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Abstract Selection of a building direction is an important step
for rapid prototyping regardless of the specific processes used
to create the part. It involves the consideration of multi-factors
that have influences on surface quality, build efficiency and
support structure, etc. Contemporary approaches did not con-
sider the global directional space to search for the optimal
building direction. In this paper, we use a multi-sphere model
for multi-criteria optimization of building direction in rapid
prototyping. Each sphere represents the global directional space
for one optimization criterion, and is obtained by uniformly
discretizing the surface of a unit sphere. Optimization is then
conducted over each discretized spherical surface for each
criterion. Two objectives, theoretical volume deviation (TVD)
and part height are simultaneously optimized using genetic
algorithm. TVD is computed to evaluate the volumetric error
along each building direction in a general way. The Pareto front
is computed as well in order to study the competing effect from
these two criteria. At the end of the paper, examples are
presented to show the effectiveness of the method.

Keywords Rapid prototyping . Building direction . Volume
deviation . Pareto optimization . Genetic algorithm

1 Introduction

Rapid prototyping is a group of additive manufacturing pro-
cesses that construct physical objects through building and
stacking layers [1]. Regardless of the specific processes used

to create layers, each layer is stacked on the previously created
layer sequentially along a building direction according to the
CAD (computer-aided design) information. The selection of a
building direction has impacts to surface quality, build height,
support structure, building efficiency, material strength, etc.
This has made the selection of building direction an important
process planning step for rapid prototyping.

In order to find the optimal building direction, different
criteria have been used. One widely considered criterion is
part surface quality, resulting from the staircase effect inher-
ent to all rapid prototyping processes. Byun and Lee [2] used
arithmetic mean surface roughness to evaluate surface qual-
ity. The concept of surface roughness was adapted to rapid
prototyping processes with layer thickness, layer fillet, and
corner radius incorporated when calculating surface rough-
ness. Ahn et al. [3] studied the relation of surface roughness
with layer thickness, surface angle, and surface profile angle.
Giannatsis and Dedoussis [4] used regression analysis to
predict surface roughness for the stereolithography system
based on example part measurements. Canellidis et al. [5]
and Nikhil and Kalyanmoy [6] considered both up faces and
down faces along the building direction to evaluate surface
roughness. In addition to surface roughness, volumetric error
is also used to describe the deviation between the solid model
and the part produced with staircases. Rattanawong et al. [7]
analyzed volumetric error of basic primitive geometries, and
treated more complex parts as combinations of primitive
geometries. Masood and Rattanawong [8] calculated the
volumetric error at each layer using sliced polygonal con-
tours of each layer and the layer thickness. Kumar and
Choudhury [9] presented a method of calculating the volu-
metric deviation between a CADmodel and the part made by
five-axis laminated object manufacturing. Recently, Zhang
and Li [10] used a heuristic rule to map volumetric deviation
information onto a discretized unit sphere and search for the
optimal building direction on the discretized unit spherical
surface.
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Similar to any production machinery, a rapid prototyping
machine also has a limited range for producing parts. If a part
model does not fit into the dimensional ranges, then the part is
not producible on that machine. For rapid prototyping pro-
cesses, build height is an index used to evaluate the manufac-
turability of a model on a particular rapid prototyping ma-
chine. Moreover, build height is also relevant to build time
[11–13]. Chan and Tan [14] developed an algorithm to test if a
3D model will fit within a cylindrical volume. The algorithm
can be used to search for the building direction since both the
minimum diameter cylinder and the minimum height cylinder
can be determined. Optimizing build height is particularly
important when packing multiple parts in one setup on a rapid
prototyping machine [11, 12], where the objective is to max-
imize the space utilization. Other criteria considered in choos-
ing building direction include support structure, mechanical
properties, trapped volumes, etc. Allen and Dutta [15] consid-
ered support structure in optimizing building direction. The
direction that leads to a lower center of mass is preferred in
their algorithm. Thompson and Crawford [16] used the crite-
rion of mechanical property. Kim et al. [17] calculated the
trapped volume along the building direction.

Since the building direction has impacts to many aspects on
parts made from rapid prototyping processes, many researchers
have taken multi-objective optimization approaches to identi-
fying the optimal building direction. Cheng et al. [18] summa-
rized the general attributes of an optimal building direction and
presented a framework that optimizes each criterion sequen-
tially. Hur et al. [11] optimized the building direction and
packing problem for selective laser sintering (SLS) process
with the objectives on part height, build time, and surface
quality. The orientation and packing optimization employed a
modified bottom-left approach and was implemented in genet-
ic algorithm (GA). Byun and Lee [2] considered surface
roughness, build time, and part cost in their optimization, and
the optimal direction for each criterion is identified. Candidate
directions in their research are generated from the convex hull
of the part model. Hur and Lee [19] determined the optimal
building direction that has better part accuracy, shorter build
time, and less support structure for StereoLithography (SLA)
process. A user can choose the rank for these three criteria in
the optimization process. Canellidis et al. [5] used a multi-
criteria genetic algorithm to optimize build time, surface
roughness, and post-processing time for SLA process. The
objective function took a weighted approach to incorporate
different criteria.

In order to study the trade-off between competing factors
during optimization, the concept of Pareto front is applied in
multi-criteria optimization. Pandey et al. [20] optimized aver-
age surface roughness and build time at the same time for fused
deposition modeling process using GA. Adaptive slicing is
implemented so that surface roughness is maintained below a
specific level, and Pareto front is computed for surface

roughness and production time. Ancau and Caizar [13] com-
puted the Pareto front of surface roughness and manufacturing
cost. Recently a bi-objective optimization using both multi-
objective genetic algorithm and particle swarm optimization
was presented by Nikhil and Kalyanmoy [6] to optimize
surface roughness and build time of SLS process. Trade-off
between these two factors was studied with an approximate
Pareto front.

Determining the optimal building direction in rapid
prototyping processes generally involves the stages of gen-
erating candidate directions, selecting criteria, evaluating
candidate directions, and ranking candidate directions with
competing criteria. Previous studies chose candidate direc-
tions by convex hull [2], feature analysis [4], rotating along
coordinate axes by fixed angles [8, 13]. These methods are
not able to massively and accurately explore the directional
space. Recently, Zhang and Li [10] applied Saff and
Kuijlaars’ discretization method [21] to uniformly sample a
unit sphere. The purpose is to provide a global space that
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Fig. 1 Discretization of a unit sphere with two fixed rotational angles
[38]

Fig. 2 Ten thousand points sampled from a unit sphere [10]
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maximally represents potential directions in a 3D space. As
most prototypes are used to evaluate geometric form and
function, almost all the previous researchers have the crite-
rion of surface quality in their optimizations. Although sur-
face roughness can be used to evaluate surface quality, its
calculation is dependent on the specific rapid prototyping
process. In this paper, Saff and Kuijlaars’ algorithm [21] is
applied to generate the global directional space by massively
and accurately sampling a unit sphere surface; theoretical
volume deviation (TVD) is proposed to give a general way to
calculate the volume deviation between a tessellated model
and the actual built volume; part build height is also calcu-
lated along each candidate direction as a secondary optimi-
zation criterion and is optimized simultaneously with theo-
retical volume deviation; Pareto front is computed in order to
handle these two competing criteria. The multi-criteria opti-
mization is implemented with genetic algorithm which is

able to explore the entire search space stochastically and
extensively

2 Method

2.1 Global directional space discretization

Global direction space is the collection of all directions in a
3D space, and this space has been described geometrically as
a unit sphere. A unit sphere is a sphere with unity radius,
which is formed by moving all normalized 3D direction
vectors to a same starting point, the center of the unit sphere.
The concept of unit sphere has been applied to study CNC
machining setup [22] die and mold design [23] and CMM
inspection planning [24]. For rapid prototyping, there are an
infinite number of potential building directions with respect

Building direction

Part height

Building direction

Part height

(a) (b)

Fig. 3 Impact of building
direction on different criteria
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Fig. 4 Multi-objective optimization of RP building direction

Int J Adv Manuf Technol (2013) 69:1819–1831 1821



to the machine coordinate system. Similarly, all those poten-
tial building directions collectively form a unit sphere.

In order to find the optimal building direction, a search will
be conducted on the unit sphere that carries all potential di-
rections. Although a spherical surface is continuous and differ-
ential, many researchers used discretization approach to study
the problems on a unit sphere in order to avoid numerical
complexity. Generally, there are two ways of discretizing a unit
sphere. One is triangle-based discretization where a unit sphere
surface is partitioned into triangles or spherical patches; the
other is point-based discretization that discretizes a unit spher-
ical surface with a grid of points. Yang et al. [25] obtained
discretized points on a unit sphere through triangulation to

check tool accessibility. Dhaliwal et al. [26] triangulated the
spherical surface of a unit sphere with fixed resolution to
calculate visibility. Although spherical surface triangulation is
able to partition a unit sphere surface with controlled resolution,
the shape of tessellation triangles is hard to maintain uniform.
Therefore the discretization is not uniform on the spherical
surface.

Point-based discretization breaks a unit sphere into an array
of spherical points and the computation on a unit sphere
becomes operations on the grid of points. Most point-based
discretization used in manufacturing process planning used
two fixed rotational angles [8, 13, 38]. Figure 1 shows an
example with the two fixed rotational angles. It can be seen
that the points are distributed relatively sparse near the equator
while gradually becoming closer when moving towards the
two poles. Therefore, it is not a uniform discretization of a unit
sphere either.

In order to create a uniformly sampled global directional
space for rapid prototyping processes, Zhang and Li [10]
adopted Saff and Kuijlaars’ spiral points construction algo-
rithm [21] to distribute points evenly on a unit sphere.
Volumetric error information is then mapped onto this space
using a heuristic rule, followed by an optimization procedure
to identify the optimal building direction. Saff and Kuijlaars’
algorithm [21] has been shown to be effective in discretizing
unit sphere surface, particularly when the number of dis-
cretization points N is large. In this paper, we intend to
optimize two criteria simultaneously for the building direction
of rapid prototyping processes. Saff and Kuijlaars’ algorithm
[21] is applied to generate the global directional space for each
optimization objective. Figure 2 shows the generated spiral
points on a unit sphere when the number of points N=10,000.

2.2 Multi-sphere optimization model

Optimization of building direction for rapid prototyping
processes involves many factors; as one objective is being
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Fig. 5 GA-based Pareto optimization
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optimized, other objectives may be compromised at the same
time. The nature of finding optimal building direction is a
multi-objective optimization process. This can be illustrated
in Fig. 3, where a cylinder is to be produced by rapid
prototyping processes. This example takes two intuitive
building directions as shown in Fig. 3a, b. In Fig. 3a, the
building direction renders good surface quality since the
triangular facets are either parallel or perpendicular to the
building direction; so the volume deviation is minimized.
However, the part height in Fig. 3a is higher than that in
Fig. 3b, suggesting a longer build time. The building direc-
tion in Fig. 3b requires minimal part height on the machine,
but the volume deviation on the cylindrical surface is more
significant compared with that in Fig. 3a. Two factors, vol-
ume deviation and part height, are competing against each
other as the building direction is varying.

In order to find the optimal building direction, a part height
Hi and volume deviation Vi can be calculated for every build-
ing direction D(θi,∅i) on a unit sphere. Traditional optimiza-
tion algorithm will combine the two criteria into a single one
W by aggregating two parameters V and H with their weights
w1 and w2 into W=w1H+w2V. In this way, a multi-objective

optimization is transformed into a single-objective optimiza-
tion, and the algorithms developed for single-objective opti-
mization can be directly applied to search through the optimi-
zation space to optimize the single criterion W. This method
has been widely used in many cases where multi-objective
optimization problems are simplified into a single-objective
one. In spite of its simplicity, there are often no clear rules on
how to rank the relative significance of each individual opti-
mization criteria; the final result is therefore subject to user’s
choice of weights w1 and w2. For multi-objectives that are
competing against each other, it is very hard to find a single
solution that simultaneously optimizes each objective.
Usually when one objective is improved, the others will be
compromised. In order to deal with such a scenario, a set of
optimal solutions, called Pareto front, can be computed in
which none of them can be eliminated without worsening one
of the objectives [27–30].

The example presented in Fig. 3 is a simple geometric
model, and one can intuitively select the building direction
by considering the relative importance of those two factors. As
rapid prototyping has been considerably used to make compli-
cated geometries and even free-form surfaces, there is a need
for developing a general model that can be used to assist users
in selecting the optimal building direction. Figure 4 shows a
multi-sphere optimizationmodel based on Pareto optimization.
The input information consists of multi-criteria in rapid
prototyping processes. The information of each criterion is
then mapped onto a discretized unit sphere, followed by an
optimization on each discretized unit sphere. As there are
multi-criteria in the optimization, there are a plural of
discretized unit spheres, collectively representing the complete
global optimization space. The optimization is conducted on
each discretized unit sphere initially; then the result on each
unit sphere goes to the Pareto optimization unit in Fig. 4. The
output of Pareto optimization unit is a Pareto front that is
presented to the user for decision- making. A number of
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multi-objective evolutionary algorithms have been proposed to
solve the multi-objective optimization problems. Most of them
use non-dominant ranking and selection to evolve the solution
towards the Pareto front. In this paper, a Pareto GA algorithm
is developed to search for the set of building directions that
constitute the Pareto front of solutions.

2.3 GA-based Pareto optimization

GA is a stochastic optimization method that mimics natural
evolution, whereby individuals in each generation go through
the processes of crossover, mutation, and selection [31–34]. As
a randomly guided searching technique simulating the evolu-
tionary process in nature, GA is able to navigate through huge
search spaces to look for optimal solutions intelligently. As is
shown in Section 2.1 that the candidate building direction
space on the unit sphere is large, a genetic algorithm is then
used in this research to stochastically search through the can-
didate building direction space to increase the searching effi-
ciency. Since multi-factors are involved in determining the
globally optimal building direction for RP processes, we use
an evolutionarymulti-objective optimization, instead of having

a single objective criterion. It is not unusual that different
optimization objectives are competing with one another in
multi-objective optimization [35, 36]; therefore, a Pareto ge-
netic algorithm is developed to solve the multi-objective opti-
mization problem in the presence of trade-offs between com-
peting objectives [27–30]. In this research, two factors, volume
deviation and part height, are considered. This section will
illustrate the design of the GA-based Pareto optimization.

In this research, the Pareto front is the set of solutions (H1,
V1), (H2, V2),…, (Hk, Vk)that for each i∊(1, k) we cannot find
any other solution (Hm, Vm) that satisfies both Hm<Hiand
Vm<Vi. The detailed GA-based Pareto algorithm design is
explained as follows (Fig. 5):

Step 1: initial population generation Np initial building di-
rections (Di(θi, ϕi), i∊(1, Np)) are randomly selected from all
the discretized directions on the unit sphere to form an initial
pool of first generation solutions with the size of Np.

Step 2: fitness criteria For every candidate directions in the
pool, we calculate both the part height and volume deviation
(Hi, Vi) for each direction Di(θi, ϕi), i∊(1, Np).
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Step 3: crossover and mutation Within each generation, p
percent of the new solutions will be generated by cross-
over and (1−p)percent of the new solutions will be
generated by mutation. To get an offspring solution by
crossover, two parent solutions (θi, ϕi) and (θj, ϕj) are
randomly picked up from the solution pool and the new

solution θ 1
2 iþ jð Þ½ �;ϕ 1

2 iþ jð Þ½ �
� �

is generated through mating ac-

tions on index i and j ([] is the rounding operator). To get an
offspring solution by mutation, a building direction (θn, ϕn)is
randomly chosen from the discretized points on the unit
sphere and is added into the generation pool. Totally Ne new
solutions will be generated so that the next generation pool
will have Np+Ne solution building directions.

Step 4: selection and elimination The goal of this step is to
decrease the number of solutions in the pool from Np+Ne

back to Np. Non-dominant objective solutions are removed
from the pool. A non-dominant objective solution is the set

of (Hi, Vi) that has at least another solution (Hj, Vj) in the pool
that satisfies Hi≥Hj and Vi≥Vj. Let d denote the number of
non-dominant solutions. If d exceeds Ne, Ne non-dominant
solutions are randomly selected for removal. If d is smaller
than Ne, we will randomly remove (Ne−d) dominant solu-
tions as well as d non-dominant solutions from the pool.
Steps 2, 3, and 4 together define the evolutionary process
that updates the population pool of solutions toward the
Pareto front.

Step 5: repeat Repeat steps 2 to 4 to generate another new
pool. Stop whenm successive previously generated pools are
received where the number of dominated Pareto solutions
does not change or the total number of generation exceed
Gmax (the maximum number of generations).

After steps 1 to 5 are implemented, the dominant building
solutions in the final pool consist of solutions that approxi-
mate the Pareto front for the best building directions on the
unit sphere.

Table 1 Three example part models

Table 2 Pareto solution of motor mount model

Direction number Building direction coordinates
on unit sphere

Part height (in.) Ranking on
part height

Volume deviation
(in.3)

Ranking on volume
deviation

x y z

1 0.00437 −0.3604 0.93279 0.07803 1 0.04193 10

2 −0.01218 0.3228 −0.94639 0.07922 2 0.04146 9

3 −0.01243 0.2756 −0.96119 0.07982 3 0.04074 8

4 −0.01363 −0.26703 0.96359 0.08004 4 0.0406 7

5 −0.00912 −0.21939 0.97559 0.08122 5 0.03975 6

6 −0.00741 −0.17127 0.9852 0.08243 6 0.03881 5

7 −0.00555 −0.12294 0.9924 0.08343 7 0.037778 4

8 −0.00134 0.07993 −0.9968 0.08397 8 0.03679 3

9 −0.00128 −0.07478 0.9972 0.08405 9 0.03667 2

10 0 0 1 0.08500 10 0.03488 1
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2.4 Optimization criteria

In this paper, the authors chose two optimization criteria- part
height and volume deviation—to illustrate the proposedmulti-
sphere model. Although the present work optimizes two
criteria, other criteria can be added as illustrated by Fig. 4.

2.4.1 Part height

Part height describes the distance of material deposition along
the building direction, and is a parameter indicating the di-
mensional limit of a rapid prototyping machine on part size
that they can produce. As the building direction changes, part
height will change accordingly. Given the geometry is in STL
format in rapid prototyping processes, part height can be
calculated by projecting the vertexes of each triangular facet
comprising the STL model onto each candidate building
direction. The distance between the two extreme projection
points, highest level and lowest level, along the building
direction is the part height. Figure 6 shows one building
direction on the discretized unit sphere, and the part height
calculated through projecting the vertexes of the STL model
on the building direction. The same process will be repeated
for each discretized direction on the unit sphere, and the
calculated part height will be assigned to the corresponding
discretized point on the unit sphere. Upon completion of this
process, the first directional space for optimization is obtained.

2.4.2 Volume deviation

The second optimization criterion is TVD. Due to the stair-
case nature of rapid prototyping processes, volume deviation
is inevitable between a tessellated model and the actual built
volume through layer-stacking. Volume deviation is depen-
dent on a number of parameters including layer thickness,
building direction, tessellation granularity, etc. However,

surface model tessellation and STL model-slicing are prior
steps before searching for a building direction for an RP
operation. Therefore, layer thickness and tessellation granu-
larity are assumed to be given and remain unchanged during
optimizing the building direction in this paper. Depending on
the specific RP processes, the stair edges may be rounded to
some extent [2]. However in this paper, we assume that the
each layer has sharp edges in order to give a general way to
evaluate the volumetric error, and thus the volumetric devi-
ation is defined as theoretical volume deviation.

Since triangular facets are the basic elements comprising an
STL model, the theoretical volumetric deviation is then cal-
culated for each triangular facet along the building direction.
Each stair consists of a stair space bounded by two perpen-
dicular stair surfaces, the intersection of which is the internal
edge of the stair (Fig. 7). The other two convex edges are
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called external edges. There are three cases for the location of
a triangular facet, depending on their vertices’ locations.

1. Three vertices are in three different stair spaces.
2. Two vertices are in one stair space with the third vertex

in a different stair space.
3. Three vertices are all in one stair space.

Figure 8 illustrates case 1, where three vertices of a
triangular facet ABC are in three different stair spaces.
Vertices A, B and C are projected onto the corresponding
internal edge as A’, B’, and C’, respectively. The sub-volume
deviation in the stair where vertex A (the lowest vertex of the
triangular facet along the building direction) resides is a
pyramid denoted as pyramid type 1 (P1). The sub-volume
deviation in the stair where vertex B (the highest vertex of the
triangular facet along the building direction) resides is a
pyramid denoted as pyramid type 4 (P4). The sub-volume
deviation in the stair where vertex C (the vertex between A
and B along the building direction) resides is the summation
of a wedge denoted as wedge type 2 (W2) and two pyramids
denoted as pyramid type 3 (P3) and pyramid type 4 (P4),
respectively. It can be seen that P3 and P4 are sharing the
base in Fig. 8, where the apex of P3 is on the internal edge
while the apex of P4 is vertex C. The last type of sub-volume
is denoted as wedge type 1 (W1) which is bounded by two
external edges. It should be noted that for this case there is
one sub-volume P1, P2, P3, P4 and W2 when calculating
volume deviation for triangular facet ABC. However, there
may be one or more than one sub-volumeW1, depending on
the layer thickness. Therefore the theoretical volume devia-
tion for this case is summarized as:

TVD ¼ P1 þ P2 þ P3 þ P4 þW 2 þΣW 1

Figure 9 illustrates case 2, where two vertices are in one
stair space with the third vertex in a different stair space.
Vertices A, B and C are projected onto the corresponding
internal edges as A’, B’, and C’ respectively. B and C are in
the same stair case. The sub-volume in the stair where
vertices B and C reside is the summation of two pyramids
(pyramid B-B’EFC’ and pyramid C-C’BF) denoted as pyra-
mid type 5 (P5) and pyramid type 6 (P6), respectively. The
sub-volume deviation in the stair where vertex A (the lowest
vertex of the triangular facet along the building direction)
resides is of type P1 as in case 1. Depending on the layer

Table 3 Pareto solution of motor model

Direction number Building direction coordinates on unit
sphere

Part height (in.) Ranking on
part height

Volume deviation
(1.0×10−3 in.3)

Ranking on volume
deviation

x y z

1 −0.01296 0.99989 0.00167 6.8909 1 192.573 14

2 0.00123 −0.99954 −0.03034 7.01014 2 191.752 12

3 −0.00761 0.92829 −0.37179 7.86594 3 191.752 12

4 0.01649 −0.85572 0.51717 8.11116 4 188.797 11

5 −0.01811 0.80436 −0.59386 8.15815 5 187.161 10

6 0.00482 −0.82127 0.57052 8.16261 6 186.78 9

7 0.02456 −0.78279 0.62187 8.16313 7 187.662 8

8 −0.02224 0.7648 −0.64388 8.22139 8 185.555 7

9 0.03038 −0.74124 0.67056 8.37718 9 185.095 6

10 −0.03148 0.72195 −0.69123 8.45533 10 184.149 5

11 0.0116 −0.65069 0.75925 8.69388 11 177.952 4

12 0.0254 −0.0055 0.79927 8.78951 12 176.671 3

13 0 0 1 10.1252 13 155.075 2

14 0.99986 0.00827 −0.01434 12.2516 14 96.6128 1
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thickness, there may be one or more than one wedge of type
W1. Therefore the theoretical volume deviation for this case
is summarized as

TVD ¼ P1 þ P5 þ P6 þΣW 1

Figure 10 illustrates case 3, where three vertices A, B and C
are all in one stair space, and they project onto the internal
edge as A’, B’, and C’ respectively. Figure 10 also shows the
adjacent facets around triangular facet ABC, the volume de-
viation of which can be calculated using cases 1 and 2 intro-
duced above. The volume deviation of triangular facet ABC is
described by the red polyhedron in Fig. 10 and can be
decomposed into three pyramids B’-ABC, A’-AB’C, and C’-

CAA’, which are denoted by pyramid type 7 (P7), pyramid
type 8 (P8) and pyramid type 9 (P9), respectively. Therefore
the theoretical volume deviation for this case is summarized as

TVD ¼ P7 þ P8 þ P9

This section illustrates the calculation of theoretical volume
deviation based on geometrical volume decomposition. These
three cases can be used to compute the theoretical volume
deviation of each facet along a building direction candidate.
The summation of theoretical volume deviation of all facets
along this direction will be assigned to the corresponding point
on the discretized unit sphere. The same process will be repeated
for each discretized direction on the unit sphere. Upon comple-
tion of this process, the second directional space for optimiza-
tion is obtained. As the user adds more optimization objectives,
the similar process will assign objective function values to each
individual discretized unit sphere. With n criteria selected, n
discretized unit spheres with assigned objective function values
collectively become the global optimization space.

3 Implementation

The GA-based Pareto algorithm is implemented in C++ pro-
gramming language. Three geometrical models are tested for
the Pareto front. Their geometries and the number of facets
comprising the STL models are shown in Table 1. Included in
the C++ program are unit sphere discretion, optimization
criteria evaluation and genetic algorithm implementation.

To test the three example models, a unit sphere is uniformly
discretized into 10,000 points (N=10,000) using Saff and
Kuijlaars’ algorithm [21]. An initial pool of Np=15 directions
are randomly picked from the descretized unit sphere for the
first generation. In the next generation, Ne=15 new building
directions are generated using both crossover and mating
operations with half of them (p=0.5) produced by crossover
and the other half by mutation, respectively. Then Np=15 out
of Np+Ne=30 best building directions are chosen to form the
pool for the next generation. A maximum number of genera-
tions Gmax=1,000 are performed unless the pool stays the
same for a number of m=50 generations.

The first model is a motor mount [37] that has 880 trian-
gular facets. Table 2 shows the solution of the motor mount
model, including building direction coordinates on the unit
sphere, part height, volume deviation as well as the ranking of
each direction in terms of part height and volume deviation.
The columns on part height and volume deviation in Table 2
form the Pareto front for the two optimization criteria of the
best building directions, as shown in Fig. 11. Figure 12 shows
directions 1, 5, and 10 of part 1 on the unit sphere, and Fig. 13
shows the part model as directions 1, 5, and 10 are oriented to
align with the Z-axis of a rapid prototyping machine.
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The second model is a motor that has 840 triangular facets.
Table 3 shows the solution of the motor model, including
building direction coordinates on the unit sphere, part height,
volume deviation as well as the ranking of each direction in
terms of part height and volume deviation. The columns on part
height and volume deviation in Table 3 form the Pareto front for
the two optimization criteria of the best building directions, as
shown in Fig. 14. Figure 15 shows directions 1, 7, and 14 of
part 2 on the unit sphere, and Fig. 16 shows the part model as
directions 1, 7, and 14 are oriented to align with the Z-axis of a
rapid prototyping machine. It can be seen that directions 13 and
14 are far from the other directions on the Pareto front of part 2.

The third model is a bladed propeller [37] that has 1,052
triangular facets. Table 4 shows the solution of the bladed
propeller model, including building direction coordinates on
the unit sphere, part height, volume deviation as well as the
ranking of each direction in terms of part height and volume
deviation. The columns on part height and volume deviation
in Table 4 form the Pareto front for the two optimization
criteria of the best building directions, as shown in Fig. 17.
Figure 18 shows directions 1, 8, and 15 of part 3 on the unit
sphere, and Fig. 19 shows the part model as directions 1, 8,
and 15 are oriented to align with the Z-axis of a rapid
prototyping machine.

Table 4 Pareto solution of bladed propeller model

Direction number Building direction coordinates on unit sphere Part height (in.) Ranking on
part height

Volume deviation
(1.0×10−3 in.3)

Ranking on volume
deviation

x y z

1 0 1 0 2.73685 1 112.229 15

2 0.08504 −0.96549 0.24616 3.45003 2 110.104 14

3 −0.11708 0.90259 −0.41428 4.5658 3 105.483 13

4 −0.13023 0.85946 −0.49433 5.3232 4 101.987 12

5 0.33423 −0.82723 −0.45163 5.86507 5 99.3061 11

6 −0.49356 0.78185 0.38092 6.41076 6 95.829 10

7 0.34353 −0.71937 −0.60374 7.2298 7 90.5541 9

8 −0.48249 0.66927 −0.56504 7.6321 8 89.6604 8

9 0.28487 −0.61274 −0.73716 8.1063 9 81.6389 7

10 0.29081 −0.53306 −0.79453 8.68768 10 75.7705 6

11 −0.80715 0.4453 0.38759 9.16469 11 69.4979 5

12 0.78089 0.34662 0.51968 9.55699 12 64.6302 4

13 −0.90156 0.18395 0.39159 9.9761 13 59.3527 3

14 −0.25999 −0.02413 0.96531 10.4135 14 56.62 2

15 −0.6383 −0.13879 0.75717 10.9967 15 54.6168 1
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4 Conclusion

This paper presents a genetic algorithm-based Pareto optimiza-
tion of building direction for rapid prototyping. Two objectives
that are simultaneously optimized are part height and volume
deviation. For each objective, a unit sphere is uniformly
discretized as the searching space. This step makes it possible
to massively compute and evaluate optimization objectives in
the directional space. In order to evaluate the volumetric error
in a general way, the concept of TVD is calculated along each
building direction based on volume decomposition. Pareto
front is also computed to show the competing effect from these
two criteria. Although currently only two criteria are evaluated,
more criterion can be added into the optimization model.

Like dimensional tolerance requirements on machined parts
depend on the specific geometric features, surface quality re-
quirements are not uniform on rapid prototyped parts. This
suggests that Pareto front needs to treat different surfaces sepa-
rately. Therefore as our future work, the Pareto-based optimiza-
tion model will expand to regional analysis on the CAD model.
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