grit number increases, the MRR decreases
since, with the increase in the grit number, the grain size
decreases which results in smaller depth of cut [25] and
hence MRR decreases.

4.2 Optimization

The standard optimization problem definition requires an
objective function to be minimized or maximized and
may require the constraint functions to be satisfied in
term of optimization parameters. In the present case, the
objective function of optimization problem can be stated
as below:

Find: x1,x2,x3 and x4
Maximize:

MRR ¼ 0:01257þ 0:02556x1 þ 0:001368x2−0:003825x3
−0:0005197x4−0:001820x21−0:00002362x

2
2

−0:0001152x23 þ 0:000001121x24

ð6Þ

Table 5 Analysis of variance for MRR model

Source Degree of freedom Seq SS Adj SS Adj MS F value p Value

Regression 14 0.010448 0.010448 0.000746 29.02 0.000

Linear 4 0.009659 0.000757 0.000189 7.36 0.003

Square 4 0.000657 0.000657 0.000164 6.39 0.005

Interaction 6 0.000132 0.000132 0.000022 0.86 0.552#

Residual error 12 0.000309 0.000309 0.000026

Total 26 0.010757

S=0.005071 R-Sq=97.1 R-Sq (adj)=93.88

#Not significant

Table 6 Analysis of variance for material removal rate

Source Degree of
freedom

Sum of
square

Mean
square

F
value

Contribution
(%)

Peak
current

2 0.00904 0.00452 184.49 87.6

Pulse-on
time

2 0.00035 0.00017 7.08 3.4

Pulse-off
time

2 0.00032 0.00016 6.52 3.1

Grit No 2 0.00061 0.00031 12.45 5.9

Error 18 0.00044 0.00002

Total 26 0.01076
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With range of process input parameters:

2≤x1≤6
10≤x2≤30
15≤x3≤25
80≤x4≤240

The critical parameters of GA are the size of the population,
mutation rate, cross-over rate, and number of generations. After
trying different combinations of GA parameters, the population
size 40, cross-over rate 1.0, mutation rate 0.01, and number of
generation 50, have been taken for MRR. The objective func-
tion in Eq. (6) has been solved without any constraint. In Fig. 5,
the best and mean fitness curves are illustrated in the search
space. The fitness function is optimized when the mean curve
converges to the best curve after 15 generations. The corre-
sponding values of control factors peak current, pulse-on time,
pulse-off time, and grit number have been found as 5.99 A,
29.81 μs, 15.05 μs, and 80, respectively. Hence these are the
optimum values of control factors. Using these values, the
value of MRR has been obtained as 0.1183 g/min.

5 Analysis of surface roughness

5.1 Modeling

Equation (7) shows the second order response model for SR.
It has been developed by using data of all 27 runs as given in
Table 4. The results of ANOVA for model SR is shown in
Table 7. The model F value 24.37 implies that the quadratic
model is statically significant. There is negligible chances that
a model F value of this much magnitude could occur due to
noise. The value of coefficient of determination R2 and ad-
justed R2 are 96.6 and 92.6, respectively, which means a very
high percent of the variation in the response variable can be
explained by the explanatory variable. The negligible varia-
tion can be explained by unknown or inherent variability. The
S value of the regression analysis is 0.08025, which is smaller.
The associated p value for the model and square term is lower
than 0.05 (i.e., α=0.05, or 95 % confidence) which indicates
that the model is considered to be statistically significant.
ANOVA of SR (Table 8) identifies peak current as most
significant factor affecting SR followed by pulse-on time, grit
size, and pulse-off time.

The final response surface equation for SR (in microme-
ter), after removing the non-significant terms is given as
follows:

SR ¼ 2:3961−0:2013x1−0:0103x2−0:0552x3−0:008697x4
þ0:03986x21 þ 0:0007111x22 þ 0:001578x23
þ0:00002182x24

ð7Þ

Although the linear terms are non-significant, they have
been included in the response surface equation following the
hierarchy principle. The hierarchy principle indicates that if a
model contains a higher-order term, it should also contain all
the lower-order terms that compose it [22]. The variation in
the SR with the peak current and pulse-on time is shown in
the response surface plot (Fig. 6). It is evident that as current

Fig. 4 Effect of peak current and
grit number on MRR (hold
values: pulse-on time=20 μs and
pulse-off time=20 μs)
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Fig. 5 Generation-fitness function graphics for MRR
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increases, the SR increases. The increase in current increases
the input energy, which in turn, leads to formation of bigger
craters in the workpiece, so SR increases. Also, with the
increase in peak current, the depth of penetration of active
grain increases which generates high normal force and hence
surface finish deteriorates. SR increases with increase in the
pulse-on time. The increase in the pulse-on time increases
the time available for the heat to sink into the workpiece,
which results in more thermal softening. This softening of
the workpiece reduces attrition wear of the grit, which in
turn, results in higher protrusion height, and hence higher
depth of penetration so a bigger crater is formed in the
workpiece surface, so SR increases.

Table 8 Analysis of variance for
surface roughness Source Degree of freedom Sum of square Mean square F value Contribution (%)

Peak current 2 1.14659 0.57329 83.44 53.3

Pulse-on time 2 0.62076 0.31038 45.18 28.85

Pulse-off time 2 0.03734 0.01867 2.72 1.73

Grit No 2 0.34676 0.17338 25.24 16.12

Error 18 0.12367 0.00687

Total 26 2.27512

Fig. 6 Effect of peak current and
pulse-on time on SR (hold
values: pulse-off time=20 μs and
grit number=120)
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Fig. 7 Generation-fitness function graphics for SR

Table 7 Analysis of variance for
SR model

#Not significant

Source Degree of freedom Seq SS Adj SS Adj MS F value p Value

Regression 14 2.197 2.197 0.1569 24.37 0.000

Linear 4 1.8985 0.0625 0.01562 2.42 0.105#

Square 4 0.25295 0.25295 0.06324 9.82 0.001

Interaction 6 0.04636 0.04636 0.007726 1.2 0.370#

Residual error 12 0.07731 0.07731 0.0064

Total 26 2.27512

S=0.08025 R-Sq=96.6 R-Sq (adj)=92.6
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5.2 Optimization

In the present case, the objective function of optimization
problem can be stated as below:

Find: x1,x2,x3 and x4
Minimize:

SR ¼ 2:3961−0:2013x1−0:0103x2−0:0552x3−0:008697x4
þ0:03986x21 þ 0:000711x22 þ 0:001578x23
þ0:00002182x24

ð8Þ

With range of process input parameters:

2 ≤ x1≤ 6
10 ≤ x2≤ 30
15 ≤ x3≤ 25
80≤x4≤240

For SR, the population size 20, cross over rate 1.0, muta-
tion rate 0.01, and number of generation of 50 are taken. The
objective function in Eq. (8) has been solved without any
constraint. In Fig. 7, the best and mean fitness curves are
illustrated in the search space. The fitness function is opti-
mized when the mean curve converges with the best curve
after 10 generations. The corresponding values of control
factors peak current, pulse-on time, pulse-off time, and grit
number have been found as 2.83 A, 10 μs, 15.20 μs, and
210, respectively. Hence, these are the optimum values of
control factors. Using these values, the value of SR has been
obtained as 0.78 μm.

The confirmation experiments have also been performed
at predicted optimum level of control factors and shown
in Table 9. The experimental results of MRR and SR
shown in this Table are the average of three trials at the
optimum levels. The comparison of optimum results
with that of results obtained at initial level of control
factors show considerable improvement in MRR and
surface finish.

6 Conclusions

The development of EDDFG setup for machining copper–
iron–graphite MMC and further process modeling and

optimization results use a hybrid approach of response sur-
face model and genetic algorithm shows that:

(1) The developed setup is performing according to planned
goals.

(2) The developed response surface models for MRR and SR
have been found adequate. The linear and square terms
are found significant for MRR model while only square
terms are significant for SR model.

(3) The peak current and grit size of diamond wheel have
been identified as the most significant control factors for
MRR while peak current and pulse-on time have been
identified as significant factors for SR.

(4) The MRR has been found to increase with the increase of
peak current or decrease of grit number. The SR has increas-
ing trend with the increase in peak current or pulse-on time.

(5)Optimization results show improvements of 95 and 29 %
in MRR and SR, respectively.
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