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Abstract Geometric error component identification is need-
ed to realize the geometric error compensation which can
significantly enhance the accuracy of multi-axis machine
tools. Laser tracker has been applied to geometric error iden-
tification of machine tools increasingly due to its high capa-
bility in 3D metrology. A general method, based on point
measurement using a laser tracker is developed for identifying
the geometric error components of multi-axis machine tools in
this study. By using this method, all the component errors and
location errors of each axis (including the linear axis and
rotary axis) of the multi-axis machine tools can be measured.
Three pre-described targets are fixed on the stage of the under-
test axis which moves step by step. The coordinates of the
three targets at every step are determined by a laser tracker
based on the sequential multilateration method. The volumet-
ric errors of these three target points at each step can be
obtained by comparing the measured values of the target
points’ coordinates with the ideal values. Then, nine equations
can be established by inversely applying the geometric error
model of the axis under test, which can explicitly describe the
relationship between the geometric error components and
volumetric error components, and then the component errors
of this axis can be obtained by solving these equations. The
location errors of the axis under test can be determined
through the curve fitting. In brief, all the geometric error
components of a single axis of multi-axis machine tools can
be measured by the proposed method. The validity of the
proposed method is verified through a series of experiments,
and the experimental results indicate that the proposedmethod
is capable of identifying all the geometric error components of
multi-axis machine tools of arbitrary configuration.

Keywords Machine tools . Error compensation . Geometric
error measurement . Sequential multilateration principle .

Laser tracker

1 Introduction

Multi-axis machine tools have been widely used in industrial
production due to their high efficiency and capability in
machining [1–3]. Accuracy is a crucial consideration for
evaluating the capability of multi-axis machine tools. Geo-
metric error is one of the key contributors to the overall
errors of machine tools. Many researchers have focused on
research into geometric error compensation [4–6]. There-
fore, as the basis of the geometric error compensation, geo-
metric error identification methods have necessarily been
developed.

Many commercial devices can be used to measure the
geometric errors of multi-axis machine tools. Laser interfer-
ometer, which can only measure linear displacement error,
can be applied to identify all the 21 geometric error compo-
nents by measuring the positioning errors along 22 lines, 15
lines, 14 lines, nine lines, body diagonals, or step diagonals
within the workspace of three-axis machine tools [7–12].
The laser interferometer can also directly detect all the six
geometric error components of the linear axis and the rotary
axis associated with prismatic joints, 6D sensors, rotary axis
calibrators, multi-face mirrors, and other devices, such as
capacitive transducers and electronic levels, etc. [13–15].
These laser-interferometer-based approaches have high ac-
curacy, but the measurement for each linear axis or each line
has to be done in turn, the error components of rotary axis has
to be identified with several different accessories, so that the
setup needs to be re-installed many times. Moreover, the
installation and calibration of the measuring system is always
complicated for large machine tools. In conclusion, the laser-
interferometer-based approaches have some disadvantages,
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such as the long calibration time and the requirement for
experienced operator. Other commercial devices, such as the
double ball bar (DBB) and cross-grid encoder, can be applied
to evaluate the geometric error components of multi-axis
machine tools. The DBB was proposed by Bryan in 1982
[16, 17], and it is used to measure the geometric error of multi-
axis machine tools [18–21]. The DBB-based methods are
economical and they are particularly simple to acquire data.
However, due to the size of the DBB, it can never cover the
whole work space of a machine tool, especially for the large
machine tools. In addition, the DBB cannot measure the
angular positioning error of the rotary axis. The cross-grid
encoder is a precision device for two-dimensional (2D) posi-
tion measurement, and many methods have been proposed to
measure the geometric error of machine tools using a cross-
grid encoder [22, 23]. These methods are simple and efficient.
However, the measuring range of these methods is limited by
the size of the grid encoder, so that it is also not suitable for
geometric error measurement of large-sized machine tools. In
addition, it cannot be used to measure the geometric errors of
the rotary axis.

Many special measuring systems have been developed for
identifying the geometric errors of multi-axis machine tools.
Wang et al. developed a measuring system consisting of laser
diodes, beam splitters, and 2D position sensing detectors to
measure the geometric error components of three-axis ma-
chine tools [24]. Liu et al. developed a measuring system
using a diffraction grating, a laser diode, and position-
sensitive detectors tomeasure the error motions of an indexing
table [25]. Sung-Ryung Park developed an optical measure-
ment system with a laser diode, two position-sensitive de-
tectors, beam splitters, and a turning mirror to measure the
six geometric errors of a rotary axis separately [26]. These
measuring systems have high performance. However, each of
them is only suitable for a linear axis or a rotary axis or
machine tools of a particular type.

Laser tracker is increasingly used to identify the geomet-
ric errors of machine tools due to its capability of measuring
3D coordinates. Multilateration and sequential multi-
lateration methods have been developed and studied to en-
hance the accuracy of 3D coordinate measurement, so that
the laser tracker can meet the accuracy requirement for
calibrating machine tools [27–30]. Kenta Umetsu et al. iden-
tified all the geometric error components of three-axis ma-
chine tools by using multilateration to allocate the measured
points on 21 lines in the six planes of the work space [30].
This method has a high cost since four laser trackers are
involved. The measurement is conducted on up to 21 lines,
so that it is time consuming. Researchers have made use of
sequential multilateration which requires only one laser
tracker to calibrate multi-axis machine tools [29, 31–34].
Due to the utilization of sequential multilateration, the cost
of such a measuring system is greatly reduced. Based on

sequential multilateration or multilateration principle, the
displacement approaches can determine the geometric error
components of the linear axis [31, 32]. However, these
displacement approaches are not suitable for testing the
rotary axis because only the error models for the linear axis
can be used in combination with the displacement ap-
proaches. Point measurement can be applied to detect the
volumetric errors of the sample points, and then the volu-
metric errors can be used to identify the geometric error
components of the linear axis and the rotary axis of ma-
chine tools or the parameters of error models [29, 33, 34].
The laser tracker has to be placed on the turntable when
testing the rotary axis by using point measurement ap-
proaches, so that these methods are only suitable for a
rotary axis with a large-sized turntable. In addition, numer-
ous sample nodes have to be tested while using these
approaches to test the linear axis, which will lead to relative
long measurement time.

In view of the limitations stated, this paper presents a
general method for measuring the geometric error of multi-
axis machine tools. This method is suitable for both linear
and rotary axes, and it can further decrease the measurement
time due to the requirement that only three point sequences
are tested. The rest of this paper is organized as follows: In
Section 2, the geometric error model of a single linear axis
and a single rotary axis are presented. In Section 3, the
sequential multilateration method for measuring 3D coordi-
nates is introduced. Section 4 presents a three-point method
for geometric error measurement of linear and rotary axes
based on 3D coordinate measurement. In Section 5, the
experiments are demonstrated to validate the proposed
three-point method. Section 6 addresses the conclusions
and summary.

2 Error model of the linear axis and the rotary axis

2.1 Error model of the linear axis

Taking the x-slide as an example, the error model of the
linear axis is introduced in this section. The linear axis stage
can be considered as a rigid body. It is known that a
unconstrained moving rigid body has six degree of freedoms,
therefore, the x-slide has six geometric error components:
three displacement errors, i.e., straightness errors δy(x), δz(x),
and linear error δx(x), and three rotational errors, i.e., roll
error εx(x), pitch, and yaw errors εy(x), εz(x). All error com-
ponents are the functions of the displacement of the x-slide.
As shown in Fig. 1, oxyz is the reference coordinate frame
and oxxxyxzx is the x-axis coordinate frame. The position of x-
axis coordinate frame is changed by the displacement of x-
slide and the error components. The relationship between
these two coordinate frames can be derived by a 4×4
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homogeneous transform matrix (HTM), and the volumetric
error of a point P is given as [7]

Δx xð Þ
Δy xð Þ
Δz xð Þ
0

2664
3775 ¼

0 −εz xð Þ εy xð Þ δx xð Þ
εz xð Þ 0 −εx xð Þ δy xð Þ
−εy xð Þ εx xð Þ 0 δz xð Þ

0 0 0 0

2664
3775

xx
yx
zx
1

2664
3775 ð1Þ

where Δx(x), Δy(x), and Δz(x) are the volumetric errors,
(xx, yx, zx) is the coordinate of point P in the x-axis coordinate
frame, and the x in parentheses denotes the displacement of
x-slide.

From Eq. 1, we can get

Δx xð Þ ¼ −yxεz xð Þ þ zxεy xð Þ þ δx xð Þ
Δy xð Þ ¼ xxεz xð Þ−zxεx xð Þ þ δy xð Þ
Δz xð Þ ¼ −xxεy xð Þ þ yxεx xð Þ þ δz xð Þ

8<: ð2Þ

Equations 1 and 2 are the error models of the linear axis.
Obviously, the three volumetric error components of a point
are not only related to the six geometric error components,
but also related to the coordinates in the coordinate frame of
the moving stage.

2.2 Error model of the rotary axis

Similar to the error analysis of the linear axis, the rotational
motion of the rotary axis leads to six geometric error com-
ponents. As shown in Fig. 2, oxyz is the reference coordinate
frame and oCxCyCzC is the C-axis (z-turntable) coordinate
frame.

HTM is used to obtain Eq. 3, where the error model of
rotary axis [20] is

Δx θð Þ
Δy θð Þ
Δz θð Þ
0

2664
3775 ¼

−εz θð Þsinθ −εz θð Þcosθ εy θð Þ δx θð Þ
εz θð Þcosθ −εz θð Þsinθ −εx θð Þ δy θð Þ

−εy θð Þcosθþ εx θð Þsinθ εy θð Þsinθþ εx θð Þcosθ 0 δz θð Þ
0 0 0 1

2664
3775

xC
yC
zC
1

2664
3775 ð3Þ

where δy(θ) and δz(θ) are the radial displacement errors, δz(θ)
is the axial displacement error, εx(θ) and εy(θ) are the tilt
errors, εz(θ) is the angular error, and θ is the angular

displacement about the z-axis. All the error components are
functions of the angular displacement θ.

From Eq. 3, we can get

Δx θð Þ ¼ −εz θð Þ xCsinθþ yCcosθð Þ þ εy θð ÞzC þ δx θð Þ
Δy θð Þ ¼ εz θð Þ xCcosθ−yCsinθð Þ−εx θð ÞzC þ δy θð Þ
Δz θð Þ ¼ −εy θð Þcosθþ εx θð Þsinθ� �

xC þ εy θð Þsinθþ εx θð Þcosθ� �
yC þ δz θð Þ

8<: ð4Þ

3 3D coordinates measurement using a laser tracker

Laser tracker is a portable and large-scale instrument for 3D
coordinate measurement based on a spherical coordinate sys-
tem, but the capability of 3D coordinate measurement is
limited by the accuracy of the angle measurement. Many
researchers have developed the multilateration principle to
realize 3D coordinates measurement with high accuracy
[30]. However, there are totally four laser trackers used in
the multilateration principle, which leads to an extremely high

cost in such a measuring system. In this paper, a sequential
multilateration principle presented in the literature [29] is
applied to detect the 3D coordinates using a laser tracker.

By using the method mentioned in literature [30], the
incremental length measurement accuracy of the FARO laser
tracker is tested by comparison with a reference coordinate
measuring machine. The maximum deviation and the repeat-
ability are found to be 0.807 and 0.334 μm. The Monte Carlo
method is then performed in two cases to evaluate the mea-
surement uncertainty of the sequential multilateration method.
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Fig. 1 Geometric error components of the linear axis
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According to the 3σ criterion, a normal distribution is assigned
to these incremental lengths with zero expectation and stan-
dard deviation of 0.269 μm; assume that the positioning errors
of the machine tool obeys random normal distributions within
[0, 3 μm] in case 1 and [0, 5 μm] in case 2, respectively. All
the points under test are located in the measurement volume of
the measuring system which is of an optimal arrangement
[30]. The number of simulation trials is 10,000. The simula-
tion results are tabulated in Table 1, and the uncertainties of x,
y, and z are quantified by maximum standard deviation with
respect to the number of simulation trials for all the under-test
points. According to the simulation results, the sequential
multilateration measuring system has a much higher accuracy
than most machine tools, thus, this method can be used to
calibrate machine tools. We also can conclude that the uncer-
tainty is remarkably improved after averaging the measure-
ment results of x, y, and z obtained by repeating the experiment
10 times. Thus, in practical experiments, all the 3D coordinate
measurements are repeated 10 times.

4 Method for geometric error measurement

4.1 Component error measurement for a single axis
of multi-axis machine tool

4.1.1 Geometric error measurement for the linear axis

The x-slide is tested as an example to demonstrate the meth-
od for measuring geometric error components of the linear
axis [35]. As shown in Fig. 3, oxyz is the reference coordinate
frame. oxxxyxzx is the x-axis coordinate frame, and it moves
with the stage of x-slide. Three noncollinear points, P,Q, and
K are fixed on the stage of an x-slide, and their coordinates in
oxxxyxzx are (xxP, yxP, zxP), (xxQ, yxQ, zxQ), and (xxK, yxK, zxK)
respectively. The x-slide moves step by step.

At the beginning, the homogeneous coordinates of ox are
[xo, yo, zo, 1]

T in the reference coordinate frame. The x-slide
moves step by step. It is assumed that no errors occur while

the x-slide is traveling. At step t, the displacement of x-slide is
x, and the homogeneous coordinates of ox is [xot, yot, zot, 1]

T

which can be obtained by

xot
yot
zot
1

2664
3775 ¼

1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1

2664
3775

xo
yo
zo
1

2664
3775 ð5Þ

Meanwhile, the homogeneous coordinates of point P is
[xPt, yPt, zPt]

T in the reference coordinate frame, and they can
be obtained by

xPt
yPt
zPt
1

2664
3775 ¼

1 0 0 xot
0 1 0 yot
0 0 1 zot
0 0 0 1

2664
3775

xxP
yxP
zxP
1

2664
3775 ð6Þ

However, in practice, the movement of the x-slide will
inevitably lead to geometric errors. The 3D coordinates of
point P will be necessarily influenced by the geometric
errors. The actual coordinates of P are (x'Pt, y'Pt, z'Pt) which
can be collected by a laser tracker and the corresponding
homogeneous coordinates are [x'Pt, y'Pt, z'Pt, 1]. The three

Table 1 Measuring errors obtained by simulation

Number of repeat trials Measurement uncertainty/μm

x y z

Case 1 1 1.27 1.33 1.29

10 0.35 0.41 0.43

Case 2 1 2.03 1.97 2.14

10 0.64 0.71 0.67
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Fig. 3 Geometric error components measurement of x-slide
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Fig. 2 Geometric error components of the rotary axis
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volumetric error components at point P are ΔPxt, ΔPyt and
ΔPzt. By using Eqs. 5 and 6, we give

ΔPxt

ΔPyt

ΔPzt

0

2664
3775 ¼

x
0
Pt

y
0
Pt

z
0
Pt

1

2664
3775−

xPt
yPt
zPt
1

2664
3775 ¼

x
0
Pt−xxP−xo−x
y
0
Pt−yxP−yo

z
0
Pt−zxP−zo

0

2664
3775 ð7Þ

Substitute Eq. 7 into Eq. 2, we give

ΔPxt ¼ −yxPεzt xð Þ þ zxPεyt xð Þ þ δxt xð Þ
ΔPyt ¼ xxPεzt xð Þ−zxPεxt xð Þ þ δyt xð Þ
ΔPzt ¼ −xxPεyt xð Þ þ yxPεxt xð Þ þ δzt xð Þ

8<: ð8Þ

The same analysis procedure can be performed on points
Q and K to give other six equations. Thus, there are totally
nine equations, and they can be rewritten as

1 0 0 0 zxP −yxP
0 1 0 −zxP 0 xxP
0 0 1 yxP −xxP 0
1 0 0 0 zxQ −yxQ
0 1 0 −zxQ 0 xxQ
0 0 1 yxQ −xxQ 0
1 0 0 0 zxK −yxK
0 1 0 −zxK 0 xxK
0 0 1 yxK −xxK 0

26666666666664

37777777777775

δxt xð Þ
δyt xð Þ
δzt xð Þ
εxt xð Þ
εyt xð Þ
εzt xð Þ

26666664

37777775 ¼

ΔPxt

ΔPyt

ΔPzt

ΔQxt

ΔQyt

ΔQzt

ΔKxt

ΔKyt

ΔKzt

26666666666664

37777777777775
ð9Þ

whereΔijt (i=P, Q, or K, j=x, y, or z) denotes the volumetric
error component at point i, in the direction of j-axis , at the tth

step, and we give Δixt=x'it−xxi−xo−x, Δiyt=y'it−yxi−yo,
Δizt=z'it−zxi−zo (i=P, Q, or K).

It can be proved that the rank of the coefficient matrix in
Eq. 9 is full column rank as long as P, Q, and K do not lie on
the same line. Hence, six equations can be properly selected
from Eq. 12 to form a new system of equations which has a
unique solution. Thus, in practical measuring procedures, the
condition that the three selected points do not lie on the same
line should be satisfied.

Number all the equations in Eq. 9 as ①∼⑨, and divide
them into three groups, i.e., the equations①∼③ are obtained
by the error analysis of point P, the equations ④∼⑥ are
obtained by the error analysis of point Q, and the equations
⑦∼⑨ are obtained by the error analysis of point K. In order
to guarantee that the selected six equations have a unique
solution, the following rules should be followed: at least one
equation should be selected from each group, and the combi-
nations ①②④⑤⑦⑧, ①③④⑥⑦⑨, and ②③⑤⑥⑧⑨

should not be used. In this paper, the combination
①②④⑥⑧⑨ is chosen to form a new system of equations

1 0 0 0 zxP −yxP
0 1 0 −zxP 0 xxP
1 0 0 0 zxQ −yxQ
0 0 1 yxQ −xxQ 0
0 1 0 −zxK 0 xxK
0 0 1 yxK −xxK 0

26666664

37777775
δxt xð Þ
δyt xð Þ
δzt xð Þ
εxt xð Þ
εyt xð Þ
εzt xð Þ

26666664

37777775 ¼

ΔPxt

ΔPyt

ΔQxt

ΔQzt

ΔKyt

ΔKzt

26666664

37777775 ð10Þ

and the solution is

δxt xð Þ ¼ ΔPxt þ M

N
yxP−

zxP yxQ−yxP
� �
zxQ−zxP

24 35− zxP ΔQxt−ΔPxt

� �
zxQ−zxP

δyt xð Þ ¼ ΔPyt−
M

N
xxP−

zxP xxP−xxKð Þ
zxP−zxK

� 	
−
zxP ΔPyt−ΔKyt

� �
zxP−zxK

δzt xð Þ ¼ ΔQzt þ M

N

yxQ xxK−xxPð Þ
zxP−zxK

−
xxQ yxP−yxQ

� �
zxQ−zxP

24 35− yxQ ΔKyt−ΔPyt

� �
zxP−zxK

þ xxQ ΔQxt−ΔPxt

� �
zxQ−zxP

εxt xð Þ ¼ ΔKyt−ΔPyt

zxP−zxK
þ xxP−xxK

zxP−zxK
⋅
M

N

εyt xð Þ ¼ ΔQxt−ΔPxt

zxQ−zxP
þ yxQ−yxP

zxQ−zxP
⋅
M

N

εzt xð Þ ¼ M

N

ð11Þ

where

M ¼ ΔQxt−ΔPxt

� �
xxK−xxQ
� �

zxP−zxKð Þ þ
ΔPyt−ΔKyt

� �
yxK−yxQ

� �
þ ΔKzt−ΔQzt

� �
zxP−zxKð Þ

h i
zxQ−zxP
� �

N ¼ xxK−xxQ
� �

yxP−yxQ
� �

zxP−zxKð Þ− xxK−xxPð Þ yxK−yxQ
� �

zxQ−zxP
� �

In Eq. 11, N is a denominator. Thus, in practical measuring
procedures, besides making sure that the three selected points
do not lie on the same line, the positions of the three under-test
points should be reasonably arranged to guarantee that N is not
zero. The simplest way is tomake the z-coordinates of the three
points differ with each other. Considering the measurement for
the x-slide, y-slide, and z-slide, as well as the different way for
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extracting equations from Eq. 9, practical measurement should
follow the following rules: the i-coordinates (i=x, y, or z) of
these three points are not equal to each other.

4.1.2 Geometric error measurement for the rotary axis

The geometric error components measurement for the rotary
axis is similar to that for the linear axis.We take theC-axis as an
example to demonstrate the method for measuring the geomet-
ric error components of rotary axis [35]. As shown in Fig. 4,
three noncollinear points, P,Q, and K are selected on the stage,
and the coordinates of P,Q, andK are (xCP, yCP, zCP), (xCQ, yCQ,
zCQ), and (xCK, yCK, zCK), respectively. oxyz is the reference
coordinate frame and oCxCyCzC is the C-axis coordinate frame.

The homogeneous coordinates of oC is [xo, yo, zo, 1]
T in the

reference coordinate frame at the beginning. At time t, the
angular displacement ofC-axis is θ. If there are no errors while
the C-axis is rotating, the homogeneous coordinates of oC are

xot
yot
zot
1

2664
3775 ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2664
3775

xo
yo
zo
1

2664
3775 ¼

xo
yo
zo
1

2664
3775 ð12Þ

The homogeneous coordinates of point P are

xPt
yPt
zPt
1

2664
3775 ¼

cosθ −sinθ 0 xot
sinθ cosθ 0 yot
0 0 1 zot
0 0 0 1

2664
3775

xCP
yCP
zCP
1

2664
3775 ð13Þ

The actual coordinates of P is (x'Pt, y'Pt, z'Pt) which can be
collected by a laser tracker. Assume that the three volumetric
error components at point P are ΔPxt, ΔPyt, and ΔPzt, so we
have

ΔPxt

ΔPyt

ΔPzt

0

2664
3775 ¼

x0Pt
y0Pt
z0Pt
1

2664
3775−

xPt
yPt
zPt
1

2664
3775 ð14Þ

Substitute Eqs. 12, 13, and 14 into Eq. 4 and eliminate the
volumetric error components, we get

x 0Pt −xCP cosθ þ yCP sinθ−xo ¼ −εzt θð Þ xCPsinθþ yCPcosθð Þ þ εyt θð ÞzCP þ δxt θð Þ
y 0

Pt − xCP sinθ − yCP cosθ − yo ¼ εzt θð Þ xCPcosθ−yCPsinθð Þ − εxt θð Þ zCP þ δyt θð Þ
z0Pt−zCP−zo ¼ −εyt θð Þcosθþ εxt θð Þsinθ� �

xCP þ εyt θð Þsinθþ εxt θð Þcosθ� �
yCP þ δzt θð Þ

8<: ð15Þ

The same procedure is performed on points Q and K, and
rewriting all the nine equations in matrix form, we get

1 0 0 0 zCP −byCP
0 1 0 −zCP 0 bxCP
0 0 1 byCP −bxCP 0

1 0 0 0 zCQ −byCQ
0 1 0 −zCQ 0 bxCQ
0 0 1 byCQ −bxCQ 0

1 0 0 0 zCK −byCK
0 1 0 −zCK 0 bxCK
0 0 1 byCK −bxCK 0

2666666666666666664

3777777777777777775

δxt θð Þ
δyt θð Þ
δzt θð Þ
εxt θð Þ
εyt θð Þ
εzt θð Þ

26666664

37777775 ¼

ΔPxt

ΔPyt

ΔPzt

ΔQxt

ΔQyt

ΔQzt

ΔKxt

ΔKyt

ΔKzt

26666666666664

37777777777775
ð16Þ

whereΔijt (i=P, Q, or K, j=x, y, or z) denotes the volumetric
error component at point i, in the direction of j-axis, at the tth
step, and we give Δixt ¼ x0it−bxCi−xo, Δiyt ¼ y0it−byCi−yo,

Δizt ¼ z0it−bzCi−zo, bxCi ¼ xCicosθ−yCisinθ, byCi ¼ yCicosθþ
xCisinθ, (i=P, Q, or K).

The selected points P, Q, and K should not be located on
the same line, which can guarantee that a set of six equations
selected from Eq. 16 has a unique solution. Similar to the
analysis in the previous section, a new system of equations is
established by extracting the six equations from Eq. 16

1 0 0 0 zCP −byCP
0 1 0 −zCP 0 bxCP
1 0 0 0 zCQ −byCQ
0 0 1 byCQ −bxCQ 0

0 1 0 −zCK 0 bxCK
0 0 1 byCK −bxCK 0

26666666664

37777777775

δxt θð Þ
δyt θð Þ
δzt θð Þ
εxt θð Þ
εyt θð Þ
εzt θð Þ

26666664

37777775 ¼

ΔPxt

ΔPyt

ΔQxt

ΔQzt

ΔKyt

ΔKzt

26666664

37777775ð17Þ

Solving Eq. 17, we obtain
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Fig. 4 Geometric error components measurement of C-axis
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δxt θð Þ ¼ ΔPxt þ M

N
byCP− zCPðbyCQ−byCPÞ

zCQ−zCP

" #
−
zCP ΔQxt−ΔPxt

� �
zCQ−zCP

δyt θð Þ ¼ ΔPyt−
M

N
bxCP− zCP bxCP−bxCK� �

zCP−zCK

24 35− zCP ΔPyt−ΔKyt

� �
zCP−zCK

δzt θð Þ ¼ ΔQzt þ M

N

byCQ bxCK−bxCP� �
zCP−zCK

−
bxCQ byCP−byCQ� �

zCQ−zCP

24 35− byCQ ΔKyt−ΔPyt

� �
zCP−zCK

þ bxCQ ΔQxt−ΔPxt

� �
zCQ−zCP

εxt θð Þ ¼ ΔKyt−ΔPyt

zCP−zCK
þ bxCP−bxCK

zCP−zCK
⋅
M

N

εyt θð Þ ¼ ΔQxt−ΔPxt

zCQ−zCP
þ byCQ−byCP

zCQ−zCP
⋅
M

N

εzt θð Þ ¼ M

N

ð18Þ

where

M ¼ ΔQxt−ΔPxt

� � bxCK−bxCQ� �
zCP−zCKð Þ þ ΔPyt−ΔKyt

� � byCK−byCQ� �
þ ΔKzt−ΔQzt

� �
zCP−zCKð Þ

h i
zCQ−zCP
� �

N ¼ bxCK−bxCQ� � byCP−byCQ� �
zCP−zCKð Þ− bxCK−bxCP� � byCK−byCQ� �

zCQ−zCP
� �

In Eq. 18, N is a denominator. Thus, in practical measur-
ing procedure, the positions of the points P, Q, and K should
be reasonably arranged to guarantee that N is not zero.
Firstly, the z-coordinates of P, K, and Q should not be same
to each other. Secondly, the angular step of the rotary axis
should be reasonably selected to guarantee that N is not zero
at each step.

4.1.3 General method for identifying the geometric errors
of a single axis

The Eqs. 9, 10, and 11 are found similar to Eqs. 16, 10, and
11, respectively. So the proposed method can be considered
as a general method for identifying the geometric errors of a
single axis, including the linear and rotary axes.

A single axis, whether it is linear axis or rotary axis, can
be considered as a generalized axis. The three generalized
coordinates are bx, by and bz, which are defined as follow.

When testing the linear x-axis or rotary x-axis (A-axis), we
define

bx ¼ x;by ¼ y cos α−z sin α;bz ¼ z cos αþ y sin α ð19aÞ

When testing the linear y-axis or rotary y-axis (B-axis),
we define

by ¼ y;bz ¼ z cos β−x sin β;bx ¼ x cos β þ z sin β ð19bÞ

When testing the linear z-axis or rotary z-axis (C-axis), we
define

bz ¼ z;bx ¼ x cos θ−y sin θ;by ¼ y cos θþ x sin θ ð19cÞ

Subsequently, the error model in Eq. 20 can be collec-
tively considered as a generalized expression of Eqs. 1
and 3, i.e., it is a generalized error model of an arbitrary
single axis.

Δx ið Þ
Δy ið Þ
Δz ið Þ
0

2664
3775 ¼

0 −εz ið Þ εy ið Þ δx ið Þ
εz ið Þ 0 −εx ið Þ δy ið Þ
−εy ið Þ εx ið Þ 0 δz ið Þ
0 0 0 0

2664
3775

bxtbytbzt
1

26664
37775 ð20Þ

As a result, when testing a generalized single i-axis
(i=bx, by or bz), nine equations shown in Eq. 21 can be
established.

I MP

I MQ

I MK

24 35⋅Eit ¼
ΔPt

ΔQt

ΔKt

24 35 ð21Þ
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where

M j ¼
0 bz j −by j
−bz j 0 bx jby j −bx j 0

2664
3775 j ¼ P;QorK

and where I is the identity matrix; Eit=[δxt, δyt, δzt, εxt,

εyt, εzt]
T; Δjt=[Δjxt, Δjyt, Δjzt] denotes the three volu-

metric error components at point j, at the tth step; bx j, by j,
and bz j are the generalized coordinates.

Six equations can be properly selected from Eq. 21, and
the six geometric error components shown in Eq. 22 can be
obtained by solving these six equations.

δxt ¼ ΔPxt þ M

N
byP−bzP byQ−byP� �

bzQ−bzP
24 35−bzP ΔQxt−ΔPxt

� �
bzQ−bzP

δyt ¼ ΔPyt−
M

N
bxP−bzPðbxP−bxKÞbzP−bzK

" #
−
bzP ΔPyt−ΔKyt

� �
bzP−bzK

δzt ¼ ΔQzt þ M

N

byQ bxK−bxP� �
bzP−bzK −

bxQ byP−byQ� �
bzQ−bzP

24 35−byQ ΔKyt−ΔPyt

� �
bzP−bzK þ bxQ ΔQxt−ΔPxt

� �
bzQ−bzP

εxt ¼ ΔKyt−ΔPytbzP−bzK þ bxP−bxKbzP−bzK ⋅
M

N

εyt ¼ ΔQxt−ΔPxtbzQ−bzP þ byQ−byPbzQ−bzP ⋅
M

N

εzt ¼ M

N

ð22Þ

where

M ¼ ΔQxt−ΔPxt

� � bxK−bxQ� � bzP−bzK� �
þ ΔPyt−ΔKyt

� � byK−byQ� �
þ ΔKzt−ΔQzt

� � bzP−bzK� �h i bzQ−bzP� �
N ¼ bxK−bxQ� � byP−byQ� � bzP−bzK� �

− bxK−bxP� � byK−byQ� � bzQ−bzP� �

4.2 Determination of the location errors of each axis

4.2.1 Establishing the reference coordinate frame

To determine the location errors of each axis, a reference
coordinate frame should firstly be established.

As shown in Fig. 5, the real trace of the origin of the x-
slide coordinate frame is a space curve. Linear curve fitting is
applied to obtain the average line of the x-slide which passes
through the origin. This average line is considered as the x-
axis of the reference coordinate frame. The real trace of the
origin of the y-slide is also a space curve. Similarly, linear
curve fitting is applied to obtain the average line of the y-
slide which also passes through the origin. The average lines
of the x-slide and y-slide form a plane named the x-y plane of
the reference coordinate frame, and then a straight line which
passes through the origin and is perpendicular to the x-axis is
created within the x–y plane. This straight line is regarded as

the y-axis of the reference coordinate frame. Finally, the third
straight line which passes through the origin and is perpen-
dicular to the x–y plane is created, and it is considered to be
the z-axis of the reference coordinate frame. The directions
of each axis of the reference coordinate frame must follow
the right-hand rule. The reference coordinate frame is thus
established.

4.2.2 Determination of the squareness error

As shown in Fig. 5, Sxy is the squareness error between
the x-slide and the y-slide, and it can be represented by
the rotation angle of the y-slide about the reference z-axis.
Sxz is the squareness error between z-slide and the x-slide,
and Syz is the squareness error between z-slide and y-slide,
respectively. θxz and θyz are the angles between the z-axis
of reference coordinate frame and the projection of the
average line of z-slide on the x–z plane and the y–z plane,
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respectively. In accordance with the small error hypothe-
sis, θxz and θyz are approximately equal to Sxz and Syz. The
sign symbols of these three squareness errors obey the
right-hand rule.

Obviously, squareness errors can be determined by the
locations of the average lines of the three slides which
are described by linear equations. Since the coordinate
sequence of the origin of each coordinate frame can be
measured by a laser tracker, the linear fitting method can
be applied to obtain the mathematical expression of the
average line of each axis. If the mathematical expression
of the average lines of the x-slide, the y-slide, and the z-
slide are

x

mx
¼ y

nx
¼ z

1
;

x

my
¼ y

ny
¼ z

1
;

x

mz
¼ y

nz
¼ z

1

Then the three squareness errors can be derive from the
three normal vectors of the three average lines, i.e., (mx, nx, 1),
(my, ny, 1), and (mz, nz, 1).

θxy ¼ 90−arccos
mxmy þ nxny þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
x þ n2x þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

y þ n2y þ 1
q

θxz ¼ arctan
cosαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−cos2α−cos2β
p

θyz ¼ arctan
cosβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−cos2α−cos2β
p

ð23Þ

where

cosα ¼ mxmz þ nxnz þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ n2x þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
z þ n2z þ 1

p ; cosβ ¼ mymz þ nynz þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

y þ n2y þ 1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
z þ n2z þ 1

p

4.2.3 Determination of location error components of rotary
axis

Taking the C-axis as the example, how to determine the
location errors of rotary axis is presented in this section. As
shown in Fig. 6, there are totally five location parameters,
i.e., dxC, dyC, and dzC are the three offset, and SxC and SyC are
the two angular errors. These location parameters can be
determined by the location of the average circle which is
described mathematically. Since the coordinate sequence of
the origin of the C-axis coordinate frame can be grabbed by a
laser tracker, curve fitting can be used to obtain the mathe-
matical expression of the average circle. If the origin of the
C-axis coordinate frame (the center point of the average
circle) is located at (x0C, y0C, z0C) and the normal vector to
the average circle plane is V (A, B, C), we can show that

dxC=x0C, dyC=y0C, and dzC=z0C, and that SxC=arctan(B/C)
and SyC=arctan(A/C), respectively.

5 Error measurement experiments

To demonstrate the practicability of the proposed method,
several experiments were conducted by using a commercial
FARO laser tracker based on the sequential multilateration in
which the performance is demonstrated in Section 3. Due to
the fact that there were no machine tools with one or more
rotary axis available, we had to conduct two experiments to
verify the proposed methods discussed in this paper. The first
one is identifying all the geometric error components of a
three-axis machine tool; the other one is measuring the six
geometric error components of a single rotary stage.

xr

yr

zr

xC
yC

zC

dxCdyCdzC

SxCSyC

Fig. 6 Five location parameters of rotary axis
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zr

Real trace of x-axis
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90°+Sxz 90°+Syz

Sxy = θxy

θxz
θyz

Fig. 5 Three squareness errors between three linear axis
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5.1 Error measurements for three-axis machine tools

As shown in Fig. 7, an experiment is conducted to measure
the 21 geometric error components of a three-axis machine
tool of type FXYZ. The strokes of x-axis, y-axis, and z-axis
are 440, 400, and 400 mm, respectively.

The measuring steps are:

1. Three targets P, K, and Q are fixed on the spindle
assembly. Their t-coordinates (t is x, y, and z, respective-
ly) are observably not the same.

2. The spindle assembly moves in steps of 20 mm along
each axis, meanwhile the coordinate sequences of the
three selected points P, K, and Q can be measured by the
sequential multilateration method.

3. By establishing the reference coordinate frame follow-
ing the rule stated in Section 4.2.1, the three squareness
errors can be determined by using Eq. 23.

4. These measured coordinate sequences are transformed
into new coordinate sequences under the reference coor-
dinate frame. In the experiments, the coordinates of the
three points in the reference coordinate frame are P0

(16.338, 452.716, 122.416), Q0 (157.086, 332.593,
324.879), and K0 (248.925, 603.0552, 412.4483), re-
spectively, while the machine tool is in the home
position.

5. Substitute these new coordinate sequences into Eq. 11 to
obtain the six geometric error components of each axis.
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Fig. 8 The six geometric error
components of each axis. a
Three displacement errors of the
x-axis; b three angular errors of
the x-axis; c three displacement
errors of the y-axis; d three
angular errors of the y-axis; e
three displacement errors of the
z-axis; f three angular errors of
the z-axis
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Fig. 7 The setup used in the experiments. a The setup; b the arrange-
ment of three points
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The measurement mentioned above is repeated 10 times
and the mean values of each geometric error components can
be obtained. So far, all the geometric error components have
been measured. The experimental results of the three square-
ness errors are that Sxy is −22.925 arcsec, Sxz is −27.377 arcsec,
and Syz is 19.614 arcsec, the results of the other 18 geometric
error components are shown in Fig. 8.

The laser interferometer is an acknowledged high-
accuracy device for machine tool calibration, so it is used
to conduct a comparative experiment to verify the effective-
ness of the proposed method. The setup is shown in Fig. 9.
Firstly, software compensation is applied to compensate the
volumetric errors of this three-axis machine tool [36], and
then a target point fixed on the spindle assembly moves
along the x-axis, the y-axis, and the z-axis, respectively.
Meanwhile, the positioning errors of this moving point are
measured by using a laser interferometer, without compen-
sation and with compensation respectively. The coordinates
of this measured point T are (175.6, 497.5, 312.1) when the
machine tool is in the home position. The sample interval is
10 mm. The results of comparative experiment are shown in
Fig. 10. Obviously, the positioning errors of point T along
three axes are significantly reduced. The maximum errors
along the x-axis are reduced from 16.69 to 5.11 μm; the
maximum errors along the y-axis are reduced from −17.52
to −4.47 μm; the maximum errors along the z-axis are
reduced from −18.38 to −4.67 μm. In conclusion, error
compensation can enhance the accuracy, and the proposed
method for the geometric error component measurements of
three-axis machine tools is effective.

To further validate the proposed method, other compara-
tive experiments are conducted to measure the pitch errors
and yaw errors of the three axis by using the methods
presented in the literature [8]. The method for measuring
the pitch error and yaw error of x-axis is shown in Fig. 11.
Specifically, the x-axis moves step by step with a step size of

20 mm, and at each step, the displacements along the three
lines L1 (y=0, z=0), L2 (y=y1, z=0), and L3 (y=0, z=z1) are
measured by a laser interferometer. Then we give

εyi xð Þ ¼ ΔL3 xi; 0; z1ð Þ−ΔL1 xi; 0; 0ð Þ½ �=z1
εzi xð Þ ¼ ΔL2 xi; y1; 0ð Þ−ΔL1 xi; 0; 0ð Þ½ �=y1

where the εyi(x) and εzi(x) are the pitch error and yaw error at
the ith step, theΔL1(xi, 0, 0),ΔL2(xi, y1, 0), andΔL3(xi, 0, z1)
are the displacement errors along lines L1, L2, and L3, at the
ith step, respectively.

The method for measuring the pitch errors and yaw errors
of y-axis and z-axis are similar to the method mentioned
above. As shown in Fig. 12, the errors measured by laser
tracker (LT) are compared to the errors measured by the laser
interferometer (LI). For the pitch errors and yaw errors of x-
axis, the maximum deviation is 4.07" and 3.12", respective-
ly; for the pitch errors and yaw errors of y-axis, the maximum
deviation is 2.74" and 2.95", respectively; for the pitch errors
and yaw errors of z-axis, the maximum deviation is 1.81" and
1.94", respectively. The effectiveness of the proposed meth-
od for measuring the geometric error component of the three-
axis machine tools is accordingly verified.
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Fig. 10 Results of comparison experiments. a The positioning error
along x-axis; b the positioning error along y-axis; c the positioning error
along z-axis

Fig. 9 Measuring positioning errors by using laser interferometer
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5.2 Error measurements for the rotary axis

A rotary stage is tested as shown in Fig. 13. The measuring
steps are:

1. Three targets P,K, andQ are fixed on the rotary stage with
initial coordinates P'0 (1005.6648, −140.3849,
−222.6797), Q'0 (1240.2676, −187.6319, −183.0147),
and K'0 (1136.3720, −386.5078, −207.4099) respectively
in the coordinate frame of laser-tracker measuring system.

2. The stage rotates step by step with a step size of 20°.
Meanwhile, the coordinate sequences of these three
points can be detected by the laser tracker.

3. Circular curve fitting is applied to establish the coordi-
nate frame. The center of the circle is (111.447,
−257.739, −221.528) in the coordinate frame of the
laser-tracker measuring system. The location errors can
then be determined, i.e., the offsets are dxC=111.447mm,
dyC=−257.739 mm, and dzC=−221.528 mm,
SxC=39.082 arcsec and SyC=−17.341 arcsec, respective-
ly. The initial coordinates of P, K, and Q are P0

(−105.8046, 135.3414, 0), Q0 (128.8513, 87.8158,
39.9797), K0 (24.9026, −110.8575, 15.2662) in the ro-
tary stage coordinate frame.

4. Then check whether N in Eq. 18 is equal to zero or not at
each step; if so, the step size or the position of the three
points should be changed, and return to step 1 until N is
not zero. In this experiment, a step size of 20° can
guarantee that N is not zero at each step.
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Fig. 12 a–f The errors obtained
by laser tracker (LT) and laser
interferometer (LI)
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Fig. 13 The setup of the geometric error components measurement for
the rotary axis. a The setup; b the arrangement of the three points
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Fig. 11 The method for measuring pitch error and yaw error by using
laser interferometer
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5. All the six geometric error components can be deter-
mined by making use of these data and the Eq. 18.

The measurement procedure is repeated 10 times. The
results of the measurements are shown in Fig. 14.

In order to validate this method for geometric error com-
ponent measurement of the rotary stage, comparative exper-
iments are conducted. Restricted by limited equipment and
instruments, we could not measure each one of the six
geometric error components of the rotary stage by other
methods. In this paper, QC10, a double ballbar, is applied
to indirectly evaluate the volumetric error vectors of target
points. As illustrated in Fig. 15a, the pivot assembly is fixed
on the rotary stage and the measuring ball is attached to the
top of the pivot assembly, A is the center of the measuring
ball with coordinates (xA, yA, zA) in the rotary stage coordi-
nate frame; the center ball is attached to a point O which is
located right above the center of the stage. The rotary stage
rotates in steps of 20°, and the length change of the ballbar,
ΔL, is tested by DBB at each step. The ΔL between the
center ball and the measuring ball is mainly caused by the
error vectorΔE [ΔAx,ΔAy,ΔAz]

T. Thus, as shown in Fig. 15b,

(L+ΔL)=L+ΔE is given. By ignoring the high order infi-
nitely small quantity, the following equation can be obtained
[37]

ΔL ¼ 1

L
xAΔAx þ yAΔAy þ zAΔAz

� � ð24Þ

The (ΔAx,ΔAy,ΔAz) can be obtained by using Eq. 4, and
the six geometric error components in Eq. 4 have been
measured. Hence, the ΔL can be obtained.

We can indirectly verify the proposed method by compar-
ing theΔLs obtained by vector operation with theΔLs tested
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Fig. 15 Testing the volumetric error vector using DBB. a The princi-
ple; b relationship between the error vector and the length change of
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Fig. 16 Comparison of the measuring results of the two methods. a For
point A; b for point B
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Fig. 14 Results of the geometric error components measurement for
the rotary axis. a Displacement errors; b rotational errors
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by DBB. The coordinates of target point A is (121.779,
87.578, 59.216). The ΔLs obtained by vector operation
(VO) and tested by DBB are shown in Fig. 16a. They are
approximately the same at each step and the maximum
deviation is about 3.64 μm when the angular displacement
is 60°.

To further consolidate this verificational experiment,
another target point B (49.919, 2.842, 59.216) is tested
too. As shown in Fig. 16b, the ΔLs obtained by vector
operation are compared with the ΔLs tested by DBB.
They are approximately the same at each step and the
maximum deviation is about 2.53 μm when the angular
displacement is 160°.

In conclusion, the effectiveness of the three-point method
for measuring the geometric error components of the rotary
axis is thus verified.

6 Conclusions

A three-point method for measuring geometric error compo-
nents of multi-axis machine tools by using a laser tracker is
presented in this study. Since all the component errors and
location errors of the linear and rotary axes can be obtained
by using only one laser tracker to collect the coordinate
sequence of three pre-described points, this method can be
considered as a general strategy for geometric error identifi-
cation of multi-axis machine tools. Experiments were carried
out on a three-axis machine tool and a single rotary axis. The
experimental results indicate that the identification of geo-
metric error components is feasible by implementing the
proposed method.

The proposed method has many advantages: firstly, it is
simple and fast since there is no requirement for complicated
equipment alignment and installation; secondly, compared to
the previous laser-tracker-based method, the measuring time
of the three-point method is further decreased due to the fact
that only three point sequences are tested; thirdly, it is suit-
able for geometric error component measurements of both of
linear and rotary axes, and as a result, it can be applied to
calibrate multi-axis machine tools of whatever type; fourthly,
all the measurement procedure are implemented in a single
coordinate frame,; lastly, due to the laser tracker’s capability
for large-scale metrology, this method is applicable to geo-
metric error measurement for different-sizes of machine
tools, especially for large-sized machine tools.
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