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Abstract This paper deals with the problem that reflects
real-world situations adequately. Several constraints in-
cluding unrelated machines, limited waiting times be-
tween every two successive processing operations and
ready time of jobs are studied. These constraints and
characteristics affect on some operations in a large
number of companies. In recent researches, they have
been tackled many times while so far have not been
considered simultaneously. The aim of this paper is to
model and solve the addressed problem by applying an
efficient metaheuristic algorithm, entitled biogeography-
based optimization (BBO). To assess the proposed
BBO, two experiments are conducted and their results
in terms of solutions quality, as well as computation
efficiency compared against two popular algorithms,
namely imper ia l i s t compet i t ive algor i thm and
population-based simulated annealing. Due to the sensi-
tivity of the values of parameters in the metaheuristic
algorithms, a response surface methodology as a
strength statistical tool is used to tune the parameters.
The computational results show that the proposed BBO
algorithm significantly outperforms the other foregoing
algorithms.

Keywords Hybrid flexible flowshop . Limitedwaiting times .

Unrelated parallel machines . Ready times . Biogeography-
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1 Introduction

Sequencing and scheduling is a form of decision making
that plays a crucial role in manufacturing and service indus-
tries. In the current competitive environment, an effective
sequencing and scheduling has become a necessity for sur-
vival in the market place. In fact, scheduling problems are
the allocation of limited resources to perform a set of activ-
ities in a period of time [1].

A hybrid flexible flowshop scheduling (HFFS) problem
gives two concepts: (1) a flexible flowshop scheduling
(FFS) problem consists of several stages so that at least
one stage contains more than one machine and all jobs visit
a chain of operations in a unique order. (2) A HFFS problem
includes the same concept as the FFS problem except that
jobs can skip from stages. Skipping is a feature that makes
the problem more adaptable. Additionally, we consider
some important constraints, including:

& Release date of jobs means jobs might not be available
immediately to be processed.

& Unrelated machines express that at least one stage con-
tains parallel machines and machine i can process job j at
speed vij [1]. In other words, the speed of each machine is
dependent on the job which is processed on it.

& Limited waiting times constraint means the waiting times
between any two consecutive processing operations
cannot be greater than a given upper bound.

This kind of HFFS problems with limited waiting times
constraint are applied in many industrial environments (e.g.,
airplane engine production, electronics manufacturing,
semi-conductors, and petrochemical production [2]). It is
used in steel-making processes so that the melted steel must
be kept liquid hot enough in the buffer for next processing.
Also, the waiting time after the operations in furnace tubes is
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limited in order to prevent the absorption of particles
suspended in the air [3]. One of the most important applica-
tions of our problem is when the capacity of intermediate
buffers is bounded and products must leave buffers in a short
time. When the values of upper bounds for the waiting times
are equal to zero or in otherwords, there are no buffers between
the stages, it is a sample of no-wait problems. However, the
introduced problem is an important study; the literature review
reveals that there is no research with these assumptions.

The rest of this paper is organized as follows: In Section 2,
literature reviews is presented. Section 3 describes the char-
acteristics and assumptions of our problem in details. In
Section 4, the structures of the applied algorithms are
explained. Section 5 displays an illustrative example that is
solved by biogeography-based optimization (BBO) algo-
rithm. Then, the numerical tests established to solve the
problems are illustrated in Section 6. Finally, Section 7
presents the summary of this research with the recom-
mendation for further studies.

2 Literature review

In this section, we briefly explain some previous studies in
the field of hybrid flowshop scheduling (HFS) problems
under the various constraints and objective function.

Lin and Liao [4] investigated a two-stage hybrid
flowshop scheduling (HFS) with one machine at the first
stage and two groups of machines at the second stage, in
which each group has two identical machines. Low et al. [5]
focused on the system with unrelated machines at the first
stage, in which these machines belong to a certain type and
each type of machines can process a subset of job types.
Bertel and Billaut [6] developed a mixed-integer program-
ming model and heuristic approaches to solve the three-
stage HFS problem. Garey and Johnson [7] demonstrated
that the HFS problem in order to minimize the makespan is
strongly NP hard. Thus, they proposed the several heuristics
and approximation algorithms for various HFS problems.
Kahraman et al. [8] showed that a parallel greedy algorithm
(PGA) is effective to solve a HFS problem with multipro-
cessor task for minimizing the maximum of completion
time. They proved PGA by comparing the result of this
metaheuristic algorithm with the earlier studies of Oğuz et
al. [9, 10] and Oğuz [11]. A general class of heuristics for
the multistage FFS problem with uniform parallel machines
and the objective of minimizing of makespan are developed
by Kyparisis and Koulamas [12].

Gholami et al. [13] investigated the HFS problem with
sequence-dependent setup time and stochastic breakdown of
machines. Allahverdi and Al-Anzi [14] studied a simulated
annealing (SA) method for an m-stage HFS that models
client–server requests and then presented several heuristics.

Ying and Lin [15] developed ant colony optimization for the
multiprocessor task problem with precedence relationships
and indicated their results were superior to the results
reported by Oğuz et al. [9]. The performance of dispatching
rules, some appropriate heuristics for an m-stage problem
with uniform parallel machines and identical jobs is inves-
tigated by Verma and Dessouky [16]. Tang and Zhang [17]
combined a neural network approach with local search to
improve the quality of the obtained solutions for the HFS
problem in order to minimize the sum of setup times. Wang
and Tang [18] developed tabu search (TS) combined with a
scatter search (SS) method to minimize the weighted sum of
completion time of all jobs for the HFS problem with finite
intermediate buffers.

Kurz and Askin [19] examined four heuristics to find
schedules to minimize the makespan in flexible flow lines
with sequence-dependent setups. These methods included a
simplistic greedy method, approaches based on the natures of
TSP and flow line problems with an application of the random
keys genetic algorithm. Naderi et al. [20] studied a flexible
flowshop with anticipatory sequence-dependent setup times
and job-independent transportation times in a multitransporter
system to minimize the total weighted tardiness. They formu-
lated the problem as a mixed-integer linear programming
model and proposed an electromagnetism algorithm. Low
[21] proposed a SA method for the problem minimizing the
total flow time and considered unrelated parallel machines at
each stage with sequence-dependent removal times and
sequence-independent setup times. Ruiz and Maroto [22]
focused on an HFS problem with unrelated parallel machines,
sequence-dependent setup times and machine eligibility and
proposed some genetic algorithms. Jungwattanakit et al. [23]
applied both constructive approach (e.g., insertion-based ap-
proach) and iterative methods (i.e., SA, TS, and genetic algo-
rithms) to minimize a convex combination of the makespan
and the number of tardy jobs for the FFS problem with
unrelated parallel machines, sequence and machine-
dependent setup times. Low [21] offered a SA-based heuristic
method to minimize the total flow time for a multistage
flowshop scheduling problem with unrelated parallel ma-
chines considering independent setup times and dependent
removal times constraints.

A mixed-integer programming model for the flexible
flow line problem without intermediate buffers by assuming
in-process buffers and sequence-dependent setup time is
presented by Tavakkoli-Moghaddam and Safaei [24]. Ruiz
et al. [25] provided a mixed-integer programming model
and some heuristics for a flowshop problem from the ce-
ramic tile sector with machines release dates, unrelated
parallel machines, machine eligibility, skip possibility,
sequence-dependent setup times, anticipatory and non-
anticipatory possibility for setup times, positive and nega-
tive time lags, and precedence relationships between jobs.
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Chang et al. [26] presented a heuristic method to solve
the no-wait HFS problem. Su [3] proposed a mixed-integer
programming model and a heuristic algorithm to minimize
the makespan for a hybrid two-stage flowshop problem with
a batch processor in stage 1 that can process a batch (limited
number) of jobs simultaneously and a single processor in
stage 2 considered the waiting time for the second stage that
cannot be greater than a given upper bound. Yang and Chern
[27] indicated the problem with limited waiting time con-
straints and one single processor at each stage is NP hard
and represented a branch-and-bound algorithm to solve the
problem. A constructive backtracking heuristic approach to
minimize the makespan for the HFS problem with limited
waiting time constraint is presented by Li and Li [28];
however, they supposed the fixed upper bound of waiting
times for all jobs and stages. Chen [29] introduced eight
mixed-binary integer programming models for open shop,
job shop, flowshop, and permutation flowshop environ-
ments with limited waiting time constraints to minimize
the makespan. Liu et al. [30] studied the HFS problem with
limited waiting time constrain to minimize the makespan.
They proposed a constructive backtracking heuristic method
that was composed of a recursive backtracking algorithm
and TS. A discrete colonial competitive algorithm (CCA) to
determine a schedule that minimizes the sum of the linear
earliness and quadratic tardiness in the HFS problem with
sequence-dependent setup times and limited waiting time is
developed by Behnamian and Zandieh [2]. To justify this
method, they compared the CCA with the hybrid TS-SS
proposed by Wang and Tang [18] and recursive
backtracking combined with TS proposed by Liu et al. [30].

Although many realistic considerations and constraints
have been addressed in several papers in literature, a few
papers have considered such realistic constraints jointly.
Also, there is no attempt to join the set of realistic con-
straints along with the limited waiting times constraint.

According to our studies, researchers have not utilized
our proposed BBO. Simon [31] stated that this method is a
novel method for solving the NP hard problems. In this
paper, we prove that this method is more efficient than
imperialist competitive algorithm (ICA) and population-
based simulated annealing (PBSA) methods.

3 Problem formulation

The HFFS problem contains a set of n jobs and s stages,
where N={1, 2, … , n} and S=(1, 2, … , s). Jobs are
available at the different times indicated by R={r1, r2, … ,
rn}, such a way that each job may skip some stages. Thus,
they must be processed on their required stages. In this
problem, we assume all jobs visit entire stages and the pro-
cessing times at the skipped stages are equal to 0. Accordingly,

the sequence of operations for all jobs is on the unique order of
s stages. Job k ∈ N must be processed by only one machine in
each stage. In ith stage, there are mi-unrelated machines in
parallel that means the speed of machine j is dependent on the
job processed on it. The waiting times between any two
consecutive operations in the buffer cannot be greater than
its given upper bound. The limited waiting time of job
k between two operations i and i+1 is illustrated with
lwti, i+1, k. Job k needs the processing time pijk to be
processed at stage i on machine j.

3.1 Assumptions

Modification, removal or addition of assumptions and/or
constraints to the standard problem which described in Ruiz
et al. [32] leads to different HFS variants. The characteristics
and assumptions that present our problem are as follows:

1. All data used in all test problems are known deterministically.
2. In HFS, each stage has at least one machine, and at

least one stage has more than one machine.
3. There are n independent jobs which are processed

without defect. Additionally, all jobs have neither pre-
emption nor priority values for processing.

4. The processing operations for all jobs cannot be
interrupted. Processors are available at all times with
no breakdowns and no scheduled or unscheduled
maintenance.

5. Each operation must be processed by only one ma-
chine at each stage. Furthermore, all machines in a
stage are capable to process all jobs.

6. Transportation and set up times between the stages are
assumed negligible and ignored.

7. A part which its processing has been completed at a
stage is transferred either directly to an available ma-
chine in the next stage or to a buffer ahead of that stage.

8. The intermediate storages are unlimited.
9. The waiting time between any two consecutive pro-

cessing operations is limited.
10. A machine can process only one job at a time.
11. Jobs might not be available for processing immediately.
12. The processing time of every job depends on the

machine which processes it. In other words, there are
machines that their speeds are different and dependent
on the jobs processed on them.

A relatively simple HFS (e.g., a two-stage HFS with
limited waiting time) is NP hard in the strong sense [3].
Also, Yang and Chern [27] indicated the problem with
limited waiting time constraint and one single processor at
each stage is NP hard. Subsequently, our problem has at
least the same difficulty and three efficient metaheuristic
algorithms are suggested to solve the test problems.
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3.2 Notations

The following notations are applied to develop a mathemat-
ical model for the addressed problem.

3.2.1 Input parameters

S Number of processing stages.
N Number of jobs.
mi Number of unrelated machines at stage i.
Rk Ready time of job k.
pijk Processing time of job k on processor j at stage i.
uik Waiting time’s upper bound of job k between two

consecutive stages i and i+1.
V A very big number.

3.2.2 Indices

i Processing stage, where i=1, … , S.
j Processor in stage i, where j=1, … , mi.
k, l Job, where k, l=1, … , N.

3.2.3 Decision variables

cmax Makespan.
cijk Completion time of job k at stage i on processor j.
cik Completion time of job k at stage i.
Bijk Beginning time of job k at stage i on processor j.
xijlk Binary variable that take value 1 if job k is assigned

to processor j at stage i and here job l is its
predecessor job; otherwise, xijlk=0.

gijk The idle time of processor j at stage i that waits to
process job k after the complete time of processing
the predecessor, job l.

We define a dummy job 0 with zero process time
that must be placed before the first jobs on each ma-

chine [25]. Also the jobs which skip some stages are
assumed to have zero processing time to perform on
those stages.

3.3 Mixed-integer nonlinear programming

The decision variables are assigning the machines to
operations and determining the sequence of jobs at
each stage so that the makespan is minimized. The
mathematical model of the described problem is as
follows:

Min cmax

s.t.

Pmi

j¼1

P
l 2 0; Nf g;

l 6¼ k

xijlk ¼ 1 8i; k
ð1Þ

Pmi

j¼1

P
l 2 N ;
l 6¼ k

xijkl � 1 8i; k
ð2Þ

Pmi

j¼1
xijlk þ xijkl
� � � 1 k 2 N ; l ¼ k þ 1; . . . ; N ; l 6¼ k i 2 S

ð3Þ
P
k2N

xij0k � 1 i 2 S; j 2 mi ð4Þ

Ci0 ¼ 0 i 2 S ð5Þ
Bijk þ V 1� xijlk

� � � cijl þ gijk
Bijk � V 1� xijlk

� � � cijl þ gijk
i 2 S; j 2 mi; k 2 N ; l 2 0;Nf g; l 6¼ k

�

ð6Þ
cijk þ V 1� xijlk

� � � Bijk þ pijk
cijk � V 1� xijlk

� � � Bijk þ pijk
i 2 S; j 2 mi; k 2 N ; l 2 0;Nf g; l 6¼ k

�

ð7Þ

Pmi

j¼1

P
l 2 0; Nf g;

l 6¼ k

xijlk � cijk
� � � Pmðiþ1Þ

j¼1

P
l 2 0; Nf g;

l 6¼ k

x iþ1ð Þjlk � B iþ1ð Þjk
� �

i 2 S; k 2 N ð8Þ

Pmðiþ1Þ

j¼1

P
l 2 0; Nf g;

l 6¼ k

x iþ1ð Þjlk � B iþ1ð Þjk
� ��Pmi

j¼1

P
l 2 0; Nf g;

l 6¼ k

xijlk � cijk
� � � uik i 2 S; k 2 N (9)
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B1jk þ V 1� x1jlk
� � � Rk

B1jk � V 1� x1jlk
� � � Rk

�
j 2 m1; k 2 N ; l 2 0;Nf g; l 6¼ k

ð10Þ

cik ¼
Pmi

j¼1

P
l2 0; Nf g;

l 6¼k

xijlk � cijk
� �

i 2 S; k 2 N

cmax � cik i 2 S; k 2 N

ð11Þ

xijlk 2 0; 1f g i 2 S; j 2 mi; l 2 0; Nf g; l 6¼ k; k 2 N ; cijk ; gijk � 0 8i; k;mi ð12Þ

The objective function is to minimize the maximum com-
pletion time. Constraint (1) ensures job k is assigned to only
one machine for processing at each stage in a manner that job l
is processed before it on the same machine. Constraint (2) is
similar in the way that every job should have at most one
successor at each stage. Constraint (3) avoids the occurrence
of cross-precedence. Constraint (4) enforces that nominal job
0 is the predecessor of the first job placed on each processor.
Constraint (5) expresses the dummy job 0 is completed at time
0 in all stages. Constraints set (6) calculate the beginning time
of processing job k on processor j at stage i. This value is the
sum of finishing time of the operation which is performed
before job k on processor j and the idle time duration of that
processor after completing job l. In fact, V as a large number
converts an equal constraint into two unequal constraints in
order to be imposed when xijlk is one and otherwise would be
deceived. Constraints set (7) calculate the complete time of
every job at each stage. Constraint (8) ensures that the pro-
cessing of each job is begun after completing its operation at
previous stage. Constraint (9) controls the waiting times at the
intermediate storages. Actually, the waiting time of job k after
its complete time at stage i until the beginning time of pro-
cessing at stage i+1 cannot exceed its upper bound (uik).
Constraints set (10) stipulate that the beginning time of each
job in stage 1 should be after its ready time. Finally, constraint
(11) defines the maximum completion time.

4 Proposed algorithms

This paper seems to be the first study in this field and
justifies the BBO algorithm to solve the given problem.

In order to validate the performance of our proposed algo-
rithm, we apply two other metaheuristics, namely PBSA and
ICA. At first, these metaheuristics (i.e., BBO, PBSA, and
ICA) are coded by using MATLAB 2009b. Then after solving
several test problems, the results of their performances are
compared together. In this section, the structure of BBO
algorithm is elaborated. In addition, the executed procedures
of ICA and BPSA are briefly explained.

4.1 Biogeography-based optimization

BBO proposed by Simon [31] is a new evolutionary optimi-
zation algorithm based on geographic distribution of biological
organisms (i.e., biogeography theory). The BBO approach is
nearly similar to genetic algorithm (GA) and particle swarm
optimization (PSO). However, BBO has some features that has
been unique among the biology-based algorithms. For exam-
ple, the information is sharing between the suitable solutions
and other solutions from one iteration to the next one.

The main core of BBO is based on migration and muta-
tion. With probabilistic migration, BBO is able to share
more information from good solutions to poor ones. In other
words, this algorithm prevents the good solutions be
destroyed during the evolution. Thus, it can efficiently uti-
lize the characteristics and information of population in per
iteration. This feature leads to find the better solutions in a
short time rather than other metaheuristics. Additionally, the
mutation operator increases the diversity among the popu-
lation. Without this modification, the relatively good solu-
tions will tend to be more dominant in population. The
mutation approach makes both solutions with low or high
habitat suitability index (HSI) likely to mutate and gives a
chance of improving to both types of solutions in compar-
ison to their earlier values [33].

Geographic distribution of biological organisms or bioge-
ography theory describes the islands, in which their species
migrate between them via flotsam, wind, flying, swimming,
and the like, as shown in Fig. 1. Migration is related to the
features of islands (e.g., rainfall, area, topography, diversity of

Fig. 1 Migration of spices [31]
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vegetation, and temperature), which are called suitability index
variables (SIVs) and affect the worth of HSI. Some islands are
more suitable for habitation than others. Islands that are well
suited as habitats for biological species are said to have a high
HSI. In addition, islands with the high HSI possess a large
number of species that emigrate to nearby islands and those
with a low HSI have a smaller number of species.

The approach of the BBO algorithm is explained as
follows:

Step 1: Initializing the BBO’s parameters
Step 2: Generating the initial population in a number of

initial population (nPop)
Step 3: Calculating the HIS of each individual in the

population
Step 4: Sorting the population from the best cost to the worst
Step 5: Selecting the elite solutions to keep in a number of

nKeep. Elite habitats are identified based on the
value of HSI

Step 6: Calculating the immigration and emigration rates
(λi and μi) for every individual Xi

Step 7: Modifying the population by the migration oper-
ator (all habitats are probabilistically modified by
performing the migration process)

Step 8: Mutating the population by a mutation operator
Step 9: Evaluating the population and select the best of

them
Step 10: Transferring the new population to next iteration

4.1.1 Initializing the BBO’s parameters

Since the parameters of many metaheuristics play important
roles in the quality of solutions. Without tuning parameters,
algorithms may not work properly. So determining the ap-
propriate values for parameters is needed. The procedure of
tuning parameters is explained in Section 6.2. The BBO
parameters include the maximum number of iteration
(MaxIt), nPop, probability of modification (pModification),
nKeep, and mutation probability (pMutation).

4.1.2 Generating the initial population

In this step, nPop solutions, each of which is called an “island”
or “habitat” in BBO algorithm must be generated. Further-
more, each solution is shown by an array Xi (i=1, … , nPop)
composed of SIVs. These variables accept the values which
must be optimized. xij is the jth SIV in solution Xi.

In the GA terminology, this array is called “chromosome”
and in ICA is expressed as “country”; while in BBO, “island or
habitat” plays the same role. In an N-dimensional optimization
problem, a habitat is a 1×N array. This array is defined by:

Habitat ¼ SIV1; SIV2; SIV3; . . . ; SIVNð Þ ð13Þ

These values of SIVs are defined by characteristics of
each specific problem as well as should be optimized and
are similar to gene in GA. Each variable in a habitat denotes
the climatic conditions in that island such as rainfall, area,
topography, diversity of vegetation, temperature, etc.

In coded BBO, each solution represents a sequence of jobs,
which should be assigned to available machines. In order to
reach this sequence, at first, the amounts of variables are
generated randomly by uniform distribution function in a range
between zero and one. Then, these values are interpreted by
sorting of them. For a problem with five jobs, Fig. 2a indicates
the initial structure and decoded structure is shown in Fig. 2b.

4.1.3 Evaluating the HSI for each individual

Each individual is considered as an “island” with a HSI to
measure its own cost function. The variables of an island
which are called SIVs characterize the habitability or eval-
uate the quality of each solution. In optimization problems,
solutions with the high HSI have further quality rather than
solutions with the low HSI.

The fitness function of each habitat is calculated as a
function of variables (SIV1, SIV2, … , SIVN) as follows:

ci ¼ f Habitatið Þ ¼ f SIVi1; SIVi2; . . . ; SIViNð Þ ð14Þ

4.1.4 Sorting the members of population and elitism of them

All solutions must be sorted based on their obtained fitness
function values from the best cost to the worst ones. Then,
nKeep individuals are chosen among the elite habitats with
the lesser costs.

4.1.5 Calculating the immigration and emigration rates
for each individual

The emigration and immigration rates are used to share
information between the habitats probabilistically [33]. In
BBO, an island has its own immigration and emigration
rates, μ and λ. These rates are the functions of number of
species on an island. These functions are as follows:

λk ¼ I 1� k

n

� �
ð15Þ

μk ¼ E
k

n

� �
ð16Þ

(a) Initial structure 0.87 0.45 0.23 0.47 0.64

(b) decoded structure 5 2 1 3 4

Fig. 2 The structure of a solution with five jobs in BBO
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where I and E are respectively the maximum possible
immigration and emigration rates, k is the number of
species in kth island and n=Smax is the total species as
shown in Fig. 3.

This method is one of the most common ways for
computing λ and μ presented by Simon [31]. In our
problem, the amounts of these rates for each member
depend on its fitness function. In fact, a solution with a
better objective function acquires a larger μ and smaller
λ rather than a solution with a worse cost. In this
procedure at first, all members of population are sorted
from the best fitness function to the worst. Then
according to the ranks which members acquire, μ and
λ are calculated under Eqs. (17) and (18).

wμi
¼ ri�1ð Þ

1�npopð Þ þ 1; wλi ¼ 1� wμi
; i ¼ 1; . . . ; npop ð17Þ

μi ¼ wμiPnpop

i¼1
wμi

; λi ¼ wλiPnpop

i¼1
wλi

ð18Þ

where wμi and wλi denote respectively the weight of
emigration and immigration rates in solution i. Also ri
is the rank of solution i with regard to its acquired
situation after sorting the objective functions. As an
example in accordance with the illustrated procedure,
the amounts of μ and λ for a population consists of
six solutions are calculating and has been shown in
Fig. 4.

4.1.6 Modifying the population by the migration operator

Based on the information and experiences of all solu-
tions, each of them with a habitat pModification is modified.
For implementing this process, at first for each solution,
a random number which is varying between zero and one
is generated. If this number is lower than pModification, the
procedure of migration for all of variables in that solu-
tion is performed. Then for every one of the variables in
solution i such as jth variable (SIVij), the procedure of

migration which is composed of the following steps
should be done.

& A random number varying between zero and one is
compared with the immigration rate of solution i
(λi). If this amount is lower than λi, immigration
process will be accepted. In reality, a weak solution
has the further immigration rate (λ) and is more
probable to receive the characteristics of the power-
ful members in population.

& It needs to select the jth variable from another
solution such as jth variable of solution k (SIVkj)
that transfers the own characteristics to SIVij. In
order to an appropriate selection, the roulette wheel
method is applied on emigration rate (μ). It is obvi-
ous through the roulette wheel method, a powerful
solution is more likely to select for emigrating its
own information to other weak solutions. This pro-
cedure is shown in Fig. 5.

4.1.7 Mutating the population with the mutation operator

The migration procedure makes the high HSI solutions
dominant in population and the low HSI solutions are
eliminated after several iterations. Therefore, the muta-
tion operator is applied to avoid the convergence of a
local optimum and increases diversity among the mem-
bers of a population [34]. In fact, the mutation approach
probabilistically mutates both low and high HSI solu-
tions and gives a chance to improve both kinds of the
solutions in comparison to their earlier values. To this
end, for all variables in solution i three following
phases must be implemented.

& A random value between zero and one is compared
with pMutation to determine which SIVs are selected
to mutate. As an example, Fig. 6b indicates vari-
ables in the 3rd and 4th positions that are selected
for mutation.

& After the SIVij is chosen, a random number (dx) is
generated uniformly from the interval (−MaxVariation

rate

immigration 

S1

emigration µ

S2 Smax
number of species

E=I

Fig. 3 The relationship between the number of species and migration
rates [31]

individuals rank µ

Solution 1 3 0.2 0.13

Solution 2 5 0.07 0.27

Solution 3 1 0.33 0

Solution 4 2 0.27 0.07

Solution 5 6 0 0.33

Solution 6 4 0.13 0.2

Fig. 4 The values of μ and λ for solutions in a population with six
members
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and +MaxVariation). In this algorithm, MaxVariation is con-
sidered 0.1 as shown in Fig. 6c.

& Then, the initial value of SIVij is replaced with the sum
of SIVij and dx as shown in Fig. 6d.

Finally, the values of muted structure in Fig. 6d are
interpreted by sorting of them according to Fig. 6e, which
indicates a sequence of five jobs.

4.1.8 Evaluating the population

After the migration and mutation processes on the initial
population, although some solutions might have not
been changed, all of them have been evaluated and
sorted from the best cost to the worst. The new popu-
lation that transferring to next iteration consists of new
and old habitats. New habitats are selected in this phase
after sorting in the number of (nPop−nKeep) and old
habitats are the elites chosen from the initial population
in a number of nKeep. The final output in this iteration
is the best solution which has the least cost. In addition,
the next iterations pass this procedure.

4.1.9 Stopping criteria

Expiry criterion in our proposed algorithm is to get the
MaxIt, which is adjusted by tuning the BBO parameters.

4.2 Imperialist competitive algorithm

The ICA originates the socio-political evolution and has
been modelled mathematically by Atashpaz-Gargary and
Lucas [35]. The steps of this algorithm according to ICA
presented by Attar et al. [36] are as follows:

1. Generating the initial empires—nPop solutions, which
are named the initial countries, are randomly generated
in a form of array 1×N. Then, these countries are
divided into two groups. The first group is the most
powerful members that are belonged to imperialist
countries in a number of Nimp and the second group
contains the remaining members in the name of colony
countries. Based on the power of imperialists that are
calculated using Eqs. (19) and (20), the colonies are
randomly distributed between the empires. Therefore,
the initial number of colonies at an empire is determined
according to Eq. (21):

Cn ¼ max ci � cn; i ¼ 1; 2; . . . ; Nimp ð19Þ

pn ¼ CnPNimp
i¼1

Ci

����
����; PNimp

i¼1
pi ¼ 1 ð20Þ

NCn ¼ round pn � Ncolf g ð21Þ

“Create a new population”

for i = 1: npop  do

If random (0,1) <                          then do

for Vij = 1: SIVs   do

If random (0,1) < i then do

Roulette Wheel method on µ is performed to select the another pop such as pop(k);

Position var(j) of newpop(i) = Position var(j) of pop(k);

end if

end for

end if

end for

Fig. 5 The pseudo-code of
migration procedure

(a) Initial structure

pMutation

0.87 0.45 0.95 0.47 0.64

(b) random values to define the mutation applying
=0.3 0.54 0.86 0.13 0.25 0.38

(c) random number (dx) between (-0.1,+0.1) - - 0.09 -0.07 -

(d) mutated structure 0.87 0.45 1.04 0.40 0.64

(e) decoded structure 4 2 5 1 3

Fig. 6 The mutation procedure
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where cn is the cost of nth imperialist and Cn is its
normalized cost. pn. and NCn denote respectively
power and the initial number of colonies for nth
imperialist. Also, Ncol is the number of all colonies.

2. Assimilation—imperialists try to improve all of their
colonies. The aim of assimilation procedure is to assim-
ilate the colony's characteristic such as culture, social
structure, and language toward its imperialist. As shown
in Fig. 7, each colony moves toward the imperialist by x
units. x is a random number with uniform distribution
(U (0, β×d)), where β is a number greater than 1 and d
is distance among the colony and imperialist which is
the vector of movement for colony toward imperialist.
Parameter β causes the colony to get closer to imperi-
alist from both sides. To intensify the property of this
method and search a wider area around the current
solution, we add a random amount of deviation θ to
the direction of movement. θ is a number with uniform
distribution θ 2 �g; gð Þð , where γ is a parameter that
adjusts the deviation from the original path.

3. Revolution—this mechanism is similar to mutation
process in genetic algorithm to create diversification
among the solutions. In each iteration, for every
colony a random number varying between zero and
one is generated and compared with probability of
revolution (PR). If the random number is lower than
PR, the procedure of revolution is performed. We
determine the number of variables which should be
changed, through multiplying PR in a number of
jobs. These numbers of the elements are selected
at random in a colony and their values are randomly
changed. Finally, the new colony will be replaced
with the previous colony while its cost is improved.

4. Exchanging positions of the imperialist and the best
colony—after assimilation for all colonies and rev-
olution for a percentage of them, the best colony in
every empire is compared with its imperialist. If the
best colony is better than its imperialist, the posi-
tions of them are exchanged.

5. Computing the total cost of an empire—it is clear that
the power of an empire is including the imperialist
power and their colonies. Moreover, the power of im-
perialist has a main effect on total power of an empire
while colonies have the lower impact. Hence, the equa-
tion of the total cost is defined as follows:

TCn ¼ cost imperialistnð Þþ
xmean costðcolonies of empirenÞf g ð22Þ

where TCn is the total cost of nth empire and zeta
(ξ) is a positive number considered to be less than
one. The total power of an empire is determined by
just the imperialist when the value of ξ is small.
The role of the colonies becomes more important
since the value of ξ increases.

6. Imperialistic competition—imperialists try to in-
crease their power by more possessing and control-
ling the colonies of other empires. For this purpose,
the weakest colony in the weakest empire is deter-
mined to assign to other empires. At first, the pos-
session probability of each empire is compute, the
normalized total cost must be calculated by:

NTCn ¼ max TCif g � TCn i ¼ 1; 2; . . . ; Nimp ð23Þ

where NTCn and TCn are respectively the normal-
ized total cost and total cost of nth empire. At last,
the possession probability of each empire is calcu-
lated according to Eq. (24). We use the roulette
wheel method for assigning the mentioned colony
to an empire.

pempn ¼
NTCnPNimp

i¼1 NTCi

�����
����� ð24Þ

7. Eliminating the powerless empires—when each empire
loses all of colonies, will collapse and its imperialist
as a colony is assigned to other empires. This ap-
proach should be continued until one empire is
remained.

8. Stopping criteria—the stopping criterion for each
test problem is to get the CPU time which is
recorded after solving by proposed BBO algorithm.

4.3 Population-based simulated annealing

SA is one of well-known metaheuristics to solve many
nonpolynomial hard optimization and operations re-
search problems. It was introduced by Metropolis et

Imperialist

Colony

x

d

New position
of colony 

Fig. 7 Moving colonies direction
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al. [37] and presented by Kirkpatrick et al. [38]. We
apply PBSA which has a similar structure to SA;
however, it proceeds with several initial solutions. In
fact, the further members in the initial population
make to increase the diversification and overcome the
local optimal points. Consequently, the more accurate
solutions and the global optimum point will be ac-
quired. This algorithm is composed of the following
phases:

1. The algorithm starts with the initial solutions, which
are randomly selected from search area in a number
of the primary population. The fitness functions of
population are calculated and the temperature of
system is set. The starting temperature (T0) must
be adjusted by attention to the dimension and nature
of the investigated problem. Because if T0 is very
hot, the algorithm will proceed slowly and extends
the search area. Besides if T0 is very low, the
algorithm may stay in local-optimal search and will
lead to untimely convergence. By using an
annealing schedule, the process of searching will
be continued until temperature decreases to final
temperature (Tf). Annealing schedule defines how
the temperature is changed during the annealing
process. It should be noted that the decrease of Tf
until zero is usual.

2. Each of the solutions finds a neighborhood for itself
to create a new population. There are three ap-

proaches to generate a neighborhood that described
below.

& Swap—the positions of two selected jobs in an array
are exchanged.

& Reversion—in this policy besides conducting swap,
the jobs located in between the swapped jobs are
reversed as well.

& Insertion—in this case, the job in the second posi-
tion is located immediately after the job in the first
location and the other jobs are shifted right hand
accordingly.

3. Algorithm replaces the new neighborhood of solu-
tion q with solution q if there is an improvement in
the fitness. But if there is no improvement in the
cost function, algorithm accepts the new neighbor-
hood with a probability in order to escape the local-
optimal solutions, this probability is obtained from
Boltzman distribution computed by:

P ΔEð Þ ¼ e
�ΔE
KTi ð25Þ

where ΔE is the difference between cost of the old
and new states, Ti denotes the temperature of the
system at ith iteration and k is a constant parameter
which in this paper is equal to one.

4. Finally, all members of the new population are sorted
based on their fitness values and the best of them is the
output of this iteration. At the end of each iteration, the
temperature of system must be updated. There are many
cooling approaches, such as geometric or linear decreas-
ing, hyperbolic and exponential functions. We consider

Table 1 The processing stages of jobs

Job 1 2 3 4 5 6

Stage [1, 2, 3] [1, 2, 3] [1, 2, 3] [1, 2, 3] [1, 2] [1]

Table 2 The processing
times of operations Job

S
mi

1 2 3

1 2 1 1 2

1 13 3 15 13 14

2 10 8 5 14 9

3 4 5 10 7 4

4 16 16 11 10 5

5 16 16 14 – –

6 12 15 – – –

Table 3 The waiting time’s upper bound between two consecutive
stages

S(i−i+1) Job

1 2 3 4 5 6

(0–1) 0 0 0 0 0 0

(1–2) 4 2 3 1 1 –

(2–3) 2 0 0 3 – –

Table 4 The ready times of jobs

Job 1 2 3 4 5 6

Ready time 6 8 5 7 13 9
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the linear function Ti ¼ aTi�1 to update the temperature
at each time. α represents a positive constant number
which is lesser than one and named cooling factor. Also,
Ti is the temperature of the system at ith iteration. In
order to find a better solution, the described phases
should be executed Maxipt (i.e., maximum iteration per
temperature) times at each temperature.

5. The next iterations are implemented according to the
above phases. Each iteration starts with the population
acquired at the third phase of its previous iteration. SA
usually terminates when T0 decreases to Tf after several
iterations. The termination criterion in this algorithm,

similar to ICA, for every kind of test problems is to meet
the CPU time that is acquired through running on the
BBO algorithm.

5 Numerical example

In this section, an example is illustrated in order to make the
described problem easier to comprehend. This example is
considered with six jobs, three stages so that there are two
machines in either first or third stages, while only one

Create a random sequence of jobs ;

Set tijk = The earliest beginning time of job kth on machine j at stage i;

for   i=1 to S do 
for k=1 to N do

for j=1 to mi do

Set ; % The availability time of machine jth at stage i;

if i=1 do

t1jk = max {Rk , t1j }; 
else

t ijk = max {C(i-1)k , t ij }; 
end if

j := min (t ijk + pijk) % Assign the best machine to job kth at stage i.
end for

“using linprog function of MATLAB”

Min cik %Calculate the best start time of job kth on the determined machine at stage i.

s.t.

t ijk + gijk = bijk ;
b(i+1)jk - Cik <= uik ;
b(i+1)jk Cik;

end for
end for

Fig. 8 The pseudo-code of
fitness evaluation

Table 5 The beginning times (bijk) of operations

Stage Job

1 2 3 4 5 6

1 6 12 32 12 34 22

2 9 24 40 29 50 –

3 24 29 50 40 – –

Table 6 The number of machine which assigned to each operation

Stage Job

1 2 3 4 5 6

1 2 1 2 2 1 1

2 1 1 1 1 1 –

3 1 2 1 2 – –
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machine exists in the second stage (i.e., n=6, S=3, m1=2,
m2=1, and m3=2).

Table 1 indicates jobs 1, 2, 3, and 4 must pass through all
three stages whereas job 5 skips stage 3 and job 6 skips
stages 2 and 3. Table 2 shows the processing times of
operations. There are the unrelated parallel machines in each
stage so that they can process one type of operation at the
different duration of times. Table 3 displays the upper
bounds of waiting times between every two consecutive
operations with this assumption that stage 0 is considered.

Table 4 shows the ready times of jobs, “times at which
the jobs are available for processing.” The decision vari-
ables dealt in this problem are the sequence of jobs on each
machine, machines assignment to operations and beginning
times of operations in a manner that Cmax is minimized.

This example is solved by the proposed BBO algorithm
coded using MATLAB 2009b software. Figure 8 depicts the
used pseudo-code of fitness evaluation which is developed
in two phases. As explained below, the first phase is trying
to obtain the best response through searching the solution
area. Also, second phase by applying the response of first
phase, acquires the best result under solving the linear
programming.

1. In first phase, by searching the solution area and apply-
ing a policy that provides the minimum completion time

for an operation, the best sequence and machines allo-
cation are gotten. Initially, a random sequence of jobs is
created. According to sequencing of jobs and from the
first stage to the last, the availability times of all ma-
chines (tij) are calculated, which are equal to completion
time of the previous work on them. Also, the ready time
of processing the intended job (tijk) is calculated by
comparing its completion time in the previous stage or
its release data at the workshop. By assuming the con-
sidered operation will be processed on all machines, its
completion time is estimated. At last, the minimum of
these estimates determines the best machine to process
that job.

2. After determining the sequence of jobs and assignment
of machines, second phase through solving the linprog
function on MATLAB, calculates the best start times for
all operations in all stages so that the limited waiting
times constraint is met.

Consequently, the best solution is obtained in a se-
quence of q={1, 2, 4, 6, 3, and 5} with the cost
function Cmax=64. All outputs are shown in Tables 5,
6, and 7. Table 5 exhibits the beginning times of oper-
ations. Table 6 denotes the machine assigned to each

Table 7 The waiting time in the intermediate buffers

Stage Job

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 2 3 1 0 –

3 0 0 0 0 – –

mij

m11
Delay2 2 6 5

m12 1 Delay
4

4 Delay3 3

m21 1 2 4 3 5

m31 1 3

m32 2 4

5 10 15 20 25 30 35 40 45 50 55 60
Time (second)

Fig. 9 Gantt chart for an
example problem, Cmax=64

Table 8 The factors and their levels

Factors Levels

Number of jobs 20, 50, 100

Number of stages 2, 4, 8

number of machines at per stage Constant (4), variable (U (2, 8))

Processing time U (25, 95)

Pskip 0.1, 0.4

LWT U (0, 20)

Ready time U (0, 50)
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operations. Table 7 presents the duration of times that
jobs must be waited at the intermediate buffers. Addi-
tionally, the values of this matrix must be lower than
the matrix displayed in Table 3 in order to satisfy the
limited waiting times constraint.

Figure 9 illustrates the acquired results as a Gantt chart. It
can be observed that there is at stage one the available
machines earlier than the beginning times of jobs 2, 3, and
4. In reality, the processing of these jobs is postponed in
order to satisfy the limited waiting times constraint. There-
fore, after several iterations, the proposed BBO algorithm
gives a near-optimal solution so that the maximum comple-
tion time is minimized.

6 Evaluation method

The proposed metaheuristics for our problem are coded by
using MATLAB 2009b on a personal computer with a
Pentium (R) Dual-core, CPU E5700, 3.00 GHz and 3.25 GB
of RAMmemory under the Microsoft Windows XP. The ICA
and SA are among the most popular algorithms in all of
optimization and combinatorial optimization problems. Some
researches inmany kinds of scheduling problems have applied
ICA [2, 39–41] and SA (PBSA) or modified versions of SA
[20, 42–47] for solving their problems.

Hence, for assessing the performance of all three proposed
algorithms, 36 various test problems are generated. These
problems are in different dimensions, small, medium and large
sizes that include 20, 50, and 100 jobs, respectively.

Table 9 The levels of parameters of BBO algorithm

Parameters Levels

Lower Upper

MaxIt 100 150

nPop 40 60

nKeep 0.1×nPop 0.15×nPop
pMutation 0.05 0.1

Table 10 The results of experiments

No. MaxIt nPop nKeep pMutation Response

1 125 50 0.13 0.10 1,339

2 100 40 0.10 0.10 1,341

3 125 50 0.13 0.05 1,319

4 150 40 0.15 0.05 1,328

5 150 40 0.10 0.05 1,352

6 125 50 0.13 0.08 1,309

7 150 40 0.10 0.10 1,305

8 150 60 0.10 0.10 1,310

9 100 50 0.13 0.08 1,331

10 100 60 0.15 0.10 1,319

11 100 40 0.10 0.05 1,390

12 150 60 0.10 0.05 1,325

13 125 50 0.13 0.08 1,367

14 125 50 0.15 0.08 1,331

15 125 40 0.13 0.08 1,274

16 125 50 0.13 0.08 1,352

17 150 60 0.15 0.10 1,348

18 125 50 0.13 0.08 1,325

19 100 60 0.15 0.05 1,317

20 150 60 0.15 0.05 1,321

21 100 40 0.15 0.10 1,323

22 125 50 0.13 0.08 1,317

23 125 60 0.13 0.08 1,328

24 100 60 0.10 0.10 1,322

25 100 40 0.15 0.05 1,390

26 125 50 0.13 0.08 1,362

27 150 50 0.13 0.08 1,326

28 100 60 0.10 0.05 1,312

29 125 50 0.10 0.08 1,347

30 150 40 0.15 0.10 1,309

Table 11 The optimum values of BBO parameters

MaxIt nPop nKeep pMutation Predicted response

150 40 0.15 0.1 1,300.772

Table 12 The obtained RPD of results by algorithms

Instance Algorithms

n×m PBSA ICA BBO

20 jobs 5.179874 8.173175 0.393349

20×2 6.641099 11.37652 0.090909

20×4 6.457202 7.876704 0.853514

20×8 2.441323 5.266298 0.235624

50 jobs 5.196064 6.395222 0.012681

50×2 4.928611 4.994669 0

50×4 4.008929 5.817911 0.038043

50×8 6.650652 8.373086 0

100 jobs 3.518237 3.7845 0.015247

100×2 2.865093 3.548803 0

100×4 2.539178 2.434507 0.045741

100×8 5.150441 5.37019 0

Average 3.796355 3.995606 0.015812
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Each of the test problems is run ten times separately on
all three metaheuristics. Then for every problem and algo-
rithm, the average relative percentage deviation RPD

� �
is

obtained from the results of ten runs. At last, the obtained
RPD on all three algorithms are compared with together.

6.1 Data generation

The required data to randomly generate the test problems
consists of the number of jobs, stages and machines in each
stage, also, processing times, LWT and job’s ready time
distribution functions and probabilities of skip. These fac-
tors and their levels are demonstrated in Table 8. All com-
binations of these levels lead to make the various test
problems.

6.2 Parameter tuning

The quality of the metaheuristics is significantly affected by
the values of parameters. Therefore, we need to find a best
combination of parameters in the BBO, ICA, and PBSA
algorithms in order to achieve the better results. So, for each
of the algorithms, a regression analysis between the different
values of parameters and their responses is implemented on
Design-Expert software.

The response surface methodology (RSM) proposed by
Myers [48] is a comprehensive experimental design and

mathematical method. RSM fits the relationships of the re-
sults into a regression equation and is effective to determine
the best condition.

In comparison with other parameters calibration methods
(e.g., Taguchi method [49]), one of the advantages of RSM
is considering all main and interaction effects between the
parameters. Hence, this method obtains better values for
parameters.

In order to find the best possible combination of
parameters, the estimated regression function along with
the determined range of parameters is minimized by
Lingo software. As an instance, the procedure of pa-
rameter tuning for proposed BBO algorithm is described
in detail. The BBO parameters and their levels are
shown in Table 9.

It is noticeable that pModification is considered equal to
one in order to modify all members of population. A
medium sized problem is investigated to tune the pa-
rameters. This problem consists of 50 jobs, 4 stages so
that the number of machines at each stage is generated
uniformly from the interval [2, 8] and probability of
skip is supposed to 0.4. The RSM designs 30 experi-
ments for these four parameters that contain 6 central
and 24 axial points. In each experiment, the BBO
parameters are changing in their corresponding ranges
to run the addressed problem. Table 10 indicates these
30 experiments and their obtained responses.

The final estimated regression equation based on the
results has been obtained as Eq. (26). After solving the
following model by Lingo, the optimum values are shown
in Table 11.

f MaxIt; nPop; nKeep; pMutation

� � ¼ 2; 154:71667� 3:31889�MaxIt � 12:53611� nPop � 1; 670�
nKeep � 4; 056:66667� pMutation þ 0:046�MaxIt � nPopþ
3�MaxIt � nKeep þ 5�MaxIt � pMutation þ 18:5�
nPop � nKeep þ 51:5� nPop � pMutation þ 4; 400� nKeep�pMutation

ð26Þ
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Fig. 10 Means plot and Tukey’s intervals (at 95 % confidence level)
for the type of algorithms
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Fig. 11 Plots of RPD for the interaction among the type of algorithm
and n

1596 Int J Adv Manuf Technol (2013) 68:1583–1599



Subject to:

100 ≤ MaxIt ≤ 150
40 ≤ nPop ≤ 60
0.1 × nPop ≤ nKeep ≤ 0.15 × nPop
0.05 ≤ pMutation ≤ 0.1
MaxIt, nPop, and nKeep/integer

Based on the results of parameter tuning by executing the
above approach, the values of parameters in ICA including nPop,
Nimp, ξ, and PR are set respectively to 40, 4, 0.15, and 0.3. Also,
the parameters of PBSA algorithm (e.g., nPop, T0, Tf, α, and
Maxipt) are adjusted to 3, 10,000, 0, 0.995, and 2, respectively.
Indeed, the MaxIt of ICA and PBSA are when the algorithm is
reached the set time. The set time is the same termination
criterion of ICA and PBSA as described in Section 4.

6.3 Evaluating results

After tuning the parameters, at first, each random test prob-
lem is solved on BBO and its CPU time is recorded. So, the
other algorithms are tuned based on the acquired CPU time
to run the same problem. Each kind of the problems is run at
a specific time by all three algorithms.

The benchmarks applied to evaluate the performance of
these metaheuristics are the relative percentage deviation

(RPD) and the RPD . Thus, the results obtained by the
algorithms are converted to RPD and RPD according to
Eqs. (27) and (28) defined by:

RPD ¼ Algorithmsol � Bestsolj j
Bestsol

� 100 ð27Þ

ARPD ¼ RPD ¼
Pnumber of run

i¼1 RPDi

number of run
ð28Þ

where Algorithmsol is the makespan obtained by an algo-
rithm for a given problem and Bestsol is a minimum
makespan among all results of ten runs for that problem.

The comparison of the performances of applied
metaheuristics is shown in Table 12. Furthermore, we imple-
ment the sensitive analysis on the number of jobs, stages and
number of machines per stage, as well as skip probability to
achieve a more efficient algorithm from the various points of
views.

To assess the algorithms, Tukey’s 95 % confidence in-
tervals of algorithms are conducted on the RPD of the
results. This analysis is illustrated in Fig. 10 that indicates
the BBO algorithm is significantly superior to ICA and
PBSA. Additionally, BBO has the lesser deviation range.

The sensitive analysis is utilized on the four controlled
factors to prove the performance of BBO algorithm from the
various points of views. Figure 11 shows the interaction be-

tween type of algorithm and the number of jobs using RPD.
Figure 12 displays the effect of number of stages on the quality
of algorithms. Both Figs. 11 and 12 indicate that for every
number of jobs and stages, the proposed BBO algorithm acts
better than ICA and PBSA. Moreover, PBSA generally works
better than ICA especially in a lesser number of jobs.

Figures 13 and 14 respectively exhibit the effect of
the distribution of machine number and skipping prob-
ability on the quality of algorithms. As is obvious, in
all cases, the BBO algorithm is more advanced to ICA
and PBSA.
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Fig. 14 Plots of RPD for the interaction among the type of algorithm
and Pskip
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7 Conclusion and future study

In this paper, a HFFS problem with some constraints includ-
ing the existence of unrelated parallel machines, limited
waiting times between every two successive operations
and the job release date was investigated. We first formulat-
ed this problem by a mathematical model in the form of a
mixed-integer nonlinear program. Furthermore, a novel
BBO method, ICA and PBSA were employed to minimize
the makespan. To evaluate the performance of the presented
techniques, we conducted the experiments and statistical
analyses on them. The evaluating results illustrated that the
proposed BBO algorithm had the ability to find the better-
quality solution as well as convergence characteristics rather
than PBSA and ICA. Since the efficiency of BBO was
shown in our study, it is recommended to take the advan-
tages of this algorithm for other combinatorial optimization
problems or develop the new metaheuristics for this prob-
lem. A possible and natural extension for this paper is the
considering more realistic assumptions, such as machine
availability constraint, preventive maintenance, and due
dates. A limited buffer capacity between the machines or
blocking environment may be explored as well. In addition,
multiobjective cases and other criteria, for example, the total
weighted earliness and tardiness, flow time, and the maxi-
mum lateness of the problem can be developed.
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