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Abstract This paper presents a new heuristic for solving a
facility layout problem. The proposed heuristic works on the
non-greedy systematic pairwise exchange of two facilities,
that is 2-exchange neighbourhood search based on non-
greedy strategy. The proposed heuristic is applied on a large
number of test problems provided by different authors in the
quadratic assignment problem (QAP) library (Burkard,
Karisch, Rendl, J Glob Optim 10(1):391–403, 1997) with
problem size ranging from 12 to 256. Out of the 135 test
problems available in the QAP library, the proposed heuris-
tic reached optimal solutions for 64 test problems and
matched the best known available solution for the other 15
test problems. For the remaining 56 test problems, the
proposed approach reports highly encouraging solutions
for 44 test problems (within the 2 % of deviation from the
optimal/best known solutions), and for the remaining 12
problems, the proposed approach provides fair solution in
reasonable time. Comparison with other meta-heuristic ap-
proaches (Ro-TS, RE-TS, GEN and SA) shows the effec-
tiveness of the proposed heuristic.

Keywords Facility layout problem . Quadratic assignment
problem . Heuristic . Neighbourhood search

1 Introduction

Arrangement of facilities in both manufacturing and service
environments plays an important role in delivering products
and services in an efficient and effective manner. The facil-
ity layout problem (FLP) is of crucial importance to indus-
trial engineers and a well researched problem in academics.
FLP was first formulated as quadratic assignment problem
(QAP) by Koopmans and Beckman [30]. Later, Sahni and
Gonzalez [50] showed QAP is a NP-complete problem. To
achieve global optimum for QAP branch and bound, cutting
planes or combinations of these methods, like branch-and-
cut and dynamic programming, are used. However, results
by these exact algorithms are modest. Diponegoro and
Sarker [14] reported that instances of the QAP of sizes larger
than 20 cannot be solved optimally in a reasonable compu-
tational time. Therefore, the interest of researchers and prac-
titioners lies in the application of heuristics and meta-
heuristic approaches to solve QAP. Some of the well known
heuristic approaches applied in the past and available in
literature are CRAFT, HC-66, ALDEP, CORELAP,
SABLE, etc. But the performance of these heuristics is good
only for small- or moderate-sized problems. As the problem
size increases, the solution quality decreases. In addition to
applying heuristics, nowadays, meta-heuristic approaches
like simulated annealing (SA), Tabu Search (TS), ant colony
algorithm and genetic algorithm (GA) are also widely ap-
plied to solve FLP. But again, the computational time of
these meta-heuristic-based approach increases as the prob-
lem size increases. A good amount of work on FLP (single
and multiobjective) can be found in O’Brien and Abdel Barr
[45], Tompkins and Reed [60], Kusiak and Heragu [32],
Rosenblatt and Lee [49], Heragu [25], Heragu and Kusiak
[24], Meller and Gau [39, 40], Kochhar and Heragu [31],
Singh and Sharma [54], Singh and Singh [56, 57] and Matai
et al. [37]. Here, an attempt is made to propose a novel
heuristic approach for FLP modelled as QAP.
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The paper proposes a systematic pairwise exchange heu-
ristic based on non-greedy strategy for solving the FLP
having flow as a single objective. The literature relevant to
the various approaches for solving the FLP is reviewed in
Section 2. The mathematical formulation of FLP modelled
as QAP is given in Section 3. A non-greedy systematic
neighbourhood search heuristic is described in Section 4.
Procedural steps of the proposed heuristic are discussed in
Section 5. Section 6 presents performance of the proposed
heuristic followed by the conclusions and future research
directions in Section 7.

2 Literature review

Papers that deal with the research work related to the solu-
tion approaches in connection with FLP are reviewed here.
In literature, the solution techniques for solving FLP are
classified as exact algorithms, heuristics and meta-
heuristics. We briefly review the past work in the following
three subsections.

2.1 Exact approaches

There are three main exact methods used to find the global
optimal solution for QAP: dynamic programming, cutting
plane techniques, and branch and bound procedures.
Research has shown that the branch and bound is the most
successful among exact algorithms for solving QAP. The
first two branch and bound algorithms were developed by
Gilmore [19] and Lawler [34]. In addition to these two
algorithms, two other algorithms were developed by Land
[33] and Gavett and Plyter [18]. Kaku and Thompson [28]
proposed another branch and bound algorithm which per-
forms better than Lawler’s [34] algorithm, particularly for
problems of bigger size. Bazaraa and Sherali [3] devel-
oped a cutting plane algorithm based on Bender’s
partitioning scheme. Burkard and Bonninger [8] also de-
veloped a cutting plane method to solve QAP. Dynamic
programming is a technique used for QAP special cases
where the flow matrix is the adjacency matrix of a tree.
Christofides and Benavent [12] studied this case using a
MILP approach to the relaxed problem. All the exact
algorithms discussed in the literature have high memory
and computational requirements [9].

2.2 Approximate approaches

Kusiak and Heragu [32] concluded that all the exact algo-
rithms discussed in literature have the disadvantage of high
memory and computational requirements, and the largest
problem solved optimally is the problem with 15 facilities.
This led researchers to focus on heuristics for solving FLP,

which do not provide optimal solution but gives good qual-
ity solutions in reasonable computational time. Kusiak and
Heragu [32] classified approximate approaches (or heuristics)
for FLP as: construction algorithms, improvement algorithms,
hybrid algorithms and graph theoretic algorithms.

Construction algorithms In construction algorithms, facili-
ties are assigned to a site, one at a time, until the complete
layout is obtained. Some of the popular construction algo-
rithms available in literature are: HC66 proposed by Hillier
and Connors [27], ALDEP due to Seehof and Evans [52],
CORELAP given by Lee and Moore [35], RMA Comp I
[41], MAT [15], PLANET [13], LSP [62], linear placement
algorithm [42], FATE [5], INLAYT [45], SHAPE [21], and
QLAARP [2]. The simplicity of construction algorithm is
often associated with a poor quality of the resulting solu-
tions. But these construction algorithms can be used to
provide initial solutions for improvement algorithms.
Improvement algorithms can be meta-heuristic such as SA
and TS which require one feasible solution as starting solu-
tion for the execution of these algorithms.

Improvement algorithms In improvement algorithms, there
is always an initial solution, which is often randomly gen-
erated. Based on this initial solution, systematic exchanges
between facilities are made and the results are evaluated.
The exchange which produces the best solution is retained,
and the procedure continues until the solution cannot be
improved any further. Hence, the solution quality of im-
provement algorithms depends upon the initial layout eval-
uated. Armour and Buffa [1] developed Computerized
Relative Allocation of Facilities Technique (CRAFT) which
is believed to be the first computerized technique used for
the FLP. CRAFT begins by determining the cost of the
initial layout. It then evaluates all possible location ex-
changes between pairs of facilities which either are adjacent
to each other or are of the same area. The location exchange,
which results in the highest cost reduction, is made. This
procedure continues until there is no location exchange
which results in a lesser cost than that of the current layout.
CRAFT can handle only 40 facilities and does not perform
well when the facilities are of unequal areas [17, 51]. Some
more improvement algorithms for the FLP are: H63 [26],
H63-66 [27], COL [61], Sampling algorithms [43], FRAT
[29], COFAD [60], Revised Hillier algorithm [46], LOGIC
[59], MULTIPLE [6, 14], SABLE [38] and MSA [55]. It is
found that improvement algorithm greatly depends on the
initial layout provided and the systematic procedure of the
location exchange. The greedy nature of the pairwise ex-
change makes it susceptible to converge to a local optimum.
Therefore, the shortcomings of improvement algorithms
originate not only from the initial solution provided but also
from the greedy nature of the systematic exchange
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procedure. The greedy nature of the procedure is exposed
because only the location exchanges, which result in the
greatest cost reduction, are accepted. Hence, the nature of
the exchange procedure often impedes the algorithm from
finding the global optimum and causes the algorithm to
converge to a local optimum.

Hybrid algorithms Hybrid algorithms have the characteris-
tics of exact and heuristic algorithms or use the principles of
construction and improvement algorithms. Examples of
such algorithms can be found in Burkard and Stratman [7],
Bazaraa and Sherali [3] and Bazaraa and Kirca [4].

Graph theoretic algorithms Seppannen and Moore [53] in-
troduced the graph theoretic concept for layout design.
Graph theoretic algorithms identify maximal planar sub-
graphs of a weighted graph which show the relationships
between the facilities. The dual of a maximal planar sub-
graph determines the layout of the facilities. Goetschalckx
[20] and Hassan and Hogg [23] also used graph theoretic
algorithms. Hassan and Hogg [22] reviewed graph theoretic
algorithms for FLP.

Besides these approximate approaches, Ramkumar et al.
[47] presented iterated fast local search (IFLS) algorithm for
solving QAP. Authors proposed a genetic algorithm-based
local search approach for solving QAP. Ramkumar et al.
[48] proposed a modification to IFLS with a new recombi-
nation crossover operator.

2.3 Meta-heuristics

The development of meta-heuristic has greatly influenced
the performance of improvement algorithm and uses a gen-
eral strategy like pairwise exchange heuristic. There are
three widely used meta-heuristics in layout problem, i.e.
SA, TS and GA. Although performance of meta-heuristic
is faster and better than simple heuristic approach, but the
quality of solution still depends on the initial solution as in
the case of SA or TS. A survey of meta-heuristics solution
methods for QAP can be found in Nehi and Gelareh [44].

3 Problem formulation

Consider the problem of locating n facilities in n given
locations. Each location can be assigned to only one facility,
and each facility can be assigned to only one location. There
is material flow between the different departments and cost
(material handling) associated with the unit flow per unit
distance. Thus, different layouts have different total material
handling costs depending on the relative location of the
facilities. Fik is the flow between facilities i and k, and Djl

is the distance between locations j and l. The FLP has been
formulated as follows:

QAP:

Min TF ¼
Xn
i¼1
i6¼k

Xn
j¼1
j 6¼l

Xn
k¼1

Xn
l¼1

F ik � Djl �Xij �Xkl ð1Þ

Pn
i¼1

Xij ¼ 1 8 j ¼ 1; :::::::; n ð2Þ

Pn
j¼1

Xij ¼ 1 8 i ¼ 1; :::::::; n ð3Þ

X ij 2 f0; 1g 8 i; j ¼ 1; . . . ; n ð4Þ

Xij=1 if facility i is located/assigned to location j and Xij=
0 if facility i is not located/assigned to location j, where n is
the number of facilities. Equation (1) seeks to minimize the
sum of flow multiplied by the distance for all pairs of
facilities in a given layout. Equation (2) ensures that each
location contains only one facility while Eq. (3) ensures that
each facility is assigned to only one location. Solving the
QAP optimally in a reasonable computational time is very
hard, and therefore, the heuristics and meta-heuristics ap-
proach are designed to solve it optimally or near to optimal
in reasonable CPU time. Authors propose a new approach to
solve QAP optimally or near to optimal in a reasonable time.

4 Non-greedy systematic neighbourhood search heuristic

The proposed heuristic works on non-greedy systematic
pairwise exchange of two facilities in the neighbourhood
locations rather than exchange of facilities randomly. The
neighbourhood NB(r) is defined as all assignments that can
be reached from a given assignment when r elements are
exchanged. For pairwise exchange algorithms, the size of a
neighbourhood is NBð2Þ½ � ¼ 1

2 n n� 1ð Þ . Two alternatives
exist for neighbourhood search process. First, choose the
next potential facility for exchange randomly. Second,

Table 1 Decision rule comparison of greedy descent and SA with the
proposed heuristic

Algorithm Rule (conditions)

Greedy descent ΔZ<0

Simulated annealing ΔZ<0 or random ½0; 1� < e�ΔZ=t

Non-greedy systematic
neighbourhood search

ΔZ<0or Z <

P
Zþ

C

� �
"=
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explore the neighbourhood in a systematic way having all
the possible exchange elements ordered (‘shuffled’). The
precise order is irrelevant; it is only essential that the

neighbourhood is explored thoroughly. Proposed heuristic
uses the later approach that is systematic (ordered)
neighbourhood search, and this systematic neighbourhood
search is based on the non-greedy strategy. The key idea is,
pairwise exchanges are accepted if the objective function
value after the exchange is lowered or smaller than the
average objective function increment divided by an intensity
factor. This is in contrast to the greedy improvement ap-
proaches where only the exchange, which lowers the objec-
tive function value, is allowed. The average objective
function increment divided by an intensity factor is called
threshold value and evaluated from Eq. (5) given below.

t ¼
P

ΔZþ

C

� �
"= ð5Þ

ΔZ ¼ Z Pcð Þ � Z Pið Þ ð6Þ

ΔZþ ¼ ΔZ if ΔZ > 0 ð7Þ
where Pi is the initial random solution, Pc is current solution
after pairwise exchange of two facilities and ΔZ is the
current difference of the objective function value of the
current solution (Z(Pc)) and initial random solution (Z(Pi)).
ε is the intensity factor which lies in the interval of [0,1]. C
is the total number of increments of objective function value
(i.e. when ΔZ>0) or number of times when objective function
value of current solution is more than old solution after
pairwise exchange. From Eq. (5), it can be seen that τ is the
average objective function increment (in C number of incre-
ments) divided by the factor (ε). The acceptance rule can be
finally defined as: the solution in the heuristic during pairwise
exchange is accepted if and only if Eq. (8) does hold.

ΔZ < 0 or ΔZ <

P
ΔZþ

C

� �
"= ð8Þ

Table 1 shows few other acceptance rules used and available
in the literature. From Table 1 it can be seen that the proposed
heuristic approach possesses some features similar to those of
SA. The main feature of SA is its ability to escape from local

Input: n, iP , K, Iterations, 

/n- number of facility or problem size/

/ iP – initial random solution for proposed heuristic/

/K- maximum number of trials of the size of neighbourhood /

/Iterations- number of times heuristic is run/

/ - initial value of the intensity factor, [0, 1] /

bP = iP /best solution treated so far/

1
2

)1(
,1max

nKn
h /intensity quantum/

Sum = 0 /sum of the positive differences of the objective function value/

C = 0 /counter of the positive differences of the objective function value/

t = 0 /current trial number/

for (m=1, m<Iterations, m++) /for loop for number of Iterations/

for (k=1, k<K, k++) /for loop for the number of trials of the size of neighbourhood/

for (i=1, i<n-1, i++) /for loop for pair wise exchange of facilities/

for (j=i+1, j<n, j++) /for loop for pair wise exchange of facilities/

jiPNP in ,,2 / nP - new solution of pair wise exchange

in PZPZZ /difference of objective function value/

if ΔZ < 0 then exchange = TRUE /start if loop/

else Sum = Sum + ΔZ , C = C +1

htc 1 /current intensity level/

if cC

Sum
Z then exchange = TRUE

else exchange = FALSE

end /end of if loop/

t = t +1 /next trial number/

end /end of for loop for the pair wise exchange of facilities/

end /end of the for loop for the K number of trials of size of neighbourhood search/

return bP / return best solution value after each Iteration/

end /end of for loop for number of Iterations

return bP / return best solution value after all Iterations

Fig. 1 Pseudocode for non-greedy systematic neighbourhood search
heuristic
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6400
6450
6500

0 20 40 60

Obj .Values

K

K vs. Obj. Values (Nug30)

K vs. Obj. Values (Nug30)

Fig. 2 Objective function
value of the proposed heuristic
for different values of K
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optimum based on the acceptance rule of a candidate solution.
If the current solution (Pc) has an objective function value
smaller (supposing minimization) than that of the initial solu-
tion (Pi); then, the current solution is accepted. Otherwise, the
current solution can also be accepted if the value given by the
Boltzmann distribution:

e�ΔZ=t ð9Þ
is greater than a uniform random number in [0,1], where t is the
‘temperature’ control parameter. The solution in the SA during
pairwise exchange is accepted if and only if Eq. (10) does hold.

ΔZ < 0 or random 0; 1½ � < e�ΔZ t= ð10Þ

The proposed heuristic also tries to escape from local
optimum as in SA using non-greedy approach; however, the
acceptance rule of the candidate solution in proposed heuristic
is different (Eq. 8) than SA (Eq. 10). In SA, ‘temperature’ is
the control parameter; however, in the proposed non-greedy
systematic neighbourhood search (NGSNS) heuristic, ‘inten-
sity factor’ is the control parameter.

We present a pseudo code in Fig. 1 to better understand the
proposed heuristic approach. In the pseudo code, K is the
number of trials of the size of a neighbourhood. Since the size
of a neighbourhood is NBð2Þ½ � ¼ 1

2 n n� 1ð Þ, therefore, in each
iteration, the total number of swaps examined is K n n�1ð Þ

2 . The
value of K can influence the quality of results considerably
and also computational time. If the value of K is small,
then no guarantee exists that the quality of the solution is
good. On the other side, if the value of K is large, then
the quality of solution is good enough in many cases but
at the cost of computational time.

To determine the default value of K, we applied NGSNS
on Nug30 problem for 500 iterations with the value of K
ranging from 1 to 50, with an increment of 5 each time. For
each value of K, objective function values are noted.
Figure 2 shows the results on a graph. It can be seen in
graph at K=10, objective function value is minimum.
Therefore, we set the default value of K equal to 10 for
NGSNS heuristic.

The next question arises what should be the number of
iterations, since the number of iterations can also influence
quality of solution and computational time. To answer this
question, we again applied NGSNS on the Nug30 problem
taking the default value of K=10; however, the number of
iterations varied from 100 to 1,000. Again Fig. 3 shows
results on a graph. It can be seen easily in the graph that
objective function values converge at 500 or more number
of iterations. Therefore, we decided the number of iterations
to be equal to 500 for the proposed NGSNS.

5 Procedural steps of the proposed NGSNS heuristic

Step 1: Randomly generate solution Pi and calculate the
corresponding objective value Z using Eq. (1)
Initialize: Iterations (specify total number of itera-
tions), sum=0, C (counter)=0 and t (trial number)
=0, K (size of neighbourhood)=n(n−1)/2 where n
is the number of facilities and intensity factor ε=1.

Step 2: Randomly select two facilities and check whether
they are the same facilities. If yes, go to step 5.
Other interchange facilities to get new solution Pn

and calculate new Z and change in objective value
ΔZ=new Z–old Z.

Step 3: If ΔZ<0 is true, accept new solution and new Z=
old Z+ΔZ. Otherwise, go to step 4.

Table 2 Distance matrix for example problem

Locations from/to Locations

1 2 3 4 5 6

Location

1 0 1 2 1 2 3

2 1 0 1 2 1 2

3 2 1 0 3 2 1

4 1 2 3 0 1 2

5 2 1 2 1 0 1

6 3 2 1 2 1 0

6100

6200

6300

6400

6500

6600

0 500 1000 1500

Obj. Values

No.  of Iterations

Iterations vs. Obj. Values (Nug 30)

Iterations vs. Obj. Values (Nug
30)

Fig. 3 Objective function value
of the proposed heuristic for
different values of iterations
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Step 4: Sum=sum+ΔZ, increment counter C=C+1.
Calculate intensity quantum

h" ¼ "

max 1; Knðn�1Þ
2 � 1

� �

Update current intensity level εc=ε−(t−1)hε. If
ΔZ < Sum

C

� �
"c= is true, accept new solution, i.e.

new Z=old Z+ΔZ. Else, go to step 5.

Step 5: Increment trial number t= t+1.
Step 6: If t<=K is true, repeat steps 2 to 5. Otherwise

current iteration is over and return best solution
Pb of current iteration and go to step 7.

Step 7: If the specified number of iterations are performed,
terminate and select the minimum Z value from all

iterations and return corresponding best solution
Pb; otherwise, repeat steps 1 to 6.

5.1 Numerical illustration

The working of the proposed heuristic is explained using the
data presented in Tables 2 and 3. In Table 2, the distance
matrix based on the distance between facilities is presented,
and Table 3 shows the flow of materials between facilities
for problem size n=6.

Step 1: Randomly generate solution Pi

Pi 2 3 4 1 6 5 old Z=110
Initialize iterations=10, sum=0, t=0, C=0, K=

n(n−1)/2=6×5/2=15 and ε=1
Step 2: Randomly, two facilities 2 and 6 are interchanged.

Pn 6 3 4 1 2 5 new Z=142 and ΔZ=142–110=
32.

Step 3: Since ΔZ>0, go to step 4.

Table 3 Flow matrix for example problem

From/to Facilities

1 2 3 4 5 6

Facility

1 0 5 2 4 1 0

2 5 0 3 0 2 2

3 2 3 0 0 0 0

4 4 0 0 0 5 2

5 1 2 0 5 0 10

6 0 2 0 2 10 0

Table 4 Solution of problem instances with series Nugxx taken from
Burkard et al. [11]

S.
no.

Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Nug12 578 578 0.00 0.702

2 Nug14 1,014 1,014 0.00 0.812

3 Nug15 1,150 1,150 0.00 2.671

4 Nug16a 1,610 1,610 0.00 3.406

5 Nug16b 1,240 1,240 0.00 3.406

6 Nug17 1,732 1,732 0.00 1.781

7 Nug18 1,930 1,930 0.00 5.484

8 Nug20 2,570 2,570 0.00 8.375

9 Nug21 2,438 2,438 0.00 20.171

10 Nug22 3,596 3,596 0.00 12.281

11 Nug24 3,488 3,488 0.00 70.218

12 Nug25 3,744 3,744 0.00 202.921

13 Nug27 5,234 5,234 0.00 227.625

14 Nug28 5,166 5,166 0.00 637.562

15 Nug30 6,124 6,154 0.48 646.937

Table 5 Solution of problem instances with series Taixxx taken from
Burkard et al. [11]

S.
no.

Instance Optimal/BKS Proposed
heuristic solution

%
deviation

CPU

1 Tai12a 224,416 224,416 0.00 11.312

2 Tai12b 39,464,925 39,464,925 0.00 11.234

3 Tai15a 388,214 388,214 0.00 27.109

4 Tai15b 51,765,268 51,765,268 0.00 26.937

5 Tai17a 491,812 491,812 0.00 17.578

6 Tai20a 703,482 705,622 0.304 24.984

7 Tai20b 122,455,319 122,455,319 0.00 24.782

8 Tai25a 1,167,256 1,187,088 1.69 42.796

9 Tai25b 344,355,646 344,355,646 0.00 41.453

10 Tai30a 1,818,146 1,855,734 2.06 64.218

11 Tai30b 637,117,113 637,137,951 0.003 63.484

12 Tai35a 2,422,002 2,471,980 2.06 81.921

13 Tai35b 283,315,445 284,350,938 0.36 81.875

14 Tai40a 3,139,370 3,222,972 2.66 138.853

15 Tai40b 637,250,948 637,250,948 0.00 138.156

16 Tai50a 4,938,796 5,069,742 2.65 337.046

17 Tai50b 458,821,517 460,718,405 0.41 339.343

18 Tai60a 7,205,962 7,424,858 3.03 704.703

19 Tai60b 608,215,054 609,491,668 0.2 678.515

20 Tai64c 1,855,928 1,855,928 0.00 776.76

21 Tai80a 13,499,184 13,871,316 2.75 882.5

22 Tai80b 818,415,043 833,128,227 1.79 883.67

23 Tai100a 21,052,466 21,664,160 2.9 1,423.56

24 Tai100b 1,185,996,137 1,201,244,218 1.28 1,425.87

25 Tai150b 498,896,643 508,987,944 2.02 2,232.76

26 Tai256c 44,759,294 44,891,576 0.295 4,234.78
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Step 4: Sum=0+32=32, increment counter C=0+1=1.

h" ¼ "

max 1; Knðn�1Þ
2 � 1

� � ¼ 1

max 1; 15:6:52 � 1
� �

¼ 1

224
¼ 0:004464

Update current intensity level, εc=ε−(t−1)hε=
1−(0−1)×0.004464=1.004464

Sum

C

� �
"c= ¼ 32 1:004464 ¼ 31:857=

Since ΔZ (32)>31.857, go to step 5.
Step 5: Increment trial number t= t+1=0+1=1.
Step 6: Since trial number t(1)<K(15), go to step 2 (repeat

steps 2 to 5). When t=K trials are performed, the
current iteration is over, and return the best solu-
tion Pb of the current iteration and go to step 7.

Step 7: If iterations=10 are performed, terminate and se-
lect the minimum Z value from all iterations and
return the corresponding best solution Pb; other-
wise, repeat steps 1 to 6.

6 Performance of non-greedy systematic neighbourhood
search heuristic

The proposed heuristic has been coded in C and tested on a
Core2duo machine having a processor speed 2.2 GHz with
RAM of 2.96 GB. The experiments were conducted in two
stages. Stage one is designed to calibrate parameter K to fix
the default value of the parameter. Using the default value
identified in stage 1, experiments were conducted using
benchmark problems from the QAP library [11]. The pro-
posed heuristic is executed for 500 number of iterations
keeping the default value of K equal to 10. In each iteration,
a new random solution is generated which is improved by
pairwise exchanges. Heuristic performs K times n(n−1)/2
swaps in each iteration. Different solutions are produced in
each iteration, and one best solution is selected from all
iterations as final solution.

To validate the performance of the proposed heuristic, all
problem instances available in the QAPLIB, an online ver-
sion of Burkard et al. [11] available at http://www.seas.
upenn.edu/qaplib, are tested in the paper. Problem instances
of all authors available at QAPLIB are solved, and results
are presented in various tables according to the author’s
names (refer to Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

Table 6 Solution of problem instances with series Stexxx taken from
Burkard et al. [11]

S.
no.

Instance Optimal/BKS Proposed heuristic
solution

%
deviation

CPU

1 Ste36a 9,526 9,648 1.28 176.437

2 Ste36b 15,852 16,054 1.27 176.484

3 Ste36c 8,239,110 8,318,780 0.97 176.593

Table 7 Solution of problem instances with series skoxx, skoxxxx
taken from Burkard et al. [11]

S.
no.

Instance Optimal/
BKS

Proposed heuristic
solution

% deviation CPU

1 sko42 15,812 15,882 0.44 161.828

2 sko49 23,386 23,536 0.64 306.343

3 sko56 34,458 34,736 0.8 518.39

4 sko64 48,498 48,878 0.78 892.89

5 sko72 66,256 67,176 1.38 944.45

6 sko81 90,998 92,004 1.1 970.56

7 sko90 115,534 116,932 1.21 1,002.89

8 sko100a 152,002 153,528 1.004 1,076.86

9 sko100b 153,890 155,556 1.08 1,065.675

10 sko100c 147,862 149,316 0.98 1,071.77

11 sko100d 149,576 150,940 0.91 1,085.67

12 sko100e 149,150 150,566 0.94 1,077.36

13 sko100f 149,036 150,708 1.12 1,080.39

Table 8 Solution of problem instances with series Wilxx, Wilxxx
taken from Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Wil50 48,816 48,968 0.31 330.968

2 Wil100 273,038 274,390 0.49 2,170.73

Table 9 Solution of problem instances with series Chrxxx taken from
Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed % deviation heuristic
solution

CPU

1 Chr12a 9,552 9,552 0.00 1.14

2 Chr12b 9,742 9,742 0.00 1.156

3 Chr12c 11,156 11,156 0.00 1.156

4 Chr15a 9,896 9,896 0.00 5.265

5 Chr15b 7,990 7,990 0.00 5.265

6 Chr15c 9,504 9,504 0.00 8.156

7 Chr18a 11,098 11,098 0.00 5.515

8 Chr18b 1,534 1,534 0.00 5.518

9 Chr20a 2,192 2,232 1.82 8.406

10 Chr20b 2,298 2,432 5.83 16.796

11 Chr20c 14,142 14,142 0.00 16.921

12 Chr22a 6,156 6,210 0.87 24.546

13 Chr22b 6,194 6,268 1.19 24.937

14 Chr25a 3,796 4,106 8.16 30.265
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15, 16, 17, and 18). A comparative analysis of the solutions
obtained from the proposed heuristic approach with the
optimal and best known solutions available in literature is
also tabulated along with the percentage deviation from
optimal/best known solutions. In addition to this, computa-
tional time of the proposed heuristic approach (in CPU
seconds) is also reported for each problem instance tested
in the paper.

Out of the 135 test problems available in QAPLIB, 86
were solved to optimality as of June 2011 (optimal values
are shown bold in various authors’ tables). The remaining
49 had best known solutions reported by various heuristics.
In this paper, out of the 135 test problems proposed, heuris-
tic has obtained optimal solutions for 64 problems and
matched the best known solution value for 15 problems.

In QAPLIB, the best known solution to the non-optimal
problems is provided by many different heuristic and meta-
heuristic approaches. Of these meta-heuristic approaches,
Robust TS [58], Genetic Hybrid [16], GRASP [36] and SA
[10] appear more often as the first heuristic to reach the best
known solution. Other heuristics may reach the same solution
as well, but QAPLIB only recognizes the first such heuristic. It
must be noted that no known heuristic reportedly produced
uniformly better solutions for all problems.

This raises the question how proposed non-greedy sys-
tematic neighbourhood search heuristic compare to the four
meta-heuristics mentioned above in the instances not proven
to be optimal. Table 19 gives a comparison of these meta-
heuristics and proposed heuristic in these non-optimal in-
stances. A checkmark in the first four columns indicates
which method first reported the best known solution to that

Table 10 Solution of problem instances with series Thoxx, Thoxxx
taken from Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Tho30 149,936 149,936 0.00 62.703

2 Tho40 240,516 242,720 0.92 335.678

3 Tho150 8,133,398 8,222,574 1.09 1,638.78

Table 11 Solution of problem instances with series Escxxx taken from
Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Esc16a 68 68 0.00 1.39

2 Esc16b 292 292 0.00 1.468

3 Esc16c 160 160 0.00 1.421

4 Esc16d 16 16 0.00 1.406

5 Esc16e 28 28 0.00 1.39

6 Escf16f 0 0 0.00 1.384

7 Esc16g 26 26 0.00 1.375

8 Esc16h 996 996 0.00 1.515

9 Esf16i 14 14 0.00 1.406

10 Esc16j 8 8 0.00 1.421

11 Esc32a 130 134 3.08 22.343

12 Esc32b 168 168 0.00 22.093

13 Esc32c 642 642 0.00 22.218

14 Esc32d 200 200 0.00 22.171

15 Esc32e 2 2 0.00 22.125

16 Esc32f 2 2 0.00 22.343

17 Esc32g 6 6 0.00 22.281

18 Esc32h 438 438 0.00 22.171

19 Esc64a 116 116 0.00 360.75

20 Esc128 64 64 0.00 1,658.732

Table 12 Solution of problem instances with series burxxx taken from
Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 bur26a 5,426,670 5,426,670 0.00 24.093

2 bur26b 3,817,852 3,817,852 0.00 19.234

3 bur26c 5,426,795 5,426,795 0.00 23.953

4 bur26d 3,821,225 3,821,225 0.00 23.984

5 bur26e 5,386,879 5,386,879 0.00 23.984

6 bur26f 3,782,044 3,782,044 0.00 23.984

7 bur26g 10,117,172 10,117,172 0.00 24.312

8 bur26h 7,098,658 7,098,658 0.00 23.984

Table 13 Solution of problem instances with series lipaxxx taken from
Burkard et al. [11]

S.
no.

Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 lipa20a 3,683 3,683 0.00 3.39

2 lipa20b 27,076 27,076 0.00 3.406

3 lipa30a 13,178 13,178 0.00 125.484

4 lipa30b 151,426 151,426 0.00 42.531

5 lipa40a 31,538 31,870 1.05 138.062

6 lipa40b 476,581 476,581 0.00 137.562

7 lipa50a 62,093 62,739 1.04 132.781

8 lipa50b 1,210,244 1,210,244 0.00 132.671

9 lipa60a 107,218 108,225 0.93 292.375

10 lipa60b 2,520,135 2,520,135 0.00 290.953

11 lipa70a 169,755 171,092 0.79 514.375

12 lipa70b 4,603,200 5,501,669 19.51 516.015

13 lipa80a 253,195 254,958 0.69 876.734

14 lipa80b 7,763,962 9,359,096 20.54 884.265

15 lipa90a 360,630 363,005 0.65 1,411.65

16 lipa90b 12,490,441 15,087,930 20.79 1,412.88
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Table 14 Solution of problem instances with series Kraxx
taken from Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Kra30a 88,900 89,800 1.01 16.843

2 Kra30b 91,420 91,590 0.18 84.078

3 Kra32 88,700 90,320 1.82 109.703

Table 15 Solution of problem instances with series Hadxx taken from
Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

% deviation CPU

1 Had12 1,652 1,652 0.00 0.468

2 Had14 2,724 2,724 0.00 0.812

3 Had16 3,720 3,720 0.00 1.359

4 Had18 5,358 5,358 0.00 2.234

5 Had20 6,922 6,922 0.00 3.421

Table 16 Solution of problem instances with series Rouxx taken from
Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Rou12 235,528 235,528 0.00 1.14

2 Rou15 354,210 354,210 0.00 2.687

3 Rou20 725,522 725,522 0.00 25.203

Table 17 Solution of problem instances with series Scrxx taken from
Burkard et al. [11]

S. no. Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Scr12 31,410 31,410 0.00 1.156

2 Scr15 51,140 51,140 0.00 2.671

3 Scr20 110,030 110,030 0.00 25.828

Table 18 Solution of problem instances with series Elsxx taken from
Burkard et al. [11]

S.
no.

Instance Optimal/
BKS

Proposed heuristic
solution

%
deviation

CPU

1 Els19 17,212,548 17,212,548 0.00 2.718

Table 19 Comparative analysis of past meta-heuristics and proposed
heuristic for QAPLIB instances

S. no. Name Ro-TS GEN GRASP SIM NGSNS

1 bur26b √ Y

2 bur26c √ Y

3 bur26d √ Y

4 bur26e √ Y

5 bur26f √ Y

6 bur26g √ Y

7 bur26h √ Y

8 esc32a √ Y N

9 esc32b √ Y Y

10 esc32c Y √ Y

11 esc32d √ Y Y

12 esc32h √ Y Y

13 esc64a Y √ Y

14 esc128 √ Y

15 sko42 √ N N

16 sko49 √ N N

17 sko56 √ N N

18 sko64 √ N N

19 sko72 √ N N

20 sko81 √ N N

21 sko90 √ N N

22 sko100a √ N

23 sko100b √ N

24 sko100c √ N

25 sko100d √ N

26 sko100e √ N

27 sko100f √ N

28 tai25a √ N

29 tai30a √ N

30 tai30b √ N

31 tai35a √ N

32 tai35b √ N

33 tai40a √ N

34 tai40b √ Y

35 tai50a √ N

36 tai50b √ N

37 tai60a √ N N

38 tai60b √ N

39 tai64c √ Y

40 tai80a N N

41 tai80b √ N

42 tai100b √ N

43 tai150b √ N

44 wil50 Y √ N

45 wil100 N √ N N

46 Tho40 √ N

47 Tho150 √ N

√ indicates which heuristic first time reported the best known solution;
Y indicates which heuristic matches the best known solution; N in-
dicates which heuristic does not match the best known solution
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problem as recognized by QAPLIB. A ‘Y’ or ‘N’ indicates
whether the heuristic matches the best known solution.
Blank entries indicate that the authors did not report a
solution in their paper.

7 Conclusions and future research direction

In this paper, a non-greedy systematic neighbourhood
search heuristic for finding a quality solution in reasonable
computational time for the FLP is presented. Heuristic is
applied on a large number of instances provided by different
authors in QAPLIB with problem sizes ranging from 12 to
256. Out of the 135 test problems in QALIB, the proposed
heuristic has obtained optimal solutions for 64 problems and
matched the best known solution value for 15 problems. For
the remaining 56 problems, the proposed heuristic has given
very good quality solutions (44 problem solutions within 0–
2 % deviation from the optimal/best known values) as
shown in various tables. It must be noted that no known
heuristic reportedly produced uniformly better solutions for
all problem instances of QAPLIB. The proposed heuristic
tries to fill the above gap and performs reasonably well on
all instances of QAPLIB. A comparative analysis with past
meta-heuristic approaches (Table 19) shows the effective-
ness of the proposed NGSNS heuristic. It is also proposed as
a future research direction to incorporate some GA param-
eters such as crossover and mutation in the proposed heu-
ristic approach for further improvement in the performance
of the proposed solution methodology.
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