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Abstract Microscopic vision system has been employed
to measure the surface roughness of micro-heterogeneous
texture in deep hole, by virtue of frequency domain fea-
tures of microscopic image and back-propagation artificial
neural network optimized by genetic algorithm. However,
the measurement accuracy needs to be improved for engi-
neering application. In this paper, we propose an improved
method based on microscopic vision to detect the surface
roughness of R-surface in the valve. Firstly, the measure-
ment system for the roughness of R-surface in deep hole
is described. Thereafter, the surface topography images
of R-surface are analyzed by the gray-level co-occurrence
matrix (GLCM) method, and several features of micro-
scopic image, which are nearly monotonic with the surface
roughness, are extracted to fabricate the prediction model
of the roughness of R-surface accurately. Moreover, a sup-
port vector machine (SVM) model is presented to describe
the relationship of GLCM features and the actual surface
roughness. Finally, experiments on measuring the surface
roughness are conducted, and the experimental results indi-
cate that the GLCM-SVM model exhibits higher accuracy
and generalization ability for evaluating the microcosmic
surface roughness of micro-heterogeneous texture in deep
hole.
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1 Introduction

Surface roughness is one of the important parameters for
evaluating the surface quality of the part, which has a direct
impact on the serving performance of the part, especially for
the sealing surface in deep hole of valve. In order to meet
the requirements of the sealing performance under low-
temperature circumstance, generally, the sealing structure in
deep hole of valve is designed as the micro-heterogeneous
structure. However, due to the measurement space con-
straint, the smaller feature size, and the higher machining
accuracy, the roughness of the R-surface in deep hole of
valve is difficult to detect. Therefore, a roughness mea-
surement method of the R-surface in valve is urgent for
assessing the surface quality of the micro-heterogeneous
structure in deep-hole parts.

In recent years, the computer vision-based methods,
which allow the roughness to be measured rapidly with
high accuracy and flexibility, have attracted a great deal of
attention from more researchers [1, 2]. The vision measure-
ments of surface roughness are mainly fabricated by the
extraction method of image features which can represent
the surface roughness and the surface roughness estima-
tion model. Generally, the texture analysis is considered as
a basic and effective method in extracting the image fea-
tures. The texture analysis algorithms are mainly composed
of three categories: statistical method, structural method,
and frequency domain-based method [3]. Tsai extracted the
image features on the basis of frequency domain method to
measure the surface roughness [4]. Lee proposed a method
to assess surface roughness using statistical features of sur-
face image [5]. Their results demonstrated the validity of the
proposed approach to achieve accurate Ra values, although
it was not stated how much acquired Ra values vary
with light or material change. Hu developed a method to
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evaluate 3D surface roughness based on statistical method,
and the experimental data showed that mean of his-
togram, variance of histogram, and root-mean-square devi-
ation of surface are increasing along with increasing Ra.
However, they cannot generalize the exact correlation
between the steeper parameter and Ra, which need fur-
ther research [6]. In our past work, we selected Fourier
transform (FT) to characterize surface roughness in the
frequency domain [7]. However, FT methods usually per-
form well on textures showing strong periodicity. As the
periodicity of textures weakens, their performance will
deteriorate.

Gray-level co-occurrence matrix (GLCM), one of the
most important texture analysis methods, has been widely
used for image procedure in many applications. By virtue of
an accurate GLCM technique, Dutta successfully detected
the tool condition from the turned surface images [8]. Ale-
gre extracted relevant information of the image by means of
GLCM [9]. Gadelmawla selected four parameters obtained
from GLCM as inputs to characterize surface roughness,
and it was found that the proposed parameters had a
good correlation with the average roughness [10]. Xian
extracted five texture features: energy, contrast, correla-
tion, entropy, and homogeneity by means of GLCM from
the liver segmented images to classify liver disease [11].
The results demonstrated that GLCM texture technique
was feasible and excellent in ultrasonography classifica-
tion of liver tumor. Therefore, GLCM has exhibited the
potential of recognizing the image features for roughness
measurement.

Another problem is to establish an estimation model
for surface roughness. The differential evolution algorithm-
based artificial neural network was proposed to predict
surface roughness in turning operations [12]. In our past
work, the conventional neural network based-method has
such disadvantages as over fitting on training data, lead-
ing to poor generalization ability and too long training
time. Thus, in this paper, we employ a highly effective
system modeling method, support vector machine (SVM).
Based on statistical theory and risk minimization princi-
ple, SVM has proved to be able to give excellent per-
formances in various applications [13, 14] and show a
higher accuracy than neural network through experiments
of performance comparison [15, 16]. Lela employed regres-
sion analysis, Bayesian neural network, and SVM as three
methodologies to examine the influence of three cutting
parameters on surface roughness, and results showed that
all three methods were applicable in measuring surface
roughness [17]. Ekici built SVM surface roughness pre-
diction model for AISI 304 austenitic stainless steel in
CNC turning operation based on three different SVM tools

and artificial neural network (ANN). The experimental
results showed that all results of SVM models were bet-
ter than that of ANN with high correlations between the
predicted values and experimentally measured ones [18].

In this paper, consequently, an improved roughness mea-
surement method for R-surface in the valve is proposed,
by employing GLCM and SVM algorithm. The measure-
ment system is introduced briefly in Section 2. Thereafter,
several features of microscopic image from GLCM are
extracted to prepare the input data for the prediction model
of the roughness of R-surface, as given in Section 3. Then,
in Section 4, a SVM model is presented to describe the
relationship of GLCM features and the actual surface rough-
ness values. In Section 5, experimental results for the
GLCM-SVM model, the back-propagation (BP) model, and
the genetic algorithm–back-propagation (GA-BP) model
are compared and analyzed. Conclusions are given in
Section 6.

2 Measurement method and system

The improved surface roughness measurement method
based on GLCM and SVM is proposed for micro-
heterogeneous texture in deep hole, such as R-surface as
shown in Fig. 1. Firstly, the microscopic images of R-
surface of valve samples are obtained by using a large
depth of field of a long working distance microscope. More-
over, GLCM method is employed to analyze and extract
these image features, which show approximately monotonic
relationship with surface roughness. Then, it is noticeable
that enough actual roughness values of R-surface must be
obtained to fabricate the database, which can represent the
relationship between the features of R-surface and the actual
surface roughness. Therefore, we have to employ some
sample valves and cut away the sections of sample valve
over R-surface, in order to get the actual roughness valves
of R-surface by the surface profiler. Then, we establish a

Fig. 1 The sealing R-surface of valves
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Fig. 2 The microscopic vision system for capturing the images of R-
surface

SVM estimation model to predict other unknown surface
roughness values of R-surface.

The roughness measurement system for R-surface in
deep hole, as shown in Fig. 2, contains the vision sys-
tem for capturing the microscopic images of R-surface
and the calibration system for acquiring the actual rough-
ness of R-surface. The microscopic image of R-surface,
with 1,600 × 1,200 resolution, is captured by a digital
microscopic camera with the long working distance lenses
of 85 mm (VHX-600, Keyence). A ring light source is
arranged to uniformly illuminate the R-surface, and a halo-
gen lamp with a voltage of 12 V and a power of 100 W
is applied in the display , which is transmitted by optical
fiber to the digital microscopic camera. Moreover, in order
to investigate the surface roughness of different sections
of R-surface along the circumferential direction, we have
designed a clamp system with a digital luminometer, which
can quantify the light luminosity projected on the R-surface.

Fig. 3 The microscopic image of R-surface under the magnification
of ×300

Figure 3 shows a microscopic image of R-surface in deep-
hole valve under the magnification of ×300. It can be seen
from Fig. 3 that the microscopic image captured by the pro-
posed microscopic vision system is clear and suitable for
image processing.

In order to fabricate the relationship data of the image
features and the actual roughness of R-surface, the upper
sections of some sample valves are machined and cut away
at the position of 5 mm over the detected R-surface by
EDM, and the roughness of R-surface can be measured
by the 3D surface profiler (ZYGO NewView 5022, Fig. 4)
with a calibration clamp, as shown in Fig. 5. The maxi-
mum vertical resolution of this 3D surface profiler can reach
0.1 nm and can fully meet the calibration requirements of
R-surface.

Moreover, it is noticeable that the sampling length and
the evaluation length of R-surface roughness based on
traditional evaluation method of roughness cannot meet
the measurement requirements, due to the small area and
structure of R-surface. Therefore, according to ISO 25178
(Geometric Product Specifications) relating to the analysis
of 3D areal surface texture, arithmetical mean height Sa is
employed to evaluate the roughness of R-surface, which can
be expressed by

Sa = 1

A

∫

A

|z(x, y)| dxdy (1)

where A is the sampling area and z(x, y) is the deviation of
arbitrary point from the datum plane. In addition, we will
also employ the contour largest single-peak distance Smax

as the filtering parameter to filter out the form error and
waviness of R-surface [7].

Fig. 4 The calculation of Sa using the 3D surface profiler
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Fig. 5 The calibration system
(b) for acquiring the actual
roughness of R-surface and the
calibration clamp (a)

3 Extraction of microscopic image features

Any image can be viewed as a surface in 3D space, where
the gray levels of two pixels with a certain distance are
same or different. An appropriate method to find out the
joint statistical distribution between the two pixels will facil-
itate to analyze the image texture. GLCM is such a method
which describes the image texture by detecting the spatial
correlation of the image and which reflects the integrated
information of image gray on direction, adjacent interval,
and amplitude.

The GLCM is defined as the joint probability distribution
of two pixels with a distance on the image in mathematics.
Detailed description is as follows: two different points in
the image, (x, y) and (x + a, y + b), have the gray level of
(i, j). When the values of a and b are fixed, there will be
various values (i, j) for the points (x, y) in the whole image.
If the gray scale of the image is G , then the combination
of i and j will be G2. In the whole image, the occurrence
number P(i, j |d, θ) for each value (i, j) is calculated; then,
the GLCM P(i, j |d, θ) can be written by

P(i, j/d, θ) = # {(x, y), (x + a, y + b)|f (x, y)

= i, f (x + a, y + b) = j} (2)

where i, j = 0, 1, . . . , G − 1, x, y are the pixel coordinates
in the image, d measured in number of pixels is the building
step, θ is the building direction, whose value is usually 0◦,
45◦, 90◦, and 135◦ as shown in Fig. 6.

Supposed that the gray scale G of the image is 8, the res-
olution of the image is 7×5, building direction and building
step are 0◦ and 1, respectively. Then, the occurrence number
P (4, 3|1, 0◦) equals to 3, which is calculated as shown in
Fig. 7. Meanwhile, according to the definition of the build-
ing direction shown in Fig. 6, GLCM is a symmetric matrix.

3.1 Determination of constructing parameters

It can be seen from the definition of GLCM that the gray
scale of the image, building direction, and building step are

the key parameters which affect the size of GLCM. The
GLCM features will be different under different combina-
tions of different values of these three parameters, so is
their description to the image texture. Consequently, appro-
priate constructing parameters should be selected before
employing GLCM to analyze the microscopic image of
R-surface.

1. Determination of gray scale
The larger the G, the clearer the image will be and

the more real the texture information will be. How-
ever, with the larger G, the size of GLCM will become
larger, which induces an increase in the amount of
computation. However, if the gray scale is com-
pressed within a narrow range, the detail information
of the image will be lost and feature extraction of the

Fig. 6 The four building directions of GLCM
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Fig. 7 The calculation process
of GLCM

microscopic image will be difficult. The main func-
tion of R-surface is to ensure the sealing performance
of the valve, so the clearer image and the more textural
information are important for estimating accurately
the surface roughness and judging the sealing per-
formance. Therefore, the gray scale of microscopic
image of R-surface, with the G value of 256, will not
be compressed in this paper.

2. Determination of building direction
The building direction of GLCM of microscopic

image is another important variable. For example, as
shown in Table 1, feature parameters of GLCM are
listed with the building direction of 0◦, 45◦, 90◦, and
135◦ and the mean values in the four directions, the
gray scale of 256, the building step d of 2, and the
actual roughness value of 0.636 µm for a microscopic
image of R-surface.

As shown in Table 1, the feature parameters
of GLCM in different building directions are quite
different. Therefore, in order to prevent from los-
ing the image textural information in any direc-
tion, the average value of feature parameters in the
four directions is employed to calculate the GLCM
features.

3. Determination of building step
Figures 8 and 9 show the relationship curves

between the GLCM features and the building step
with different actual surface roughness values, with
the gray scale of 256 and the average value of

feature parameters in the four directions. Due to the
limitation of the paper length, only the curves of corre-
lation and angle of second-order moment are listed in
Figs. 8 and 9, respectively. As shown in Figs. 8 and 9,
the GLCM feature parameters can be employed to dis-
tinguish the different surface roughness of R-surface,
when the building step d is selected by 2 or 3. How-
ever, some pixels cannot participate into calculating
GLCM with a larger building step, which induces the
loss of some image details. Consequently, the building
step d is selected by 2.

3.2 Feature extraction of microscopic image of R-surface

Generally, the secondary statistics from the obtained GLCM
is employed to describe the image texture more intuitively
in the practical application. Moreover, before feature extrac-
tion of R-surface image, the normalized matrix P̂ (i, j |d, θ)

(abbreviated as P̂ (i, j)) of GLCM P(i, j |d, θ) is necessary
for facilitating to analyze the features of microscopic image
of R-surface:

P̂ (i, j) = P̂ (i, j |d, θ) = P(i, j |d, θ)/R (3)

where R is the sum of elements in the gray-level co-
occurrence matrix.

In this paper, we select six features from the normalized
matrix P̂ (i, j |d, θ), which show approximately monotonic
relationship with respect to the actual surface roughness

Table 1 Features in different directions

Direction Correlation Differential entropy Angle of second-order moment Inverse gap Maximum probability Sum of variance

0◦ 0.993061 0.788566 0.001639 0.494802 0.004976 2,378.125

45◦ 0.909997 1.330037 0.000399 0.223766 0.001347 2,291.17

90◦ 0.916216 1.314826 0.000413 0.229236 0.001399 2,298.628

135◦ 0.912489 1.325735 0.000402 0.225341 0.001429 2,294.171

Mean 0.932941 1.189791 0.000713 0.293287 0.002288 2,315.523
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Fig. 8 Correlation changes under different building step with different
Sa values

values of R-surface. The quantitative definitions of these
features are given below:

1. Correlation

F1 =

G−1∑
i=0

G−1∑
j=0

(i − μx)(j − μy)P̂ (i, j)

σxσy

(4)

where ux =
G−1∑
i=0

i
G−1∑
j=0

P̂ (i, j), uy =
G−1∑
j=0

j
G−1∑
i=0

P̂ (i, j), σx =
G−1∑
i=0

(i − ux)
2

G−1∑
j=0

P̂ (i, j), σy =
G−1∑
j=0

(
j − uy

)2 G−1∑
i=0

P̂ (i, j).

Fig. 9 Angle of second-order moment changes under different build-
ing step with different Sa values

Correlation is used to measure the similar degree of
the GLCM element in a row or column. If the image
has a stronger texture in the θ direction and a weaker
one in the other directions, then the value of F3 in the
θ direction will be significantly bigger than the ones
in the other directions. As shown in Fig. 3, the image
has a stronger texture in the direction of 0◦. Thus,
correlation in the direction of 0◦ is the biggest.

2. Differential entropy

F2 = −
G−1∑
k=0

G−1∑
i=0

G−1∑
j=0

P̂ (i, j) × log

⎡
⎣G−1∑

i=0

G−1∑
j=0

P̂ (i, j)

⎤
⎦

(5)
where |i − j | = k. Differential entropy represents the
information of the image. It can measure the random-
ness of the image and distinguish the complexity of
the texture.

3. Angle of second-order moment

F3 =
G−1∑
i=0

G−1∑
j=0

P̂ 2(i, j) (6)

Angle of second-order moment is also called
energy, which is the square of each element in the
GLCM, and reflects the homogeneous degree of the
gray-level distribution and thickness of the image
texture.

4. Inverse gap

F4 =
G−1∑
i=0

G−1∑
j=0

P̂ (i, j)/
[
1 + (i − j)2

]
(7)

Inverse gap is used to measure the local changes
among the image textures. It reflects the regular extent
of texture. The more regular the texture, the bigger F4

will be.
5. Maximum probability

F5 = max
i,j

[
P̂ (i, j)

]
(8)

6. Sum of variance

F6 =
2G−2∑
k=0

(k − SA)2PX(k) (9)

where SA =
2G−2∑
k=0

k
G−1∑
i=0

G−1∑
j=0

P̂ (i, j) and PX(k) is a

row vector with the dimension of 2G − 1. The first
and second elements of the row are equal to zero and

the other elements are equal to
2G−2∑
k=0

P̂ (i, j), where

|i + j | = k. Variance reflects the cycle of the tex-
ture. The bigger the F6 value, the bigger is the cycle
of texture.
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Consequently, these selected six features cover all the
aspects to describe the image texture and can represent the
overall characteristics of the R-surface microscopic images.

4 Construction of roughness estimation model

4.1 The theory of SVM regression algorithm

The SVM proposed by Vapnik is known as an excel-
lent tool for the classification and regression problems
of good generalization ability, which is suitable to solve
nonlinear regression estimation problems [19]. The core
thought of SVM is to nonlinearly map the input data x

to a higher dimensional feature space to yield and solve
a linear regression problem in the feature space. Given a
training sample set G = {xi, yi}ki , where xi denotes the
input vector, yi denotes the actual value, and k denotes the
total number, the SVM regression function is formulated as
follows:

f (x) = ω · ϕ(x) + b (10)

where ω is the weight vector, b is the scalar threshold,
and ϕ(x) is called the feature nonlinearly mapped from the
input space x. Moreover, all training sample data can be
error-free-fitted by the nonlinear function f (x) under the ε

precision :
{

yi − ω · ϕ(xi) − b ≤ ε

ω · ϕ(xi) + b − yi ≤ ε
i = 1, 2, . . . , k (11)

After the positive slack variables ξi and ξ∗
i , representing

the distance from the actual values to the correspond-
ing boundary values of ε insensitive, are introduced, the
regression estimation problem can be transformed into min-
imization function:

MinR
(
ω,ξ∗

i ,ξi

)=1

2
‖ω‖2+C

k∑
i=1

(
ξi + ξ∗

i

)
(12)

subject to:
⎧⎨
⎩

yi − ω · ϕ(xi) − b ≤ ε+ξi

ω · ϕ(xi)+b − yi ≤ ε+ξ∗
i

ξi ,ξ
∗
i ≥ 0

i = 1, 2, . . . , k (13)

where the first part ‖ω‖2/2 measures the smoothness of the
function applied to promote the generalization ability and

the second part C
k∑

i=1

(
ξi + ξ∗

i

)
is called the penalty fac-

tor and is a positive number. The error can be neglected
when the difference between f (xi) and yi is less than ε.
As the minimization of function (12) is a convex quadratic
optimization problem, the local optimal solution is certainly

the global optimal one, which can be solved by the intro-
duction of Lagrangian function:

L(ω,b,ξ,ξ∗,α,α∗,γ ,γ ∗)

= 1

2
‖ω‖2 + C

k∑
i=1

(
ξ + ξ∗)

−
k∑

i=1

αi (ξi + ε − yi + ω · ϕ(xi) + b)

−
k∑

i=1

αi
∗ (

ξ∗
i + ε + yi − ω · ϕ(xi) − b

)

−
k∑

i=1

(
ξiγi + ξ∗

i γi
∗) (14)

where αi , αi
∗, γ , and γ ∗ are Lagrange multiplier. The min-

imization of the Lagrangian function then can be converted
to the so-called dual problem:

MaxQ
(
α,α∗) = −1

2

k∑
i=1

k∑
j=1

(
αi −α∗

i

) (
αj − α∗

j

)
k(xi,xj )

−
k∑

i=1

(
αi + α∗

i

)
ε +

k∑
i=1

(
αi − α∗

i

)
yi

(15)

subject to
⎧⎪⎪⎨
⎪⎪⎩

k∑
i=1

(
αi − α∗

i

) = 0

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

, i = 1, 2, . . . , (16)

where k(xi, xj ) = ϕ(xi) · ϕ(xj ) = ϕ(xi)
T ϕ(xj ) is called

the kernel function, and the value of the kernel equals the
inner product of two vectors xi and xj in the feature space
ϕ(xi) and ϕ(xj ) . The kernel function is intended to handle
any dimension feature space without the need to calculate
ϕ(x) accurately. Consequently, the network output f (x)

then equals to the explicit form:

f (x) =
k∑

i=1

(
αi − α∗

i

)
k(xi ,x ) + b . (17)

4.2 Parameter setting of the SVM model

In the SVM model, the main parameters are kennel func-
tion, penalty factor C, and sensitive coefficient ε. The first
thing to apply SVM is to choose the kennel function. It
is noticeable that any function that can satisfy Mercer’s
condition can be used as the kernel function. As the relation-
ships between the selected six parameters and the surface
roughness are strongly nonlinear, in this paper, RBF kernel
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function is selected as the kennel function, which generally
can bring a better estimation performance.

The sensitive coefficient ε determines the margin within
which the error is neglected. The smaller its value, the
higher the accuracy of learning is required and more support
vectors will be found by the algorithm. The regularization
coefficient C is the weight, which determines the balance
between the complexity of the network, characterized by the
weight vector ω and the error of approximation, measured
by the slack variables and the value of ε.

5 Experiment and analysis

5.1 SVM estimation model training

Firstly, in order to contrast the performance of the surface
roughness estimation model, the evaluation criteria of mean
absolute percentage error (MAPE), maximum relative error
(MRE), maximum absolute error (MAE), and root-mean-
square error (RMSE) are adopted:

MAPE = 1

N

N∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣ (18)

MRE = max

{∣∣∣∣Ai − Fi

Ai

∣∣∣∣
}

(19)

MAE = max {|Ai − Fi |} (20)

RMSE =
√√√√ 1

N

N∑
i=1

(Ai − Fi)
2 (21)

where Ai and Fi are the actual and predictive values,
respectively, and N is the number of detected samples.

Fig. 10 Estimation results of the BP model

The selected GLCM statistical features are extracted
from the obtained microscopic images. Besides, the actual
surface roughness values of the corresponding position of
R-surface in sample valves are detected by the 3D surface
profiler, as shown in Fig. 5. Then, the statistical features of
the microscopic images and their actual surface roughness
value fabricate together the database, so as to establish the
roughness estimation model based on the SVM algorithm.
A portion of GLCM features and actual roughness values of
R-surface in sample valves are listed in Table 2.

As shown in Table 2, the extracted image GLCM fea-
tures of R-surface in sample valves are not within the same
order of magnitude value. Then, normalization processing
is necessary before training, but it is removed after training.

It is noticeable that the more sample is used for fabri-
cating the database, the more accurate the prediction model
will be. The experimental data show that when the sam-
ple size is 101, MRE and MAPE are 12.96 and 4.71 %,
respectively, and when the sample size is 134, these two
parameters are 12.85 and 4.65 %, respectively. It can be seen

Table 2 Part of the training sample data

Index F1 F2 F3 F4 F5 F6 Sa/µm

1 0.967303 1.134019 0.001353 0.370379 0.009591 5,655.893 0.466

2 0.967668 1.157221 0.001038 0.342733 0.006703 5,603.668 0.493

3 0.96183 1.205407 0.000812 0.327822 0.003947 5,796.039 0.503

4 0.976033 1.154919 0.000729 0.333582 0.004883 6,465.93 0.525

5 0.963719 1.113795 0.001227 0.37771 0.006602 5,211.222 0.533

6 0.95422 1.20021 0.000759 0.331804 0.002843 6,896.375 0.548

7 0.975137 1.094622 0.000952 0.362857 0.006389 5,295.035 0.561

8 0.944366 1.212174 0.00058 0.290234 0.002497 2,820.967 0.573

9 0.96204 1.165633 0.000791 0.317963 0.002427 3,771.305 0.580

10 0.948574 1.091682 0.001097 0.340846 0.003802 2,024.794 0.585
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Fig. 11 Relative error for the BP model

from the results that when the number of samples reaches
more than 100, an increase in the number of samples has a
little effect on accuracy. Meanwhile, due to the restriction
of the number of parts, we only measure 134 pictures of 23
samples captured by the image acquisition system to create
predictive models.

Based on these microscopic images, when MRE and
MAPE, which illustrate the deviation between the actual
value and the estimated one, reach the minimum simultane-
ously, the penalty factor C and sensitive coefficient ε can
be confirmed. Based on the results of the experiment, the
optimal parameters are found to be C = 50 and ε = 0.07.
Consequently, the optimized SVM model is achieved.

5.2 Analysis of estimation results

In this paper, the proposed GLCM-SVM estimation model
is testified by another new 35 sets of experimental data.

Fig. 12 Estimation results of the GA-BP model

Fig. 13 Relative error for the GA-BP model

Besides, the estimation accuracy of GLCM-SVM model
is compared with the BP and GA-BP models. Based
on the results of our past work, for both the BP and
GA-BP models, the node number of the input layer,
hidden layer, and output layer is 6, 15, and 1, respec-
tively. Besides, for the GA-BP model, the population
size is 30, intercrossing rate is 0.7, and mutating rate
is 0.08.

Figures 10, 11, 12, 13, 14, and 15 show the compari-
son between the predictive values and the actual ones of
surface roughness and the relative error of the BP, GA-
BP, and SVM estimation models, respectively. As shown in
Figs. 10 and 11, the MAE of the BP model is 0.107 µm,
MRE is 16.83 %, and RMSE is 0.043 µm. Besides, as
shown in Figs. 12 and 13, the MAE of the GA-BP model is
0.093 µm, MRE is 14.68 %, and RMSE is 0.039 µm. More-
over, MAPE of the BP and GA-BP models reach 6.43 and
4.75 %, respectively.

Fig. 14 Estimation results of the SVM model
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Fig. 15 Relative error for the SVM model

For the GLCM-SVM estimation model, as shown in
Figs. 14 and 15, the MAE is 0.082µm, MRE is 12.85 %, and
RMSE is 0.033 µm. Moreover, MAPE of the GLCM-SVM
estimation model reaches 4.65 %, which is smaller than that
of both the BP and GA-BP models.

According to the experimental results and the estimation
values from Figs. 14 to 15, MAPE of estimation values of
the GLCM-SVM model is the smallest. There are only four
groups of data, which have a relative error of more than
10 %. Meanwhile, there are 30 groups of data, which have
a relative error of less than 8 %. Comparatively, as shown
in Figs. 10, 11, 12, and 13, in the BP and GA-BP models,
there are 12 groups and 8 groups of the estimation values,
which have a relative error of more than 8 %. Moreover,
the computation speeds for predicting the 35 sets of exper-
imental data using the three predicted models are all fast
enough. The computation time by means of BP and GA-
BP is almost the same at 0.006 s, and it takes 0.05 s to
predict the 35 sets of experimental data by using the SVM
model (computer: Intel Processor 3.10 GHz, RAM mem-
ory 1.88 G). Therefore, the analysis above indicates that
the proposed GLCM-SVM model has a higher estimation
accuracy, is robust, has fast computing speed, and can be
employed to access the surface roughness of R-surface in
deep-hole valve. The results of the comparison made with
the BP, GA-BP, and SVM models are illustrated in Table 3.

Table 3 The results of the comparison made with the BP, GA-BP, and
SVM models

MAPE (%) MRE (%) RMSE (µm) MAE (µm)

BP 6.43 16.83 0.043 0.107

GA-BP 4.75 14.68 0.039 0.093

SVM 4.65 12.85 0.033 0.082

6 Conclusions

In this paper, an improved method based on microscopic
vision to detect the surface roughness of R-surface in
the valve is proposed. A hybrid GLCM-SVM roughness
estimation model of R-surface is fabricated by employ-
ing GLCM and SVM algorithm. Moreover, the results
of the experimental tests show that the proposed rough-
ness estimation method based on the GLCM-SVM model
exhibits higher estimation accuracy and generalization abil-
ity, which indicates that it is practicable to evaluate the sur-
face roughness of micro-heterogeneous texture in deep-hole
parts.
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