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Abstract Fault detection and isolation, or fault diagnos-
tic, of mechatronic systems has been the subject of several
interesting works. Detecting and isolating faults may be
convenient for some applications where the fault does not
have severe consequences on humans as well as on the envi-
ronment. However, in some situations, diagnosing faults
may not be sufficient and one needs to anticipate the fault.
This is what is done by fault prognostics. This latter activ-
ity aims at estimating the remaining useful life of systems
by using three main approaches: data-driven prognostics,
model-based prognostics, and hybrid prognostics. In this
paper, a hybrid prognostic method is proposed and applied
on a mechatronic system. The method relies on two phases:
an offline phase to build the behavior and degradation mod-
els and an online phase to assess the health state of the
system and predict its remaining useful life.

Keywords Fault detection · Fault diagnostics · Fault
prognostics · Remaining useful life · Bond graph modeling

1 Introduction

Fault detection and isolation (FDI) and fault prognostics
of industrial systems are two necessary functions as they
allow avoiding nondesirable situations and catastrophes.
FDI can be applied on both abrupt and incipient faults. Seve-
ral research and industrial works have been conducted in
the domain [6, 7, 16, 19]. The reported methods can be
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classified in two main categories: qualitative methods and
quantitative methods [6, 16]. FDI can be used to do recon-
figuration and accommodation and is suitable for systems
where the fault does not have severe consequences. For
example, detecting and isolating a fault on a valve control-
ling inflammable liquids may not avoid possible explosions.
In this case, the fault is diagnosed a posteriori and thus is
undergone.

Contrary to FDI, which is done a posteriori after the
appearance of the faults, prognostics aims at anticipating
the time of a failure by predicting the remaining useful life
(RUL) of the system [1]. Prognostic results can then be used
to take appropriate decisions on the system (change of set
points, reduce the production load, stop the system, etc.).

Fault prognostic methods can be grouped into three main
approaches [5, 7, 17, 18]: data-driven prognostics, model-
based prognostics, and hybrid prognostics. Data-driven
prognostics is based on the utilization of monitoring data to
build behavior models including the degradation evolution,
which are then used to predict the RUL [3, 4]. Model-
based prognostics, also called physics of failure prognostics,
uses models generated from fundamental laws of physics
to calculate the RUL [2, 11]. Finally, hybrid prognostics
combines both previous approaches and benefits from their
advantages (precision and applicability).

This paper presents a hybrid prognostic method with
application to mechatronic systems. In this contribution, the
behavior model is obtained by using the bond graph (BG)
formalism [8, 16] and the degradation models are derived by
using the concept of residuals. The degradation of the sys-
tem’s components is supposed to be continuous drifts in the
system’s parameters. The global model of the mechatronic
system (behavior and degradation models) is then used to
estimate the current health state of the system, predict its
future one, and calculate its RUL.
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The paper is organized as follows: After the introduction,
Section 2 presents a brief description of the bond graph for-
malism and the fault prognostic paradigm. Section 3 gives
the framework and details the steps of the proposed method.
Section 4 deals with the application of the method on a
mechatronic system, where simulation results are presented
and discussed. Finally, Section 5 concludes the paper.

2 Bond graph and fault prognostics

2.1 Bond graph modeling

Bond graph tool [8, 16] is a graphical representation of
power transfer within a physical system. A bond graph
model is situated between the physical model and the
mathematical model. It is used in modeling to derive
mathematical models in forms of state space and transfer
function; in structural analysis of the system’s properties
like controllability, observability, model reduction, actua-
tor, and sensor placement; and finally in fault detection and
isolation.

The generation of a BG model is based on nine BG ele-
ments: three passive elements (resistance R, capacitance C,
and inertia I ), two active elements (source of effort Se and
source of flow Sf), and four junction elements (transformer
TF, gyrator GY, zero junction 0, and one junction 1). In
addition to these nine elements, two detectors represent-
ing the sensors are added (effort and flow detectors). These
BG elements are proposed to unify the modeling process of
multi-physical systems, by using two generalized variables:
effort and flow. The product of these two variables is equal
to power, which is exchanged between the physical parts of
the system.

To obtain a BG model of multi-physical systems in gen-
eral and of mechatronic systems in particular, it is recom-
mended to start with a word BG. This word BG is obtained
by decomposing the whole system into several energy-
domain parts (electrical, mechanical, hydraulic, pneumatic,
thermal, etc.) and linking these parts between them by using
half-arrows representing the power exchanged between
them and called bond graph links. Then, for each block, a
BG model is derived by using dedicated procedures given
in [8]. A BG model of a DC motor, composed of two

coupled physical domains (electrical and mechanical), is
given in Fig. 1.

2.2 Fault prognostics

Prognostics is a key process of condition-based maintenance
[9, 15] (Fig. 2).

Prognostics is defined by the International Organization
for Standardization [1] as the estimation of the operating
time before failure and the risk of future existence or appear-
ance of one or several failure modes. The time to failure is
commonly called remaining useful life (RUL) by the Prog-
nostics and Health Management research community [5, 7,
12, 18]. Figure 3 shows an illustration of a RUL prediction
according to a predefined system’s performance.

Fault prognostics can be done according to three main
approaches: data-driven prognostics, model-based (also
called physics of failure) prognostics, and hybrid prognos-
tics. The first approach uses the data provided by sensors
(monitoring data) and which capture the degradation evolu-
tion of the system. The data are then preprocessed to extract
features which are used to learn models for health assess-
ment and RUL prediction [3, 4]. Examples of models are
neural networks, regressions, hidden Markov models, sup-
port vector regression, etc. The second approach requires
a deep understanding of the physical phenomena of the
system, including the degradation evolution. This approach
uses physical laws to build the global model of the sys-
tem, which is then used for simulations and predictions to
calculate the RUL [2, 11]. Note that the construction of
the model is subjected to the availability of a degradation
model. Examples of degradation models are those related
to crack by fatigue, corrosion, and wear. Finally, the third
approach combines both previous approaches. The advan-
tage of the hybrid approach is that it allows doing reliable
prognostics at two levels: component-level prognostics and
system-level prognostics. The component-level prognostics
allows building accurate degradation models which can then
be injected in the global model obtained at the system level
in order to estimate the remaining useful life of the whole
system. Furthermore, the hybrid approach allows model-
ing the interactions between the components of the system
and thus tracking the influence of a degradation in one
component on the other components.

Fig. 1 A DC motor and its BG
model
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Fig. 2 Steps of a condition-based maintenance

A summary of the advantages and drawbacks of the
previous approaches is given in Fig. 4.

Compared to the model-based approach, data-driven
methods give less precise prognostics [10, 18], due particu-
larly to the absence of a deterministic behavior model and to
the variability of the experimental data needed to learn the
degradation model of the physical system. The model-based
methods give more precise results, but their implementation
on complex physical systems is not trivial because of the
difficulty to generate the system’s behavior and degradation
models. However, these methods can be applied on small
system for which the behavior model can be easily obtained.
This is the case of mechatronic systems. Nevertheless, even
for these systems, it is necessary to have the models of
the degradation phenomena before doing prognostics. The
degradation models can be learned from experimental data
acquired on accelerated life tests done on the system’s com-
ponents or estimated online by using appropriate techniques
(residuals, parameter estimation, observers, etc.). Once the
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Fig. 3 Illustration of a RUL prediction

degradation models of the components are obtained, they
are injected in the behavior model of the system to estimate
and predict its health state and calculate its RUL.

The following part of the paper presents a prognostic
method applied on mechatronic systems. The method com-
bines both model-based and data-driven approaches. The
behavior model of the system is obtained by using the
BG tool, whereas the degradation models of the system’s
components are derived by using the concept of residuals.

3 Fault prognostics of mechatronic systems

The prognostic method proposed in this paper relies on two
phases, as shown in Fig. 5: an offline phase to build the
dynamic model of the mechatronic system and derive its
degradation models and an online phase (or exploitation
phase) where the obtained models are used to detect the ini-
tiation of the degradation and predict the RUL of the system.
Note that, contrary to most reported prognostic works which
are component-oriented, the method proposed in this paper
is system-oriented. Indeed, the variations (or drifts) in the
parameters are propagated to the whole mechatronic system
and are taken into account in the global dynamic model for
simulations, predictions, and RUL calculation.

Before detailing the steps of each phase shown in Fig. 5,
it is necessary to set the framework of the proposed method.
This framework is defined by the following assumptions:

1. The sensors are considered to be fault-free and give
correct measurements.

2. Only incipient faults are considered (abrupt faults are
not taken into account).

3. The faults in the mechatronic system are due to contin-
uous drifts in its parameters.

4. The faults in the actuators are not taken into account.

The first phase of the method includes three steps: the con-
struction of the nominal behavior model of the system,
the generation of its degradation model, and the definition
of the thresholds (faults’ thresholds and system’s perfor-
mance thresholds). The nominal model consists of a set of
mathematical equations obtained by using the bond graph
formalism [8, 16]. The output of this model is compared
to the measurements acquired on the real system to gener-
ate residuals, which are then used to derive the degradation
models of the system’s components. The degradations cor-
respond to changes in the BG elements C, I , and R, as
expressed by the following relations:

C(t) = C0 + f (t) (1)

I (t) = I0 + g(t) (2)

R(t) = R0 + h(t) (3)
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Fig. 4 Data-driven prognostics
vs model-based prognostics Data-driven prognostics

• Advantages
– Simplicity of implementation
– Low cost

• Drawbacks
– Need of  experimental data that 

represent the degradation phenomena
– Variability of test results even for a 

same type of component under same 
operating conditions

– Less precision
– Difficult to take into account the 

variables operating conditions
– Component-oriented approach rather 

than system-oriented approach
– Difficult to define the failure thresholds

Model-based prognostics
• Advantages

– High precision
– Deterministic approach 
– System-oriented approach: propagation 

of the failure in the whole system
– The dynamic of the states can be 

estimated and predicted at each time
– The failure thresholds can be defined 

according to the system’s performance 
(stability, precision, …)

– Possibility to simulate several 
degradations (drifts on the parameters) 

• Drawbacks
– Need of degradation model
– High cost of implementation
– Difficult to apply on complexes 

systems

C0, I0, and R0 are the nominal values of the BG elements C,
I , and R, respectively, and f (t), g(t), and h(t) are the time
variations of these elements. For example, a degradation in
the stator of an electrical machine can be interpreted as a
continuous modification of the electrical resistance of the
stator winding. Similarly, a degradation of battery can be
explained by a modification of its electrical capacitance.

A residual is a numerical evaluation of analytical redun-
dancy relation (ARR) obtained from an overdetermined
system of equations (the number of equations is greater
than the number of variables) [13, 14]. An ARR contains
only known variables (inputs, outputs, and parameters of the
system), and it is represented by the following expression:

ARR : �(K) = 0, (4)

where K is the set of known variables. An ARR can
represent mass balance, energy balance, etc.

A residual r(t) is a numerical evaluation of an ARR.

r(t) = �(K) (5)

Residuals are signals which are used to verify the coher-
ence between the nominal and the actual behavior of the

system. When the system operates correctly, the residuals’
values should be theoretically equal to zero; otherwise, the
residuals increase (or decrease) as the system leaves its
nominal behavior. Figure 6 shows the principle of a residual
signal.

In this contribution, the ARRs and the corresponding
residuals are obtained from the BG model by applying
the following procedure (more details can be found in
[13, 14]):

1. Build the bond graph model in preferred integral causal-
ity of the mechatronic system.

2. Put the bond graph model in preferred derivative causal-
ity (with inversion of the sensors’ causality if neces-
sary).

3. Write the constitutive relation for each junction of the
bond graph model in preferred derivative causality.

4. Eliminate the unknown variables from each constitutive
relation by covering the causal paths on the bond graph
model.

Let α1, α2, . . . , αn be the set of physical parameters of the
system which are involved in its dynamic model and in

Fig. 5 Overview of the
proposed prognostic method
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Fig. 6 Principle of residuals

the corresponding residuals. The residual equation given in
Eq. 5 can then be rewritten as follows:

r(t) = �(α1, α2, α3, . . . , αn) (6)

Then, the evolution of the degradation can be determined
by inverting Eq. 6. For example, in the case where the
degradation corresponds to the variation of the parame-
ter α1, its evolution can be calculated by the following
equation:

α1 = �−1 (r (t) , α2, α3, . . . , αn) (7)

The second phase of the proposed method concerns the
exploitation of the models and knowledge obtained in the
first phase to assess the health state of the system and cal-
culate its RUL. During this phase, the output of the nominal
behavior of the system is continuously compared to the mea-
surements provided by the sensors to detect whether the
fault starts to occur or not. If a fault initiation is detected,
the process of health assessment and RUL calculation is
launched. The detection of a fault initiation is done by
continuously evaluating the residuals and by analyzing the
corresponding binary fault signature matrix formed by the
residuals.

The global model, composed by the nominal model, the
degradation model, and the result of the fault detection, is
used to assess the health state of the mechatronic system,
predict its future one, and calculate its RUL. The RUL is
calculated according to a defined performance (which can
be related to the precision of the system, its stability, etc.)
and by using Eq. 8, which is illustrated in Fig. 7.

RUL(t) = tf − t0 (8)

Note that during the exploitation of the mechatronic sys-
tem, several faults can occur. In the case where the faults
occur a the same time, the RUL of the system can be cal-
culated from the individual RULs of the components which
are failing. The RUL corresponds then to the shortest RUL
among the individual RULs.
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Fig. 7 RUL calculation according to a given performance

4 Case study and simulation results

4.1 Description of the mechatronic system

The mechatronic system considered for the application of
the prognostic method described above is shown in Fig. 8.

The main purpose of this system is to position horizon-
tally a load which is situated at the right side of the scheme
[8]. The system is composed of a voltage source, which
can be a battery, a DC motor providing a rotational move-
ment, and a screw transforming this latter movement to a
translational one in order to position the load horizontally.

4.2 Behavior model

The BG model of the system is built by taking into account
the following hypotheses:

– The voltage source is constant.
– The electrical part (stator winding) of the DC motor

is composed of a resistance and an inductance. Its
mechanical part is represented by an inertia and a
mechanical friction.

– The translation velocity v1 is proportional to the rota-
tion velocity ω: v1 = S · ω.

– The part linking the screw to the mass is not com-
pletely rigid and presents some elasticity represented by
a stiffness k.

– The load has a mass m and is in friction with the
support.

The BG model in integral causality of the mechatronic
system presented in Fig. 8 is given in Fig. 9.

The dynamic model of the mechatronic system can be
obtained from the BG model in integral causality by follow-
ing the steps given below:

– Define the inputs, the outputs, and the state space
variables.
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Fig. 8 Scheme of the
mechatronic system

Voltage 
source DC motor Load  E t

1v
v

– Write the BG equations (junction equations, TF and GY
equations, and constitutive elements’ equations). These
equations must be written by taking into account the
causality of the model.

– Combine the above equations to get the differential
form of the state space variables and the output vari-
ables as functions of state space and input variables.

The equations derived from the junctions “0” and “1,” the
transformer “TF,” and the gyrator “GY” of the bond graph
model are given below:{

e2 = e1 − e3 − e4 − e5

f1 = f3 = f4 = f5 = f2
;
{

e5 = ke · f6

e6 = ke · f5
;

{
e7 = e6 − e8 − e9

f6 = f8 = f9 = f7
;
{

e9 = S · e10

f10 = S · f9
;

{
e10 = e12 = e11

f11 = f10 − f12
;
{

e15 = e12 − e13 − e14

f12 = f13 = f14 = f15
(9)

The constitutive equations of the bond graph elements in
Fig. 9 are given in Eq. 10.

f2 = 1

L1
· ∫ e2 · dt; e4 = R1 · f4; f7 = 1

J1
· ∫ e7 · dt; e8 = b1 · f8

e11 = k1 · ∫ f11 · dt; e14 = b2 · f14; f15 = 1

m
· ∫ e15 · dt

(10)

From Eqs. 9 and 10, the dynamic model of the mechatronic
system can be obtained in the form of state space (Eq. 12).
In this equation, the dimension of the state vector x is equal
to 4.

x = (p2 p7 q11 p15)
T ⇒ ẋ = (ṗ2 ṗ7 q̇11 ṗ15)

T (11)

The variable p2 stands for the electrical flux of the induc-
tance L1, p7 is the momentum of the inertia J1, q11 is the
displacement of the part linking the screw to the mass, and
p15 is the momentum of the mass m. The variable y stands

for the output of the mechatronic system and corresponds to
the velocity of the mass m.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1

L1
− ke

J1
0 0

ke

L1
−b1

J1
−S · k1 0

0
S

J1
0 − 1

m

0 0 k1 −b2

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

· x +

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠× E(t)

y = (
0 0 0 1

m

) · x
(12)

In the following part of the section, MATLAB® and
Simulink® software tools are used to code and simulate
the state space equations including the degradation models
and to calculate the remaining useful life of the mecha-
tronic system. The time response of the system to a step
input is shown in Fig. 10. From this figure, we can see that
the system is stable and its final value corresponding to the
mass velocity (without any degradation taken into account)
is equal to 0.08 m/s. The stability of the system can be eas-
ily verified by calculating the eigenvalues of the state matrix
given in Eq. 12. By considering the numerical values of the
parameters given in Table 1, the eigenvalues of the system
are equal to −275.74, −033.18+46.99i, −033.18−46.99i,
and −12.71.

In the following study, the performance measure accord-
ing to which the prognostics is done can be the final value
of the response, the stability of the system, the precision,
etc. This performance will determine the failure threshold
and thus the estimation of the RUL of the system. For exam-
ple, if the stability is considered, the estimation of the RUL
will correspond to the time difference between the current
time and the limit time for which the system becomes insta-
ble. However, in the case where the stability holds despite

Fig. 9 BG model of the
mechatronic system
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Fig. 10 Step response of the mechatronic system

the degradation, another performance measure will be con-
sidered (for example, an acceptable value of the system’s
response).

4.3 Generation of the residuals

It is necessary to identify the system’s components which
are subject to degradations and define their degradation
models before generating the residuals. In this application,
the degradation phenomena which can be taken into account
are the drift in the resistance of the DC motor’s winding, the
magnetic deterioration of the DC motor’s permanent mag-
net, and the bending of the rotating shaft. The degradation
of the electrical resistance can be caused by the variation
of the resistivity of the winding due to temperature change
inside the DC motor. The magnetic degradation concerns
the diminution of the magnetic field generated by the per-
manent magnet of the DC motor. Finally, the bending of the

shaft can be induced by overloading the DC motor and by
external perturbations.

The ARRs and the corresponding residuals of the mecha-
tronic system shown in Fig. 8 are obtained by using the
steps presented in Section 3. By applying these steps, the
bond graph model in derivative causality corresponding to
the bond graph model given in Fig. 9 is shown in Fig. 11.

Two ARRs can be derived from the bond graph model
in derivative causality (one ARR for each sensor). The first
ARR is obtained from the junction equation “1” connected
to the flow detector Df : i(t).

e3 = e1 − e2 − e4 − e5 ⇔ e1 − e2 − e4 − e5 = 0 (13)

By replacing the unknown variables e1, e2, e4, and e5 by
known variables, the following first ARR can be derived:

ARR1 : E(t) − L1 · di(t)

dt
− R1 · i(t) − ke

S

×
(

v (t) + b2

k1
· dv(t)

dt
+ m

k1

d2v(t)

dt2

)
= 0 (14)

The second ARR is obtained from the junction equation “1”
connected to the flow detector Df : v(t).

e13 = e12 − e14 − e15 ⇔ e12 − e14 − e15 = 0 (15)

By using the same substitutions than for the ARR1, the
second ARR is given below:

ARR2 : ke · i(t) − b1

ke

·
(

E (t) − L1 · di(t)

dt
− R1 · i(t)

)

−J1

ke

· d

dt

(
E (t) − L1 · di(t)

dt
− R1 · i(t)

)

−b2 · S · v(t) − m · S · dv(t)

dt
= 0 (16)

The corresponding residuals can be obtained by numer-
ically evaluating the ARRs given in Eqs. 14 and 16.

Table 1 Values of the parameters used for simulation

Symbol Description Numerical value

E(t) Voltage source 10 V

ke Torque coefficient of the DC motor 0.47 N m/A

S Coefficient linking the rotation and translation velocities 0.01 m

R1 Electrical resistance of the DC motor 0.61 �

L1 Inductance of the DC motor 0.0019 H

J1 Inertia of the rotation part 0.01 N m s2

b1 Friction coefficient of the mechanical part of the DC motor 0.3 N s/m

k1 Stiffness of the linking part between the screw and the mass 3.33 × 10−6 N/m

m Mass 800 kg

b2 Friction coefficient of the mass m 3,000 N s/m

α Predefined parameter related to the degradation 0.01
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Fig. 11 BG model in derivative
causality of the mechatronic
system
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The two obtained residuals are given by the following
expressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(t) = E(t) − L1 · di(t)

dt
− R1 · i(t) − ke

S

×
(

v (t) + b2

k1
· dv(t)

dt
+ m

k1

d2v(t)

dt2

)

r2(t) = ke · i(t) − b1

ke

·
(

E (t) − L1 · di(t)

dt
− R1 · i(t)

)

−J1

ke
· d

dt

(
E (t) − L1 · di(t)

dt
− R1 · i(t)

)

−b2 · S · v(t) − m · S · dv(t)

dt

(17)

The advantage of these residuals is that they can be used for
fault detection, fault diagnostics, and fault prognostics. In
the case of fault detection and diagnostics, the residuals are
used as balance equations and they do not need the degra-
dation model (which corresponds to the deviation of the
winding’s resistance in this case study). Indeed, any change
in one or more parameters of the mechatronic system will
lead to a variation of the residuals in which the parameters
are involved. The relationships between the parameters of
the mechatronic system and the residuals can be expressed
by a fault signature matrix (more details about the construc-
tion of this matrix can be found in [13, 14, 16]). This matrix
is a binary one, with each cell i of the matrix containing
a value equal to “1” if the parameters of a component is
present in the residual ri and a value equal to “0” otherwise.
The “1” value means that the variation of the parameters of a
component will induce a variation of the residuals in which
these parameters are present. The analysis of this matrix
allows to clearly determine which component (or group of
components) is faulty.

In the case of fault prognostics, the integration of the
degradation should be taken into account in the global
model of the system to predict its RUL. In this contribution,
the residuals are used to detect the initiation of the degra-
dation on the mechatronic system. For example, in the case
of a degradation on the electrical resistance of the motor’s
winding, the values of both residuals r1 and r2 will change.
This is because the parameter R1 related to the electrical
resistance is present in the two residuals. The degradation

model of the resistance can then be obtained by inverting the
residuals’ equations. By using the residual r1, the variation
of the resistance can be expressed by the following equation:

R1(t) = 1

i(t)
·
[
E(t) − L1 · di(t)

dt
− ke

S

×
(

v (t) + b2

k1
· dv(t)

dt
+ m

k1

d2v(t)

dt2

)
− r1(t)

]

(18)

In practice, the degradation models of the system’s com-
ponents can be obtained offline by realizing accelerated
life experiments. Then, the derived models are integrated to
the behavior model of the system, and the whole model is
exploited to assess the system’s health state and predict its
RUL. The trend of the degradation extracted from Eq. 18 is
shown in Fig. 12.

From this figure, one can observe a linear degradation,
which can be expressed by the following formula:

R(t) = R1 · (1 + α · t) (19)

where R1 is the nominal value of the resistance (absence of
degradation). Indeed, the electrical resistance of the winding
can be expressed by the following equation:

R = ρ · L

S1
(20)
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Fig. 12 The linear trend of the degradation
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Fig. 13 A nonlinear degradation model

where ρ is the resistivity of the winding, L is its length,
and S1 is its cross section. The degradation of the resistance
R1 is due mainly to the degradation of its resistivity ρ (the
variation of the length L is compensated by the variation of
the cross section S1). The variation of the resistivity can be
expressed by the following equation:

ρ(t) = ρ0 · (1 + α · t) (21)

where ρ0 is the nominal value of the resistivity. Thus,
R(t) = R1 · (1 + α · t), where R1 = ρ0 · L

S1
.

In addition to the linear model of the resistance degrada-
tion given in Eq. 19, a nonlinear degradation model, with
R(t) = R1.e0.1·t , is simulated (Fig. 13). The results of the
simulations related to linear and nonlinear degradations are
given in the following subsection.

4.4 RUL estimation

In the absence of failures, the two residuals generated previ-
ously should have mean values close to zero. In this case, the

residuals are conservative (the algebraic sum of the applied
forces on the mechatronic system is equal to zero). The
Fig. 14 shows the time evolution of the residuals.

However, in the presence of a degradation in the system,
represented in this application by a drift in the electrical
resistance of the motor’s winding, the residuals affected
by this drift will respond and leave their nominal values
(which were initially close to zero) to move towards other
values depending on the magnitude and the form (or trend)
of the degradation. The variations of the two residuals due
to the motor’s winding electrical resistance are shown in
Fig. 15 for a linear degradation and Fig. 16 for a nonlinear
degradation.

Also, the change in the system’s dynamic can be
observed through its time response (Fig. 17).

The remaining useful life of the mechatronic system
can then be calculated according to defined performance
criteria (related to the system’s precision, time response, sta-
bility, etc.). The performance criteria chosen for the RUL
calculation can be prioritized: one can imagine that the sta-
bility of the system should be more important than its time
response.

In this application, the system remains stable despite the
degradation (this can be verified by calculating its eigenval-
ues for different values of the resistance R1). For this reason,
the criterion taken into account to calculate the RUL is the
final value of the system which can be obtained from its
transfer function. This function, called H(p), can be derived
from the state space model given in Eq. 12:

H(p) = Y(p)

E(p)
= C · (p · I − A)−1 · B + D (22)

where E is the input of the system, Y is its output (expressed
in the Laplace domain), p is the Laplace variable, and A,
B , C, and D are the matrices of the state space model. The
steady state of the system for a step input E(t) can then be

Fig. 14 Time response of the
residuals in the absence of
failures
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Fig. 15 Time response of the
residuals in the presence of a
linear degradation
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Fig. 16 Time response of the
residuals in the presence of a
nonlinear degradation
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Fig. 17 Time response of the
system under a linear
degradation (left figure) and
zoom on the first seconds
(right figure)
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Fig. 18 Fault threshold value equal to 0.02 m/s (a) and estimated RUL (b) for a linear degradation
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Fig. 19 Fault threshold value equal to 0.02 m/s (a) and estimated RUL (b) for a nonlinear degradation

calculated by using the final value theorem on the transfer
function H(p):

y(t) = lim
p→0

p · H(p) · E(p)

= lim
p→0

[
C · (p · I − A)−1 · B + D

]
= −C · A−1 · B

(23)

The result of Eq. 23 shows that the steady state of the system
depends on the physical parameters present in the matrices
A, B , and C (the matrix D being equal to zero). Initially and
in the absence of the degradation, the steady state value is
equal to 0.08 m/s. However, in the presence of the degrada-
tion, the final value changes and decreases to reach a value
which is less than 0.01 m/s. If we set a limit under which the
final value is critical (corresponding to failure threshold),

the RUL can then be calculated according to the formula
given in Eq. 8. Figures 18 and 19 show the estimated RUL
for both linear and nonlinear degradation models and for a
steady state threshold equal to 0.02 m/s.

5 Conclusion

A hybrid fault prognostic method applied to mechatronic
systems is proposed in this paper. The method is a system-
oriented approach, which can be applied on a wide range
of multi-physical systems. It relies on two main phases.
The first phase concerns the construction of the system’s
behavior and degradation models and also the definition of
the thresholds needed in the calculation of the RUL. The
second phase deals with the assessment of the system’s



834 Int J Adv Manuf Technol (2013) 69:823–834

health state, the prediction of its future one, and the esti-
mation of its RUL. The degradation models are obtained by
using the residuals, and the whole behavior model (includ-
ing the degradations) is used to do simulations, predictions,
and RUL calculation. The RUL is calculated according to
a final value of the system considered as its acceptable
performance.

The advantage of the method is its deterministic aspect,
as the dynamic model is obtained through physical model-
ing leading to precise RUL. Furthermore, different degra-
dation models (linear and nonlinear) are simulated. The
method is applied on a mechatronic system, and simu-
lation results are obtained. However, the implementation
of the proposed method on data acquired from an exper-
imental platform would allow verifying and validating its
effectiveness.
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