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Abstract Designing and planning a closed-loop supply
chain in a comprehensive structure is vital for its applicabil-
ity. To cope with the design and planning issue of a com-
prehensive closed-loop supply chain network, this paper
develops an extended model, which is multi-echelon,
multi-product, and multi-period in a mixed integer linear
programming framework. The word “comprehensive,” in
our mathematical approach, in designing and planning a
closed-loop supply chain problem, can be analyzed from
two complementary angles: including all possible entities
(facilities) of a real condition and considering minimum
limitations on possible flows between entities. In our pro-
posed model, customers can be supplied via manufacturers,
warehouses, and distributors, as an example. The proposed
model is solved by CPLEX optimization software and by a
developed genetic algorithm. During this computational
analysis, we compare results of proposed pretuned genetic
algorithm with a global optimum of CPLEX solver. Then, a
sufficient number of large-size instances are generated and
solved by the proposed genetic algorithm. To the best of our
knowledge, there has been no similar multi-period multi-
product closed-loop supply chain design and planning prob-
lem utilizing any kind of meta-heuristics let alone genetic
algorithms. Therefore, in this issue, it is an original research,
and results prove the acceptable performances of the devel-
oped genetic algorithm.
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1 Introduction

A supply chain, in its classical form is a combination of
processes to fulfill a customer request, and it not only includes
the manufacturers and suppliers, but also contains trans-
porters, warehouses, retailers, and customers themselves [1].
To update this definition, we need to consider environmental
effects and social responsibilities, which lead us to regard
reverse logistics of used products (called return products).
Consequently, by trying to manage a forward and reverse
supply chain simultaneously, we will have a closed-loop
supply chain. In a closed-loop supply chain, manufacturers
have to be responsible for collecting used products from
customers and trying to reuse them in any possible form (or
at least dispose them).

Recently, a combination of four main reasons actuates
manufacturers toward focusing on closed-loop supply chain
(CLSC) issues: governmental legislation, customer aware-
ness, social responsibilities, and economical concerns of or-
ganizations. Roughly speaking, a closed-loop supply chain
used to be an undesirable constraint in the past, but it is an
acceptable necessity, and interestingly, it will be the only
remedy to sustain, in the future. Consequently, if industries
want to sustain, they should regard forward and reverse supply
chains, together. Beamon presents a comprehensive illustra-
tion of a simple closed-loop supply chain network [2].

In dealing with a closed-loop supply chain, we have differ-
ent long-term and mid-term decision steps, called design and
planning, respectively. In the designing stage, strategic de-
cisions on location of all facilities (configurations) are made.
In planning, we should determine the very important part of
the supply chain network, which is determining the quantity of
flows between supply chain entities [1]. As the design and
planning stages are interdependent, regarding integrated ap-
proaches becomes unavoidable.

H. Soleimani :M. Seyyed-Esfahani (*) :M. A. Shirazi
Department of Industrial Engineering and Management Systems,
Amirkabir University of Technology (Tehran Polytechnic),
424 Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran
e-mail: msesfahani@aut.ac.ir

Int J Adv Manuf Technol (2013) 68:917–931
DOI 10.1007/s00170-013-4953-6



The presented model in this paper deals with the two
above-mentioned decision-making stages: design and plan-
ning. The main aim of this paper is to improve earlier
attempts in the designing and planning of a closed-loop
supply chain by presenting a comprehensive model. We will
try to consider all probable entities and possible network
flows in our proposed CLSC. In the literature review part of
this paper, this gap is illuminated. Then, utilizing sufficient
numbers of appropriate instances, the developedmodel will be
evaluated and solved. As we deal with large-scale instances in
a practical environment, a genetic algorithm (GA) is proposed
to solve issue that cannot be solved by exact solvers.

The rest of this paper is arranged as follows. In Section 2, a
complete literature review is presented. Model characteristics
and formulations are demonstrated in Section 3. Tuning of the
proposed genetic algorithm is performed in Section 4. Com-
putational analysis is illustrated in Section 5. Finally, Section 6
presents the conclusion and future researches.

2 Literature review

We try to propose a comprehensive CLSC network, to be
attained by analyzing previous trends in designing and plan-
ning a CLSC. Hence, a research in literature is aimed. The
word “comprehensive,” in our mathematical approach in
designing and planning a CLSC problem, can be analyzed
from two complementary angles:

& In the designing stage, we can expect a comprehensive
model not only to encompass all real-world entities but
also to release any impractical assumptions. As an ex-
ample, single-period or single-product models are far
from practical and real-world situations. A model, which
does not include warehouses as separate entities, needs
to be revised in case of implementation. We try to
propose a model with minimum limitations.

& In the planning stage, we can expect a comprehensive
model to regard all possible flows between entities. As
an example, in practical cases, customers can be sup-
plied not only by distributors but also by manufacturers
or warehouses directly. This definitely makes some sig-
nificant changes in the size of the problem and its
practicability. We try to cover maximum possible net-
work flows in the proposed model.

We attempt to propose a model that can meet the most
possible real-world requirements. In order to achieve this
and to prove its cogency, comprehensive research in litera-
ture is imperative and has been realized by reviewing more
than 80 different papers in this field. At first, some general
explanations of selected papers are presented. Then, at the
end of the literature review and based on the characteristics
of each paper, gaps will be summarized. In the literature

survey, we try to find the models that consider acceptable
real-world entities including sufficient flows.

The two fundamental papers on the closed-loop supply
chain are Beamon [2] and Fleischmann [3]. Beamon worked
on environmental factors toward proposing a simple struc-
ture of a CLSC. He explained the classical supply chain and
closed-loop supply chain completely. His aim was to offer a
conceptual framework for CLSC. Fleischmann deals with
logistic network characteristics including reverse supply
chain.

Schultmann [4] researched in an automotive battery in-
dustry that faces severe regulations in Germany. He used
simulation in his CLSC. This paper is a case study, and it
can rarely be used in other environments. Pibernik [5] coped
with the problem of planning supply chain in centralized
and decentralized conditions. His model considered just the
planning stage of decisions, and hence, it is not an integrated
approach. Focusing on designing a closed-loop supply
chain, more related papers should be mentioned. French et
al. [6] researched on the pertinence of CLSC in process
industries. Prahinski et al. [7] tried to present a review study
on logistics and its drastic effects. He confirmed the lack of
an integrated comprehensive model in literature in his re-
view. Biehl et al. [8] researched on a case study of reverse
logistic in the carpet industry in the USA.

Since 2008, quantitative models for CLSC design were
presented to cover gaps. Papers of Kusumastuti et al. [9] and
Lee et al. [10] are two case studies of designing a CLSC in
computer industries. However, they are not integrated stud-
ies. Kusumastuti researched on the designing level of CLSC
and vice a versa; Lee [10] presented a model for CLSC
network planning. Fuente et al. [11] presented an integrated
model just for designing a CLSC in metal industries in
Spain. Amaro et al. [12] also worked on a similar research
like Fuente but in the pharmaceutical sector. Based on our
definition, all of them lack generality.

In 2009, integrity and uncertainty were two main popular
issues of CLSC studies. Different papers were published on
these subjects (like Mutha et al. [13], Dehghanian and
Mansour [14], Xanthopoulos [15], and Kannan [16]). Two
important review papers were published in 2009: Pokharel
and Mutha [17] and the paper of Subramoniam et al. [18].
The first one reviews current advancements in reverse lo-
gistics. They mention that almost all papers in this field are
case based; thus, they cannot be used in other cases. Hence,
it is so important to have a comprehensive model. This
paper attempts to cover this gap. The second paper was a
review of reverse logistics in the automotive industry.

Wang and Hsu's paper, in 2010 [19], presented a com-
prehensive deterministic model in which distribution centers
were collection centers too (so it could not pass generality
requirements as mentioned). A minimum spanning tree-
based genetic algorithm was its solving approach.
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El-Sayed and Afia [20] presented a single-product multi-
period CLSC design. Due to its good notation, we have
extended our general model based on its formulation. Sure-
ly, because of our comprehensive approach, many improve-
ments are seen here. For instance, the proposed model of
this paper is multi-products; warehouses are noticed as
separate entities, and different network flows between all
facilities are considered. It should be noted that this paper is
not a trivial extension as it considers all possible entities and
flows in a multi-period multi-product CLSC network. Con-
sequently, the final model will be complicated and huge.
Further, an appropriate genetic algorithm is developed to
cope with real-sized instances.

A well-known reviewing paper of Gold et al. [21]
reviewed all case studies in a sustainable supply chain
management, which were published from 1994 to 2007 in
English-speaking peer-reviewed journals. They mention
lack of presenting and solving a comprehensive model.
Subramanian et al. [22] presented a mathematical model for
a multi-echelon, multi-product, and single-period closed-loop
supply chain. He tried to offer a generalized single-period
model. Kannan et al. [23] works on designing CLSC in a
deterministic situation using genetic algorithm. Pishvaee et al.
[24] utilized a robust optimization approach in dealing with a
CLSC. This model was the single-product, single-period type.
A noticeable review of El korchi and Millet [25] offered 18
structures for formulations. They could not conclusively seg-
regate these structures to one or two general types. Finally,
Gomes et al. [26] studied on a Portuguese company in the
electronic field just in designing CLSC.

In light of the above, the necessity of proposing a com-
prehensive model for a closed-loop supply chain network is
clarified. The entire literature review is summarized as
follows:

& Between elite relative papers in literature, there are just
four multi-period, multi-product papers [9, 23, 26, 27],
and three of the mentioned are case-based papers; the
fourth one is a graph-based model, which neither in-
cludes suppliers nor copes with large-scale instances
[26]. Further, none of them considers practical-sized
instances. In conclusion, the important claim about the
necessity of a multi-period multi-product closed-loop
supply chain model is clarified. In this paper, a multi-
period multi-product closed-loop supply chain model is
developed.

& To the best of our knowledge, not considering a real-
sized problem is sensible. Indeed, based on solving
complexities, practical-scale instances are always ig-
nored. They are just mentioned in [4, 10, 14, 28, 29].
In order to cope with the proposed complicated model, a
genetic algorithm is developed and validated for small-
sized and large-scale instances.

& In reviewing literature, we find the genetic algorithms'
acceptable performance in the design and planning of a
closed-loop supply chain problem. Consequently, we
choose this famous algorithm to deal with real-size in-
stances [14, 16, 28, 30].

We try to present a multi-period, multi-product model,
which covers almost all possible network flows between
entities. For instance, customers can receive products via
manufacturers, warehouses, and distributors. Such network
flows are rarely seen in other researches. Roughly speaking,
this paper tries to cover two main identified gaps in the
CLSC design and planning problem by proposing a com-
prehensive multi-product multi-period model, utilizing a
genetic algorithm to cope with real-sized instances.

3 Model description and formulation

In order to have a comprehensive type of model in designing
and planning a closed-loop supply chain, we suggest a
multi-period, multi-product, and multi-echelon model,
which includes different network flows based on the practi-
cal realizations. The assumptions of the model are as
follows:

& The model is multi-echelon, multi-product, and multi-
period, consisting of suppliers, manufacturers, ware-
houses, distributors, retailers (customers), disassembly
centers (collection centers), redistributors, disposal cen-
ters, and second customers (see Fig. 1).

& Potential locations, capacity of all facilities, and all cost
parameters are predetermined.

& Quality, demands, and prices of return products are
different from new products.

& If we cannot fulfill customers' demands; shortages can-
not be covered in the next periods, so we endure shortage
costs. This assumption will encourage the supply chain
network to cover customers' demands. If, in reality, there
is an option to cover demands in the next period, the
presented model will simply cover it by changing unit
shortage cost.

& Due to the generality, costs like shortage costs, holding
costs, etc., are dependent on the periods and products
and so are not fixed for all periods or all products.

& Manufacturers, warehouses, distributors supply first
customers.

& Manufacturers, warehouses, disassembly centers and
redistributors supply second customers.

The whole network flow between facilities is shown in
Fig. 1. It should be mentioned that the solid lines and dashed
lines, respectively, illustrate forward and reverse flows.
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Formulating a conceptual model is definitely the most
important part of its applicability. The complete model is
presented as follows:

Sets:

S Potential number of suppliers, indexed by s
F Potential number of manufacturers, indexed by f
W Potential number of warehouses, indexed by w
D Potential number of distributors, indexed by d
C Potential number of the first customers (retailers),

indexed by c
A Potential number of disassembly centers, indexed by a
R Potential number of redistributors, indexed by r
P Potential number of disposal locations, indexed by p
K Potential number of second customers, indexed by k
U Number of products, indexed by u
T Number of periods, indexed by t

Parameters:

M A sufficiently large constant
S′ The maximum number of suppliers
F′ The maximum number of manufacturers
W′ The maximum number of warehouses
D′ The maximum number of distributors
A′ The maximum number of disassembly

centers
R′ The maximum number of redistributors
P′ The maximum number of disposal

centers

Dkut Demand of product u of the second
customer k in period t

Pcut Unit price of product u at the first
customer c in period t

PHcut Purchasing costs of product u at the
first customer c in period t

Pkut Unit price of product u at the second
customer k in period t

Fi Fixed costs of the opening location i
DSij Distance between any two locations i

and j
SCsut Capacity of supplier s of product u in

period t
SRCsut Recycling capacity of supplier s of

product u in period t
FCfut Manufacturing capacity in hours

of facility f of product u in period t
RFCfut Remanufacturing capacity in hours of

facility f of product u in period t
WCwut Capacity of warehouse w for product u in

period t
DCdut Capacity of distributor d for product u in

period t
ACaut Capacity of disassembly center a for

product u in period t
RCrut Capacity of redistributor r for product

u in period t
PCput Capacity of disposal center p

for product u in period t

Fig. 1 The proposed model (The arrows show possible network flows)
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Mcsut Unit material costs of product u
supplied by supplier s in period t

Rcsut Recycling costs of product u per unit
recycled by supplier s in period t

Fcfut Manufacturing costs of product u per
unit manufactured by facility f in
period t

RFcfut Remanufacturing costs of product u per
unit remanufactured by facility f in
period t

DAcaut Disassembly costs of product u per unit
disassembled by disassembly center a in
period t

RPcaut Repairing costs of product u per unit
repaired by disassembly center location a
in period t

Pcaut Disposal costs of product u per unit
disposed by disposal location p in period t

Ncfut Non-utilized manufacturing capacity costs
of product u per hour of facility f in period t

RNcfut Non-utilized remanufacturing costs of
product u per hour of facility f in period t

Scut Shortage costs of product u per unit in
period t

Fhfu Manufacturing time of product u per unit
in hours at facility f

RFhfu Remanufacturing time of product u
per unit in hours at facility f

Rcsut Recycling costs of supplier s of
product u in period t

WHwut Holding costs of product u per unit at
the warehouse w in period t

DHdut Holding costs of product u per unit at
distributor d stored in period t

Bsu, Bfu, Bdu, Bau,
Bru, Bwu, Bcu

Batch size of product u from supplier
s, facility f, distributor d, disassembly
center a, redistributor r, warehouse w,
and customer c, respectively

Tcut Transportation costs of product u per
unit per kilometer in period t

RRut Return ratio of product u at the first
customers in period t

Rc Recycling ratio
Rm Remanufacturing ratio
Rr Repairing ratio
Rp Disposal ratio

Decision variables:

Li Binary variable equals “1” if the location i is
open and “0” if otherwise.

Liij Binary variable equals “1” if a transportation link
is established between any two locations i and j.

Qijut Flow of batches of product u from location i
to location j in period t.

Rwut The residual inventory of product u at warehouse
w in period t.

Rdut The residual inventory of product u at distributor
d in period t.

3.1 Objective function

We have considered profit as the objective function, so all
sales and costs are calculated:

Total sales:
Sales of all products:

First product sales:

X
d2D

X
c2C

X
u2U

X
t2T

QdcutBduPcutþ
X
f 2F

X
c2C

X
u2U

X
t2T

QfcutBfuPcut

þ
X
w2W

X
c2C

X
u2U

X
t2T

QwcutBwuPcut

ð1Þ

Second product sales:X
r2R

X
k2K

X
u2U

X
t2T

QrkutBbuPkutþ
X
f 2F

X
k2K

X
u2U

X
t2T

QfkutBfuPcut

þ
X
w2W

X
k2K

X
u2U

X
t2T

QwkutBwuPcut

ð2Þ

Total costs:
Total costs=fixed costs+material costs+manufactur-

ing costs+non-utilized capacity costs+shortage costs+
purchasing costs+disassembly center costs+recycling
costs+remanufacturing costs+repairing costs+disposal
costs+transportation costs+inventory holding costs.
Fixed costs:X
s2S

FsLs þ
X
f 2F

Ff Lf þ
X
d2D

FdLdþ
X
a2A

FaLaþ
X
r2R

FrLr

þ
X
p2P

FpLp þ
X
w2W

FwLw

ð3Þ

Material costs:

X
s2S

X
f 2F

X
u2U

X
t2T

QsfutBsuMcsut

�
X
a2A

X
s2S

X
u2U

X
t2T

QasutBau Mcsut � Rcsutð Þ ð4Þ

Manufacturing costs:

P
f 2F

P
d2D

P
u2U

P
t2T

QfutBfuFcfutþ
P
f 2F

P
w2W

P
u2U

P
t2T

QfwutBfuFcfutþ

P
f 2F

P
c2C

P
u2U

P
t2T

QfcutBfuFcfut þ
P
f 2F

P
k2K

P
u2U

P
t2T

QfkutBfuFcfut
ð5Þ
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Non-utilized capacity costs (for manufacturers):

P
f 2F

P
u2U

P
t2T

FCfut Fhfu
�� �

Lf �
P
d2D

QfdutBfu

� �� P
w2W

QfwutBfu

� �� P
c2C

QfcutBfu

� �þ P
w2W

P
r2R

QwrutBwu þ
P
w2W

P
k2K

QwkutBwu

� �
Ncfut

� �� �

þP
f 2F

P
u2U

P
t2T

RFCfut RFhfu
�� �

Lf �
P
r2R

QfrutBfu

� �� P
k2K

QfkutBfu

� �� P
w2W

P
r2R

QwrutBwu þ
P
w2W

P
k2K

QwkutBwu

� �
RNcfut

� ��

ð6Þ
Shortage costs (for distributor):

X
c2C

X
u2U

X
t2T

Xt
t�1

Dcut �
Xt
t�1

X
d2D

QdcutBdu �
Xt
t�1

X
f 2F

QfcutBfu�
Xt
t�1

X
w2W

QwcutBwu

 !
Scut

 ! ! !
ð7Þ

Purchasing costs:

X
c2C

X
a2A

X
u2U

X
t2T

QcautPHcutBcu ð8Þ

Disassembly center costs:

X
c2C

X
a2A

X
u2U

X
t2T

QcautBcuDAcaut ð9Þ

Recycling costs:

X
a2A

X
s2S

X
u2U

X
t2T

QasutBauRcsut ð10Þ

Remanufacturing costs:X
a2A

X
f 2F

X
u2U

X
t2T

QafutBauRFcfut ð11Þ

Repairing costs:X
a2A

X
r2R

X
u2U

X
t2T

QarutBauRPcaut ð12Þ

Disposal costs:X
a2A

X
p2P

X
u2U

X
t2T

QaputBauPcput ð13Þ

Transportation costs:

P
t2T

P
u2U

P
s2S

P
f 2F

QsfutBsuTcutDSsfþ
P
t2T

P
u2U

P
f 2F

P
d2D

QfdutBfuTcutDSfdþ
P
t2T

P
u2U

P
f 2F

P
w2W

QfwutBfuTcutDSfw

P
t2T

P
u2U

P
f 2F

P
c2C

QfcutBfuTcutDSfc þ
P
t2T

P
u2U

P
f 2F

P
k2K

QfkutBfuTcutDSfk þ
P
t2T

P
u2U

P
w2W

P
c2C

QwcutBwuTcutDSwc

P
t2T

P
u2U

P
w2W

P
k2K

QwkutBwuTcutDSwk þ
P
t2T

P
u2U

P
d2D

P
c2C

QdcutBduTcutDSdc þ
P
t2T

P
u2U

P
a2A

P
s2S

QasutBauTcutDSas

P
t2T

P
a2A

P
u2U

P
f 2F

QafutBauTcutDSafþ
P
t2T

P
u2U

P
a2A

P
p2P

QaputBauTcutDSapþ
P
t2T

P
u2U

P
a2A

P
r2R

QarutBauTcutDSarP
t2T

P
u2U

P
f 2F

P
r2R

QfrutBfuTcutDSfrþ
P
t2T

P
u2U

P
w2W

P
r2R

QwrutBwuTcutDSwr þ
P
t2T

P
u2U

P
r2R

P
k2K

QrkutBruTcutDSruk

P
t2T

P
u2U

P
c2C

P
a2A

QcautBcuTcutDSca þ
P
t2T

P
u2U

P
w2W

P
d2D

QwdutBwuTcutDSwd ð14Þ

Inventory holding costs:X
w2W

X
u2U

X
t2T

RwutWHwutþ
X
d2D

X
u2U

X
t2T

RdutDHdut ð15Þ

3.2 Constraints

All constraints of the proposed comprehensive model are
represented as follows. Clearly, this general model is a
mixed integer linear programming one:

X
s2S

QsfutBsu ¼
X
d2D

QfdutBfu þ
X
w2W

QfwutBfu

þ
X
c2C

QfcutBfu; 8t 2 T ;8u 2 U ;8f 2 F

ð16Þ

X
f 2F

QfwutBfu þ Rwu t�1ð Þ ¼ Rwut þ
X
d2D

QwdutBwu þ
X
c2C

QwcutBwu

þ
X
k2K

QwkutBwu;8t 2 T ;8u 2 U ;8w 2 W

ð17Þ
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X
f 2F

QfdutBfu þ
X
w2W

QwdutBwu þ Rdu t�1ð Þ

¼ Rdut þ
X
c2C

QdcutBdu;8t 2 T ; 8u 2 U ; 8d 2 D ð18Þ

X
d2D

QdcutBdu þ
X
f 2F

QfcutBfu þ
X
w2W

QwcutBwu � Dcut þ
Xt
1

Dcu t�1ð Þ

�
X
d2D

Xt
1

Qdcu t�1ð ÞBdu þ
X
f 2F

Xt
1

Qfcu t�1ð ÞBfu þ
X
w2W

Xt
1

Qwcu t�1ð ÞBwu

 !
;

8t 2 T ; 8u 2 U ; 8c 2 C

ð19Þ
X
a2A

QcautBcu �
X
d2D

QdcutBdu þ
X
f 2F

QfcutBfu þ
X
w2W

QwcutBwu

 !

RRut;8t 2 T ;8u 2 U ;8c 2 C ð20Þ

X
c2C

QcautBcu ¼
X
s2S

QasutBauð Þ þ
X
f 2F

QafutBau

� �þX
r2R

QarutBauð Þ

þ
X
p2P

QaputBau

� �
;8t 2 T ; 8u 2 U ; 8a 2 A ð21Þ

X
c2C

QcautBcuð ÞRc ¼
X
s2S

QasutBauð Þ;8t 2 T ;8u 2 U ; 8a 2 A ð22Þ

X
c2C

QcautBcuð ÞRm ¼
X
f2F

QafutBau

� �
;8t 2 T ;8u 2 U ; 8a 2 A ð23Þ

X
c2C

QcautBcuð ÞRr ¼
X
r2R

QarutBauð Þ;8t 2 T ;8u 2 U ; 8a 2 A ð24Þ

X
c2C

QcautBcuð ÞRp ¼
X
p2P

QaputBau

� �
;8t 2 T ; 8u 2 U ;8a 2 A ð25Þ

P
a2A

QafutBau

� � ¼ P
r2R

QfrutBfu

� �þ P
k2K

QfkutBfu

� �þ P
w2w

P
k2K

QwkutBwuð Þ

þ P
w2w

P
r2R

QwrutBwuð Þ;8t 2 T ;8u 2 U ;8f 2 F

ð26ÞX
a2A

QarutBauð Þ þ
X
f 2F

QfrutBfu

� �þX
w2W

QwrutBwuð Þ

¼
X
k2K

QrkutBruð Þ;8t 2 T ; 8u 2 U ; 8r 2 R ð27Þ

X
r2R

QrkutBruð Þ � Dkut; 8t 2 T ; 8u 2 U ; 8k 2 K ð28Þ

Rcþ Rmþ Rr þ Rp ¼ 1 ð29Þ

Constraints (16) to (28) are balanced constraints.
Reviewing Fig. 1 reveals the necessity of balancing each

entity. Indeed, at each node, all products entering flows per
period should be equal to all issuing flows of that node for
the same product in the same period. Certainly, for all the
entities in Fig. 1, constraints should be set. Therefore, con-
straints (16) are balance constraints of manufacturers, con-
straints (17) to (21) are for warehouses (17), distributors
(18), customers (19), disassembly centers' inputs (20), and
disassembly centers output (21), respectively. Again, con-
straints (22) to (28) are recycling rate constraints (22),
remanufacturing rate constraints (23), repairing rate con-
straints (24), disposal rate constraints (25), manufacturers
reverse flows (26), redistributors (27), and ultimately, sec-
ond customers balance constraints (28). The sum of all
assigning rates via disassembly centers should be equal to
one (constraint 29).X
f 2F

QsfutBsu � SCsutLs; 8t 2 T ; 8u 2 U ; 8s 2 S ð30Þ

X
d2D

QfdutBfu þ
X
w2W

QfwutBfu þ
X
c2C

QfcutBfu þ
X
k2K

QfkutBfu

 !

Fhfu � FCfutLf ; 8t 2 T ; 8u 2 U ; 8f 2 F

ð31Þ

Rwut � SCwutLw; 8t 2 T ; 8u 2 U ;8w 2 W ð32Þ
X
f 2F

QfdutBfu þ
X
w2W

QwdutBwu þ Rdu t�1ð Þ

� DCdutLd; 8t 2 T ; 8u 2 U ; 8d 2 D ð33Þ
X
s2S

QasutBau þ
X
f 2F

QafutBau þ
X
r2R

QarutBau þ
X
p2P

QaputBau

� ACaut � La; 8t 2 T ; 8u 2 U ; 8a 2 A

ð34Þ

X
k2K

QrkutBru � RCrut � Lr; 8t 2 T ;8u 2 U ; 8r 2 R ð35Þ

X
a2A

QasutBau � SRCsut � Ls; 8t 2 T ; 8u 2 U ; 8s 2 S ð36Þ

X
a2A

QaputBau � PCput � Lp; 8t 2 T ; 8u 2 U ; 8p 2 P ð37Þ

X
f 2F

QfwutBfu � WCwut � Lw; 8t 2 T ; 8u 2 U ; 8w 2 W ð38Þ

Constraints (30) to (38) are capacity constraints, which
control themaximum flows that can enter/issue from each node.
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Constraint (30) controls all suppliers' output capacity for each
product in all periods. Constraints (31) to (38) are for capacity
of manufacturers, warehouses, distributors, redistributors, sup-
pliers, disposal centers, and warehouses inputs.

Lisf �
X
u2U

X
t2T

Qsfut � M Lisf ; 8s 2 S; 8f 2 F ð39Þ

Lifd �
X
u2U

X
t2T

Qfdut � M Lifd ; 8f 2 F; 8d 2 D ð40Þ

Lifw �
X
u2U

X
t2T

Qfwut � M Lifw; 8f 2 F; 8w 2 W ð41Þ

Lifc �
X
u2U

X
t2T

Qfcut � M Lifc; 8f 2 F; 8c 2 C ð42Þ

Lifk �
X
u2U

X
t2T

Qfkut � M Lifk ; 8f 2 F; 8k 2 K ð43Þ

Lifr �
X
u2U

X
t2T

Qfrut � M Lifr; 8r 2 R; 8f 2 F ð44Þ

Liwd �
X
u2U

X
t2T

Qwdut � M Liwd ; 8w 2 W ; 8d 2 D ð45Þ

Liwc �
X
u2U

X
t2T

Qwcut � M Liwc;8w 2 W ; 8c 2 C ð46Þ

Liwk �
X
u2U

X
t2T

Qwkut � M Liwk ; 8w 2 W ; 8k 2 K ð47Þ

Liwr �
X
u2U

X
t2T

Qwrut � M Liwr; 8w 2 W ; 8r 2 R ð48Þ

Lidc �
X
u2U

X
t2T

Qdcut � M Lidc; 8d 2 D; 8c 2 C ð49Þ

Lica �
X
u2U

X
t2T

Qcaut � M Lica; 8a 2 A; 8c 2 C ð50Þ

Lias �
X
u2U

X
t2T

Qasut � M Lias; 8s 2 S; 8a 2 A ð51Þ

Liaf �
X
u2U

X
t2T

Qafut � M Liaf ; 8f 2 F; 8a 2 A ð52Þ

Liar �
X
u2U

X
t2T

Qarut � M Liar; 8r 2 R; 8a 2 A ð53Þ

Liap �
X
u2U

X
t2T

Qaput � M Liap; 8p 2 P; 8a 2 A ð54Þ

Lirk �
X
u2U

X
t2T

Qrkut � M Lirk ; 8k 2 K; 8r 2 R ð55Þ

Constraints (39) to (55) manage links between all nodes.
As the left sides of constraints (39) are considered, if there are
no flows between a supplier and a manufacturer of all prod-
ucts in all periods, then, there should be no link between these
two entities. Again, based on the right side of the same
constraint, if there is no real link or shipping between these
two suppliers and manufacturers, we definitely cannot have
any network flows here. These constraints guarantee there are
no links between nodes without any actual real flows and no
flows between two nodes without any actual link.

X
s2S

Ls � S0 ð56Þ

X
f 2F

Lf � F 0 ð57Þ

X
d2D

Ld � D0 ð58Þ

X
w2W

Lw � W 0 ð59Þ

X
a2A

La � A0 ð60Þ

X
r2R

Lr � R0 ð61Þ

X
p2P

Lp � P0 ð62Þ

Constraints (56) to (62) manage the maximum number of
allowable locations. There should be some limitations on the
number of activated locations. As a result, these constraints
cope with the mentioned limitation and do not let the supply
chain network establish extra nodes.

In order to solve the developed NP-hard problem, a
genetic algorithm is proposed. In the next two sections, the
characteristics of developed GA are explained.

4 Solution methodology

As proved, traditional techniques are not efficient when search
space is too large (like CLSC design and planning problem).
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For instance, if we consider just five units of each entity in the
developed model, we will have 14,482 constraints and 11,336
decision variables (including 460 binary variables). Based on
the vast studies, a genetic algorithm is proposed to cope with
large-scale instances. In this section, the GA-based solution
methodology is described. GA, like other meta-heuristics,
does not have any special criteria to set parameters. Therefore,
we try to set the parameters of the proposed genetic algorithm.
In order to have an efficient genetic algorithm, parameters like
mutation rate, population size, and iteration numbers should
be set correctly. Consequently, the parameter-setting proce-
dure is also presented in this section.

4.1 Proposed genetic algorithm

Genetic algorithms are popular meta-heuristic optimization
techniques originally developed by Holland [31], based on

the genetic procedure of the human body and “elite of the
fittest” in Darwin's theory. Subsequently, it was applied to
optimization problems in biology, engineering, and opera-
tions research. In the 1990s, different aspects of the GAwere
expanded; Hartl [32] researched on convergence of this
algorithm, and Radcliffe [33] and Bean [34] studied cross-
over operator. Miller and Goldberg [35] researched on the
selection strategies, and finally, Vose [36] and Koza [37],
developing genetic programming, investigated the concept
of basic GA of Holland. More information about GAs and
other evolutionary algorithms are found in Reeves [38],
Mitchell [39], and Baeck's [40] researches.

Some researches deal with closed-loop supply chain design
and planning problem utilizing genetic algorithm. These are
presented in the literature survey section. Whenever re-
searchers try to cope with large-scale problems, meta-
heuristics, especially genetic algorithms, are the best choices.

Table 1 Parameters of compu-
tational study Row Parameter Uniform distribution or rate

1. Demands 0–3,000

2. Second demands rate 50 % of demand

3. Prices 15,000–20,000

4. Second product prices 50 % of price

5. Purchasing costs 10 % of price

6. Manufacturer capacity 6,000–14,000

7. Remanufacturer capacities 50 % of manufacturer capacity

8. Supplier capacities 18,000–42,000

9. Supplier recycling capacities 50 % of supplier capacity

10. Recycling costs 10–100

11. All other reverse costs 10–100

12 Other facilities' capacities 6,000–14,000

13 Material costs 100–1,000

14 Manufacturing costs 100–1,000

15. All other forward costs 100–1,000

16 Shortage costs 1,000–5,000

17. Supplier fixed costs 7–10 million

18. Manufacturer fixed costs 70–150 million

19. Distributor fixed costs 1–2 million

20. Warehouse fixed costs 0.1–1 million

21. Disassembly center fixed costs 0.1–1 million

22. Redistributors fixed costs 0.1–1 million

23. Disposal centers fixed costs 0.1–1 million

24. Batch size 1

Table 2 characteristics of parameter-setting instance

Number of

Suppliers Warehouses Distributors,
redistributors

Manufacturers Disposal, disassembly
centers

Customers Second
customers

Periods Products

25 25 25 8 8 25 25 12 4
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[14] and [28] are two of those mentioned, although there are
no similar multi-period multi-product CLSC design and plan-
ning problem utilizing any meta-heuristics (let alone genetic
algorithms). Therefore, this research is original in this field.

Genetic algorithm starts with a random population of
solutions (called chromosomes) and attempts to improve
solutions through a number of iterations (called genera-
tions). The performance of each solution is evaluated by a
fitness function that corresponds to the objective function of
the optimization problem. Following parental selection,
crossover and mutation operators are applied. Crossover
combines materials from parents to produce their children.
On the other hand, mutation makes small local changes of
feasible solutions to provide diversity in the population for a
wider exploration of feasible solutions. The mutation oper-
ator is usually defined to ensure that the generated solutions
will not be trapped in some local minimum. Moreover,
because the final solution is independent to initial solutions,
in most cases, the basic population is randomly generated.

Total steps of the proposed algorithm are presented as:

1. Make an initial random population (chromosomes) as
basic starting solutions (for example, 100 initial random
solutions).

2. Calculate fitness for all solutions according to the ob-
jective function of the model.

3. Using RAR operator [27] for crossover process, gener-
ate children via the whole current population (all par-
ents). This operator produces one child from each
couple of parents (make 50 children in the presented
example).

4. Do mutation operator by a limited predetermined ran-
dom rate (set at “0.2”).

5. Calculate fitness for all solutions.
6. Choose best solutions based on the population size

(100 in the present example) between all new
children and parents to shape the next generation
(the best first 100 solutions will form the next
generation).

7. Repeat from line 3.

About the crossover operator (RAR), it should be men-
tioned that this is a well-known strategy in crossover. The
rules are simple. If both of parents contain a special activat-
ed location, then that location will be activated in their
produced child and vice versa. If one parent has a special
entity, which the other lacks, then the final value is random-
ly assigned between these two.

Fig. 2 Setting the “mutation
rate” with population size 100
in 1,000 iterations

Fig. 3 Setting the “iteration
number” with mutation rate 0.2
and population size 100
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4.2 Parameter setting of the proposed genetic algorithm

Genetic algorithms have some parameters like iteration
number, population size, crossover rate, and mutation rate,
which can lead to different solutions when changed. Conse-
quently, these parameters should set with some proper in-
stances. First, we generate a mid-size instance, and then we
run it many times and finally analyze GA performance in
different parameter settings.

The genetic algorithm is coded by Matlab 7.12 (R2011a)
software. All computations are run by a Core 2 Duo-
2.26 GHz processor laptop. In all computational analyses,
parameters are generated by uniformly distributed functions,
which are presented in Table 1. Characteristics of selected
instances of this section are illustrated in Table 2. It should
be noted that recycling, remanufacturing, repair, and dispos-
al rates are 0.2, 0.4, 0.3, and 0.1, respectively. Batch size
values will be set as one.

Figures 2, 3, and 4 illustrate analysis of the first evalua-
tions. First, we set population size and iteration number at
possible level values, which are 100 and 1,000, respectively.
Then, we run the instance of Table 2 many times and record
the average of objective functions. Finally, we find the best
mutation rate value. Then, with the achieved mutation rate,
we find the best values for iteration number and population
size parameters. These results are achieved by the average of
several runs in each instance.

Reviewing Figs. 2, 3, and 4 helps us to set the parameters of
the proposed genetic algorithm. As illustrated, “0.2” is the best
value for mutation rate. About iteration number, we do not
find any significant changes after “100” iterations. Hence,
regarding the time criterion, we set the iteration number at
“120,” which guarantees achieving the best possible solution
in a feasible time. In order to judge population size, we will
consider two candidate values:”20” and “40.” These are the
most reasonable values regarding objective function and time.

We have a complete validation process based on our
model. The procedure has two steps: small-sized and
large-sized analyses explained in the next section.

5 Computational analysis

In order to evaluate our genetic algorithm, two validating
processes are arranged: considering small- and large-scale
instances. First, comparing with global optimum, a small-
sized instance is developed. Afterward, the performance of
the proposed genetic algorithm is compared with global
optimum points, achieved by IBM ILOG CPLEX 12.2
optimization software. This process can validate the pro-
posed GA. Then, the proposed genetic algorithm solves
different kinds of large-sized instances. Details are
presented in the following section.

5.1 Small-sized instance analysis

In order to evaluate effectiveness of the proposed algorithm,
we first generate small but acceptable-size instance containing
five units of each entity. Hence, we have five suppliers, five
manufacturers, five warehouses, etc., for five products in five
periods. In this phase of validation, the generated instance will
run 11 times, and the objective function of CPLEX (global

Fig. 4 Setting the “population
size” with mutation rate 0.2 in
1,000 iterations

Table 3 Results of small-sized problems (in millions)

Run CPLEX global
optimum

Genetic
algorithm

Differences
to optimum

01 3,309 2,989 10 %

02 3,400 3,082 9 %

03 3,263 2,801 14 %

04 3,274 2,740 16 %

05 3,126 2,759 12 %

06 3,450 3,109 10 %

07 3,276 2,845 13 %

08 3,304 2,754 17 %

09 3,165 2,866 9 %

10 2,191 1,971 10 %

11 5,453 5,043 8 %

Average 3,382 2,996 11 %
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optimum) and the genetic algorithm are recorded. The ranges
of all parameters are demonstrated in Table 1. All algorithms
achieve their best solution in a reasonable time. Results are
illustrated in Table 3 and Fig. 5.

In analyzing the results of Table 3 and Fig. 5, we can
conclude the following points:

& Distinctions between global optimums of CPLEX soft-
ware and the results of the proposed genetic algorithm
are low. The results show that just 11 % difference from
the global optimum is admissible to persuade the accept-
ability of a proposed algorithm's performance. In addi-
tion, the mean of genetic algorithm outputs (2,996) is in
the 95 % confidence limit of the global optimum of
CPLEXs.

& The parameters of those different 11 runs are generated
randomly, and we have two special runs (number 10 and
11) to analyze the algorithm in special cases. The proposed
GA is performed well in these cases.

Consequently, regarding acceptable performance of the
proposed genetic algorithm, it passed the first step of the
validation process in comparison with CPLEX global opti-
mization. Unfortunately, in real-sized instances and in prac-
tical situations, CPLEX cannot achieve global optimum in a
reasonable time. Therefore, we need other inexact methods
like the proposed GA. Hence, we experiment the developed
meta-heuristic algorithm in large- and real-scale instances
for our massive problem.

5.2 Large-sized instances analysis

One of the objectives of this paper is to evaluate the pro-
posed genetic algorithm in large-scale instances. In the
previous section, we could guarantee the acceptability
of the results for the proposed algorithm. Now, 12
different sizes of instances are prepared and presented
in Table 4. The characteristics of all instances are clar-
ified in Table 4.

Fig. 5 Results of 11 runs (in
millions)

Table 4 characteristics of all instances

Number of

Instance GA
population

Suppliers,
warehouses

Distributors,
redistributors

Manufacturers Disposal,
disassembly centers

Customers,
second customers

Periods Products

1. 20 and 40 8 8 4 4 8 12 3

2. 20 and 40 10 10 5 5 10 12 3

3. 20 and 40 15 15 6 6 15 12 3

4. 20 and 40 20 20 7 7 20 12 4

5. 20 and 40 25 25 8 8 25 12 4

6. 20 and 40 30 30 9 9 30 12 4

7. 20 and 40 35 35 10 10 35 12 5

8. 20 and 40 40 40 11 11 40 12 5

9. 20 and 40 45 45 12 12 45 12 5

10. 20 and 40 50 50 13 13 50 12 6

11. 20 and 40 55 55 14 14 55 12 6

12. 20 and 40 60 60 15 15 60 12 6
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Reviewing Table 4, lead persuades us of many instances
of those rarely seen in previous papers. We evaluate the
proposed genetic algorithm in large-size instances. We deal
with two genetic algorithm settings: population size “20”
and “40.” The results are illustrated in Table 5 and Figs. 6
and 7.

Analyzing the results of Table 5, Fig. 6, and Fig. 7, we
conclude the following:

& Both proposed GAs could achieve the results in a rea-
sonable time. The average time of obtaining results and
finishing all iterations are 6.7 and 12.3 min for GAwith
population size 20 (GA 20) and GAwith population size
40 (GA 40), respectively. These times are admissible in
such cases.

& Interestingly, the results of twoGAs (GA 20 andGA 40) are
close to each other. The average differences of two GAs are
just 1.7 %. These negligible differences lead us to conclude
about the stability of the proposed GA, correctness of the
parameter setting procedure, and the efficiency of results.

Consequently, we cannot find any significant difference by
reduplicating the population size. It should be pointed out
that doubling the population size leads to achieve similar
results in double time. It means that even if we duplicate the
time of searching for an algorithm, the results will not
improve more than 1.7 %. Finally, we trust the proposed
GA in large-scale instances and in practical situations.

& Analyzing the number of decision variables and clarifying
the vast problem we cope with and the value of algorithms
that can give us acceptable results. As an example, in
instance 12, there are around 32 thousand decision vari-
ables including 285 binary variables. Therefore, if we try
to estimate just assigning these 285 binary variables, we
would have 2285 different. Therefore, we need an accept-
able and well-performing algorithm for such problems.

As analyzed, the performance of the proposed genetic
algorithm is highly acceptable in small- and large-scale in-
stances. Roughly speaking, we can trust the proposed ge-
netic algorithm in the design and planning of a closed-loop

Table 5 Results of large-scale analysis

Instance Profits of (millions) Difference of GA (20) and GA (40) Time in minutes Number of decision variables

GA (20) GA (40) GA (20) GA (40)

1. 1,041 1,006 −3 % 1.6 1.9 812

2. 1,438 1,438 0 % 1.8 2.2 1,255

3. 1,864 1,870 0 % 2 2.6 2,490

4. 3,781 3,784 0 % 2.5 3.8 4,139

5. 5,061 4,955 −2 % 3.1 6.3 6,202

6. 5,207 5,385 3 % 4.7 8.1 8,679

7. 8,353 8,425 1 % 6.8 12 11,570

8. 8,322 9,412 12 % 8.1 16 14,875

9. 9,770 8,979 −9 % 10.4 20 18,594

10. 11,843 13,158 10 % 13.1 25 22,727

11. 10,301 9,382 −10 % 12.2 23 27,274

12. 12,427 15,409 19 % 14 27 32,235

Average 6,617 6,933 1.7 % 6.7 12.3 12,571

Fig. 6 Results of large-scale
analysis
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supply chain problem. It achieves an acceptable solution in a
very reasonable time.

6 Conclusion and future researches

This paper copes with a very important problem about
designing and planning a closed-loop supply chain. Based
on analyzing current gaps in literature, a necessary compre-
hensive multi-echelon multi-period and multi-product mod-
el is proposed. This model contains almost all possible
entities and flows in CLSC network.

On the other side, despite some claims, few papers
consider large-scale instances in the field of closed-loop
supply chain. Therefore, an appropriate genetic algo-
rithm is proposed to solve different size of instances.
A complete computational analysis is performed to val-
idate the genetic algorithm and set its parameters. First,
the model is coded by IBM ILOG CPLEX 12.2 optimi-
zation software to achieve the global optimum. Mean-
while, a genetic algorithm is coded by Matlab 7.12
software to complete comparing. Secondly, 11 runs of
a small-sized instance are developed, and performance
of the genetic algorithm is compared with the global
optimum of CPLEX. On average, the results show just
11 % distance to the global optimum. Third, in order to
cope with large-scale instances, 12 different sizes of
instances including very large-scale ones (with 356,000
decision variables) are generated. Then, two developed
GAs are compared with each other. They both perform
very well with a difference of just 1.7 %. The results
prove the constancy of the proposed genetic algorithm
and its applicability in real-size situations. On average,
they could achieve the best solutions in “6.7” and
“12.3”min for GA-20 and GA-40, respectively. It is a
reasonable and acceptable time for such instances.

However, there is some guidance for future research;
first, we suggest evaluating the proposed genetic algorithm
in a practical environment to modify it and to clarify its
shortcomings. Second, the genetic algorithms could be

compared with other meta-heuristics like PSO. Finally, the
deterministic approach of this paper could be improved by
considering nondeterministic parameters.
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