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Abstract The tolerance design problem involves optimiz-
ing component and assembly tolerances to minimize the
total cost (sum of manufacturing cost and quality loss).
Previous literature recommended using traditional response
surface methodology (RSM) designs, models, and optimi-
zation techniques to solve the tolerance design problem for
the worst-case scenario in which the assembly characteristic
is the sum of the component characteristics. In this article,
component-amount (CA) and mixture-amount (MA) exper-
iment approaches are proposed as more appropriate for
solving this class of tolerance design problems. The CA
and MA approaches are typically used for product formula-
tion problems, but can also be applied to this type of toler-
ance design problem. The advantages of the CA and MA
approaches over the RSM approach and over the standard,
worst-case tolerance-design method are explained. Reasons
for choosing between the CA and MA approaches are also
discussed. The CA and MA approaches (experimental de-
sign, response modeling, and optimization) are illustrated
using real examples.

Keywords Assembly tolerance . Component-amount
experiment . Component tolerances . Mixture-amount
experiment . Tolerance design

1 Introduction

Consider a product assembly that is composed of two or
more component parts. In practice, tolerances on an assem-
bly and its components must be specified because of inevi-
table variations in production processes, materials,
environmental conditions, personnel, etc. Tolerance design
is a procedure that determines the assembly tolerance and
distributes it among the components. The design of assem-
bly and component tolerances affects the manufacturing
costs and performance of the product. Larger tolerances
decrease manufacturing costs, but can cause a poor assem-
bly and/or product performance. On the other hand, smaller
tolerances ensure the performance of an assembly/product,
but cause higher manufacturing costs.

In practice, the exact forms of relationships between assem-
bly and component tolerances, costs, and functional perfor-
mance are unknown. Kim and Chou [1] summarized several
approximate models for manufacturing cost versus component
tolerances. They also proposed using response surface method-
ology (RSM) with classical statistical experimental designs and
models to (i) estimate the relationship between manufacturing
cost and component tolerances and (ii) allocate component
tolerances of an assembly to minimize manufacturing cost.
Creveling [2] presented a comprehensive discussion of tolerance
design, including using orthogonal arrays to design experi-
ments. Şehirlioğlu and Özler [3] proposed using mixture exper-
iment designs and models as more appropriate than classical
RSM designs and models to address (i) and (ii).

Jeang [4, 5] emphasized that the functional performance
of the product should be accounted for in the tolerance
design problem, specifically by using the quality-loss func-
tion. Several tolerance design methods based on quality loss
[4, 6–22] have been developed for the purpose of finding
optimum tolerances of components and assemblies. Jeang
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[5] also proposed using classical RSM to determine the
optimum assembly and component tolerances by minimiz-
ing a total cost (TC) function, which is the sum of manu-
facturing cost (MC) and quality-loss cost (QLC). Classical
RSM methods for experimental design, modeling, and opti-
mization are discussed by Box and Draper [23], Khuri and
Cornell [24], and Myers et al. [25].

In this article, component-amount (CA) and mixture-
amount (MA) approaches are proposed as more appropriate
than the classical RSM approach proposed by Jeang [5] for
solving the tolerance design problem when using the worst-
case method and the assembly characteristics are linear
combinations of the component characteristics. The CA,
MA, and RSM approaches use different kinds of experimen-
tal designs and models to solve the tolerance design prob-
lem, as discussed subsequently in the article.

In modern tolerance design, statistical methods that ac-
count for the probabilistic variation in component character-
istics are often favored over the worst-case method because
statistical methods lead to wider tolerances and hence lower
MC [2]. However, the worst-case methodmay be preferred for
tolerance design problems where safety, improved lifetime, or
other issues are a major concern. Further, the CA and MA
approaches discussed in this article provide for specifying
constraints on the assembly tolerance, so that the optimal
component tolerances are not as tight as would be the case
when using the standard worst-case method. Hence, the CA
andMA approaches for tolerance design may be thought of as
improvements to the worst-case method because of (i) the
ability to constrain the assembly tolerance and (ii) selecting
assembly and component tolerances to minimize the TC.

The article is organized as follows. First, mixture, MA,
and CA experiments are reviewed, including the forms of
models and how to generate experimental designs. Next, the
concepts and formulas for MC, QLC, and TC are discussed.
Then, the tolerance design problems using CA and MA
experimental approaches are presented and illustrated using
real examples. Finally, the work is summarized and conclu-
sions are made.

2 Review of mixture, mixture-amount,
and component-amount experiments

In this section, we review mixture, MA, and CA experi-
ments. The design, modeling, and optimization of tolerance
design problems using the CA and MA approaches are
illustrated with real examples in subsequent sections.

2.1 Mixture experiments

In a mixture experiment, the response (i) is a function of the
proportions of q≥2 components present in the mixture, and

(ii) is assumed to depend only on the proportions of the
components, and not on the total amount of the mixture. If
the proportion of the ith mixture component is denoted by xi

(i=1, 2, … , q), then 0≤xi≤1 and
Pq
i¼1

xi ¼ 1. In addition,

there are often lower and upper constraints on component
proportions Li≤xi≤Ui, and there may be multi-component
constraints. Depending on the shape of the mixture experi-
mental region, an appropriate mixture experiment design is
generated, and the resulting data are used to develop a
model for the response. Commonly used mixture models
are the linear and quadratic canonical polynomials

η ¼
Xq
i¼1

bixi ð1Þ

and

η ¼
Xq
i¼1

bixiþ
Xq�1

i¼1

Xq
j¼iþ1

bijxixj ð2Þ

proposed by Scheffé [26]. When there are single-component
and possibly multiple-component constraints on the compo-
nent proportions, mixture experiment models are often fitted
in terms of pseudocomponents ([27, 28]). Most commonly
L-pseudocomponents are used, defined as

xi
0 ¼ xi � Li

1�Pq
j¼1

Lj

ð3Þ

L-pseudocomponent values can be expressed in terms of
original component values via

xi ¼ Li þ 1�
Xq
j¼1

Lj

 !
xi
0 ð4Þ

For a comprehensive presentation of mixture experiment
designs, models, and other data analysis methods, see Cor-
nell [27] and Smith [28].

2.2 Mixture-amount experiments

A mixture-amount (MA) experiment is one in which mix-
ture experiments are performed at two or more levels of total
amount [29]. The response is assumed to depend on the
xi (i=1, 2, … , q) and the total amount of the mixture
(denoted A). An MA experiment explores the effects on
the response of varying both the component proportions
and the total amount of the mixture.

Piepel and Cornell [30] proposed developing MA models
by writing the parameters of a mixture model as functions of
the total amount variable. As an example, writing the
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coefficients of the quadratic mixture model (2) as polyno-
mial functions of A yields

η ¼
Xq
i¼1

b0i xi þ
Xq�1

i¼1

Xq
j¼iþ1

b0ijxixj

þ
Xr�1

k¼1

Xq
i¼1

bki xi þ
Xq�1

i¼1

Xq
j¼iþ1

bkijxixj

" #
Ak ; ð5Þ

where r represents the maximum polynomial degree of the

effect of A. When A is coded to have mean zero, the b0i and

b0ij represent the linear and quadratic blending effects of the

components at the mean value of total amount, while the bki
and bkij represent the kth-order effect of total amount on the

linear and quadratic blending effects of the components. As
a special case, when the amount of the mixture does not
affect the blending properties of the mixture components but
merely causes a constant change in the magnitude of the
response, (5) reduces to

η ¼
Xq
i¼1

b0i xi þ
Xq�1

i¼1

Xq
j¼iþ1

b0ijxixj þ
Xr�1

k¼1

bk0A
k ; ð6Þ

where the bk0 (k=1, 2, …, r−1) represent the linear, quadrat-
ic, …, (r−1)th-degree effects of A on the response. Piepel
and Cornell [30] recommended reducing full MA models
such as (5) to avoid overfitting the data and reduce the
uncertainty of model predictions. To select an appropriate
reduced MA model, variable selection (e.g., stepwise or
backward elimination) algorithms and the full- versus
reduced-model F test can be used [25].

MA models may be fitted using L-pseudocomponents
(xi′) instead of components (xi) and a coded total amount
(A′) instead of the total amount (A). If there are lower and
upper bounds on the total amount (AL≤A≤AU), then the
coding

A0 ¼ A� ALþAU
2

AU � AL
ð7Þ

yields A′=−1 when A=AL and A′=+1 when A=AU. Piepel
and Cornell [30] explain why this coding is useful. Coded
values A′ can be converted back to original values A via

A ¼ AL þ AU

2
þ A0 AU � ALð Þ ð8Þ

MA designs appropriate for fitting MA models were con-
sidered by Piepel and Cornell [29]. They discussed ways to
generate complete and fractional designs for both uncon-
strained and constrained MA experiments. Piepel and Cornell
[29] proposed (i) setting up one or different mixture designs at
the different levels of total amount, or (ii) using optimal
experimental design (Atkinson et al. [31]) to develop designs

for reducedMAmodels and unconstrained or constrainedMA
experiments. Optimal design procedures are very useful for
fractionating designs and can generate designs of any number
of experimental runs for any model form of interest. To
efficiently estimate the elements of the parameter vector β in
the mixture or MAmodel y=Xβ+ε, a design criterion should
be chosen.D-optimality, which seeks to minimize det(X’X)−1,
is the criterion implemented in most commercial experimental
design software. Other optimality criteria are discussed by
Atkinson et al. [31]. Optimal MA designs can be constructed
using several statistical packages, including Design-Expert
(Stat-Ease [32]), JMP [33], SAS [34], and Minitab [35].

2.3 Component-amount experiments

Piepel and Cornell [30] also discussed the CA approach for
experiments with two or more components and the total
amount of the components varies. With the CA approach,
the behavior of the response is studied in terms of the amounts
of individual components. Piepel and Cornell [30] wrote the
first- and second-degree polynomial CA models as

η ¼ a0 þ
Xq
i¼1

aiai ð9Þ

η ¼ a0 þ
Xq
i¼1

aiai þ
Xq
i¼1

aiia
2
i þ

Xq�1

i¼1

Xq
j¼iþ1

aijaiaj ð10Þ

where the ai (i=1, 2, …, q) are the amounts of individual
components. Piepel and Cornell [36] state that designs for
fitting models (9) and (10) could be selected from the
classical response surface designs (e.g., factorial, fractional
factorial, Plackett–Burman, Box–Behnken, or central compos-
ite). In (10), each component amount can be written as ai=xiA,
where A is the uncoded total amount and a1+a2+…+aq=A.
Comparisons of MA and CA models and designs are given by
Piepel and Cornell [30, 36]. They note that anyMAmodel can
be written in terms of the CA variables, with the resulting
expression a nonpolynomial function of the ai’s being an
expanded form of the second-degree CA model (10). Similar-
ly, when MA models are generated by expanding coefficients
of a mixture model using polynomials of different degrees,
Piepel and Cornell [30] noted that the class of MA models
contains the class of polynomial CA models as a special case.
So, the class of MA models has the ability to approximate the
true response surface better than the class of CA models.

2.4 Choosing between mixture-amount
and component-amount approaches

Piepel and Cornell [30] pointed out that MA models provide
information about the component blending properties at the
average level of total amount and information on how the
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total amount of the mixture affects these blending proper-
ties. On the other hand, CA models do not separate these
two types of information, but rather provide information on
how the amounts of components affect the response.

In planning an experiment where the amount of the mixture
affects the response, an experimenter must choose between
the MA and CA approaches. According to Piepel and Cornell
[36], for problems where the experimenter wants to separately
study the blending behavior of the components and how
varying the total amount affects the component blending, an
MA approach is natural. On the other hand, if the experiment-
er wants to understand how the component amounts interact
and affect the response, a CA approach is natural.

3 Cost functions for optimum tolerance design

This section presents background information about MC,
QLC, and TC. In the tolerance design problem addressed in
this article, TC is the response variable in an empirical model
developed using data from a designed experiment. The TC
model is then used to optimally determine the tolerances.

The MC of a product is influenced by the tolerances on
component characteristics. Tighter tolerances increase the
MC. Larger tolerances lead to reduced MC, but lower prod-
uct performance. A summary of MC functions is presented
by Kim and Chou [1].

The quality-loss function proposed by Taguchi [37] gives a
financial value for increasing costs as a product quality char-
acteristic deviates from its target value. Taguchi considers
quality loss as all the costs of reduced product quality (includ-
ing cost of scrap, rework, downtime, warranty claims, and
reduced market share). For the “target-is-best” case, the Tagu-

chi loss function is LðY Þ ¼ K Y � mYð Þ2 , where Y is the
quality characteristic, mY is the target value of the quality
characteristic, and K is a constant depending on the cost at
the specification limits and the width of the specification. The
expected value of L(Y), which is subsequently referred to as
the quality loss cost (QLC), can be written as

QLC ¼ E LðY Þ½ � ¼ K EY � mYð Þ2 þ σ2
Y

h i
; ð11Þ

where EY is the expected value of Yandσ2
Y is the variance of Y.

In practice, bEY and bσ2
Y , which are estimates of EY and σ2

Y ,
respectively, are used to estimate the QLC. Details and exam-
ples about finding the value of K are discussed by Ross [38].

To achieve a good tolerance design considering QLC and
MC, Zhang et al. [39] recommended: (i) functional require-
ments of the product should be satisfied, (ii) variations of
functional performance should be minimized, and (iii) MCs
should be constrained. Violations in the first two requirements
will influence the QLC. Manufacturing costs typically must

satisfy some monetary constraints. Jeang [5, 10, 11] said
that product-design tolerances should be determined to
account for QLC and MC. The TC function is the sum of
the QLC and MC functions, which for the CA approach
we write as

TC t1; t2; . . . ; tq;bEY t1;t2;...tqð Þ; bσ2
Y t1;t2;...tqð Þ;K

� �
¼ QLC bEY t1;t2;...tqð Þ; bσ2

Y t1;t2;...tqð Þ;K
� �

ð12Þ
þMC t1; t2; . . . ; tq

� �
and for the MA approach we write as

TC x1; x2; . . . ; xq; T ; bEY x1;x2;...xq;Tð Þ; bσ2
Y x1;x2;...xq;Tð Þ;K

� �
¼ QLC bEY x1;x2;...xq;Tð Þ; bσ2

Y x1;x2;...xq;Tð Þ;K
� �

þMC x1; x2; . . . ; xq; T
� �

:

ð13Þ

In these equations, q is the number of component toler-
ances, (x1,x2,…,xq) denotes component proportional toler-
ances (defined in Section 4), QLC is a function ofbEY ; bσ2

Y ;K
� �

and is calculated using Eq. (11), and other

notation is as previously defined. Note that QLC and MC
are functions of (t1,t2,…,tq) or (x1,x2,…,xq,T) to indicate
their values may depend on the different points in a CA or

MA experimental design, respectively. bEY and bσ2
Y values

could be calculated from characteristic measurements on
multiple parts at each of the points (t1, t2,…, tq) or (x1,x2,
…,xq,T) in a CA or MA experimental design, respectively.

Equations (12) and (13) can be used to calculate values of
the response variable TC for the points in a CA or MA
experimental design, respectively. Then, CA or MA models
(as discussed in Section 2) can be fit to the TC values for the
experimental design points.

4 Component-amount and mixture-amount approaches
for optimum tolerance design to minimize total cost

The CA approach to solving a tolerance design problem in
which (i) there is one assembly characteristic that is the sum
of the component characteristics, and (ii) the goal is to
minimize total cost is formulated as

Minimize TC t1; t2; . . . ; tq; bEY t1;t2;...tqð Þ; bσ2
Y t1;t2;...tqð Þ;K

� �
subject to li � ti � ui; i ¼ 1; 2; . . . ; q and

TL � T ¼ t1 þ t2 þ . . .þ tq � TU ; ð14Þ
where li and ui represent the lower and upper bounds of the
ith component tolerance; ti, TL, and TU represent the lower
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and upper bounds of assembly tolerance T= t1+ t2+…+tq,
and TC is the total cost function in Eq. (12). This formula-
tion of the tolerance design problem uses the CA approach,
where the ti take the roles of component amounts and there
are lower and upper inequality constraints on the assembly
tolerance (which can be written as the sum of the ti for this
class of problems). Hence, the experimental region for the
component tolerances is polyhedral. This is why classical
second-order response surface designs such as Box–
Behnken designs (BBD) and central composite designs
(CCD) proposed by Jeang [5] are not appropriate.

When the goal of a tolerance design problem is to min-
imize MC rather than TC, the optimum solution occurs
when T=TU. In that case, (14) can be re-expressed as

Minimize MC x1; x1; . . . ; xq; T
� �

subject to Li � xi � Ui; i ¼ 1; 2; . . . ; q and
x1 þ x2 þ . . .þ xq ¼ 1;

ð15Þ

where xi ¼ ti TU= , Li ¼ li TU= ,Ui ¼ ui TU= , and MC(x1,x2,…
xq,T) is the manufacturing cost function represented in Eq.
(13). In this approach, MC is regarded as the response
variable. When the assembly tolerance is known to start,
then it must be allocated among the components in some
rational way. Such cases are called tolerance allocation
problems, for which a mixture experiment approach is ap-
propriate, as discussed by Şehirlioğlu and Özler [3].

The MA approach to solving a tolerance design problem
when the goal is to minimize TC is formulated as

Minimize TC x1; x2; . . . ; xq; T ; bEY x1 ;x2 ;...xq ;Tð Þ ; bσ2
Y x1;x2;...xq;Tð Þ;K

� �
subject to Li � xi � Ui; i ¼ 1; 2; . . . ; q and

TL � T � TU ;

ð16Þ
where xi ¼ ti T=ð Þ represents the proportion of the assembly
tolerance (T) allocated to the ith component, Li and Ui

represent the lower and upper bounds of xi, TL and TU
represent the lower and upper bounds of assembly tolerance,
and TC is the total cost function in Eq. (13). This formula-
tion of the tolerance design problem uses the MA approach,
where the xi are the component proportions and T represents
the total amount. Because of the lower and upper bounds on
the component tolerance proportions and the lower and

upper bounds on the assembly tolerance, the experimental
region is polyhedral in shape. Hence, MA designs and
models are required rather than classical response surface
designs and models. After the optimal settings of the xi and
T variables are determined, they can be converted back to
optimal tolerance settings using ti=xiT.

An important advantage of using mixture designs for (15)
and CA or MA designs for (14) or (16) instead of BBDs or
CCDs is that all design points will be (i) on the (q-1)-
dimensional feasible region for (15) or (ii) inside the q-
dimensional feasible region for (14) or (16). When a BBD
or CCD is used, design points can fall outside of the feasible
region. This situation may lead to less accurate TC models
and/or larger variances of the predicted TC values, which in
turn could lead to a sub-optimal solution to the tolerance
design problem. In addition to this, assembly constraints
could be exceeded at some design points, and this situation
may result in functional problems on assemblies.

5 Example using the component-amount approach
for a tolerance design problem to minimize total cost

In this section, we consider an example to demonstrate using
the CA approach for the tolerance design problem to mini-
mize TC. Figure 1 shows a truck axle, which consists of five
components (2×C1, 2×C2, and C3) and their associated
component tolerances (t1, t2, and t3). It also shows the
assembly characteristic (CT) and its tolerance (T). There is
only one assembly characteristic (length) in this example.
The lower and upper limits for t1, t2, t3, and T are given in
Table 1. The objective is to find the optimal component

Fig. 1 A truck axle
components and tolerances

Table 1 Constraints on the components and assembly tolerances for
the truck axle example

Component/
assembly name

Target
value (mm)

Tolerance
name

Lower
(mm)

Upper
(mm)

C1 315 t1 1 4

C2 460 t2 2 5

C3 490 t3 2 7

CT (assembly) 2040 T 8 20
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tolerances (t1,t2, and t3) and assembly tolerance (T) that give
the minimum TC. Because the lower and upper values given
in the Table 1 are on “amounts” of the component toleran-
ces, the CA approach can naturally be selected to solve this
tolerance design problem.

From Fig. 1, the relationship between the component and
assembly characteristics can be written as 2C1+2C2+C3=
CT. So, the relationship between the component tolerances
and assembly tolerance can be written as 2 t1+2t2+t3=T. To
construct a CA design using optimal experimental design
methods, we first specify the constrained experimental re-
gion using the component and assembly tolerance con-
straints in Table 1, namely 1≤ t1≤4, 2≤ t2≤5, 2≤ t3≤7, and
8≤2t1+2t2+t3≤20.

Design-Expert (Stat-Ease [32]) was used to generate a
20-point D-optimal CA design assuming the CA model
(10), using ti’s instead of ai’s. The design replicates five
points and includes five points for assessing model lack-of-
fit. The experimental runs were executed in a random order,
with five parts produced for each design point. Table 2
presents, for each design point, the settings of t1, t2, and t3,
as well as the values of MC, QLC, and TC. The TC values
were obtained by adding the MC and QLC values, as given
in (12). The MC values were obtained by measuring the
times for operation, inspection, assembly, and set-up per

unit, and converting these times to costs. The bEY and bσ2
Y

values were calculated from measurements on the five parts
produced at each point (t1, t2,…, tq) in the CA experimental

Table 2 D-optimal component-
amount design with values of
manufacturing cost (MC), bEY ,bσ2Y , quality-loss cost (QLC), and
total cost (TC) for the truck axle
example

Design point Run order t1 t2 t3 T MC bEY bσ2Y QLC TC

1 14 1.00 2.00 2.00 8.00 15.75 2,040.01 1.89 0.47 16.23

2 19 1.00 2.00 2.00 8.00 16.25 2,040.08 1.87 0.47 16.72

3 10 4.00 2.00 2.00 14.00 11.81 2,041.69 0.44 0.82 12.64

4 1 4.00 2.00 2.00 14.00 11.92 2,039.63 5.07 1.30 13.23

5 7 2.50 3.50 2.00 14.00 13.42 2,040.74 3.12 0.92 14.34

6 17 1.00 5.00 2.00 14.00 12.60 2,039.32 5.76 1.56 14.15

7 9 4.00 5.00 2.00 20.00 10.17 2,037.27 7.84 3.82 13.99

8 11 4.00 5.00 2.00 20.00 10.39 2,039.35 7.99 2.10 12.49

9 2 1.00 3.50 2.13 11.13 14.26 2,039.61 2.33 0.62 14.88

10 13 1.95 5.00 4.28 18.17 10.17 2,040.02 9.56 2.39 12.56

11 16 4.00 2.92 4.35 18.18 9.09 2,040.18 9.45 2.37 11.46

12 4 2.65 2.00 4.65 13.95 11.25 2,040.73 2.39 0.73 11.98

13 3 1.00 3.65 4.70 14.00 11.20 2,040.45 4.57 1.19 12.39

14 8 3.01 4.12 5.55 19.80 8.04 2,040.09 4.02 1.01 9.05

15 5 1.00 2.00 7.00 13.00 7.99 2,039.04 3.23 1.04 9.03

16 20 1.00 2.00 7.00 13.00 7.84 2,039.83 1.75 0.44 8.29

17 18 4.00 2.50 7.00 20.00 3.37 2,039.39 1.47 0.46 3.83

18 12 2.37 2.93 7.00 17.59 5.97 2,040.37 4.52 1.16 7.13

19 15 1.50 5.00 7.00 20.00 5.66 2,041.62 1.68 1.07 6.74

20 6 1.50 5.00 7.00 20.00 5.54 2,037.99 0.80 1.21 6.75

Table 3 ANOVA for the truck
axle component-amount model
(17)

Source Sum of Squares df Mean Square F Value p value Prob>F

Model 231.26 6 38.54 130.96 < 0.0001 Significant
t1 18.53 1 18.53 62.97 < 0.0001

t2 2.05 1 2.05 6.98 0.0204

t3 197.15 1 197.15 669.86 < 0.0001

t1t2 2.92 1 2.92 9.91 0.0077

t1t3 1.01 1 1.01 3.44 0.0866

t3
2 10.70 1 10.70 36.35 < 0.0001

Residual 3.83 13 0.29

Lack of fit 2.13 8 0.27 0.79 0.6370 Not significant
Pure error 1.69 5 0.34

Cor total 2325.08 19
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design, and are listed in Table 2. The QLC values were

calculated with Eq. (11) using the bEY and bσ2
Y values in

Table 2 and K=0.25.
The second-order CA model (10) for TC was estimated

using Design-Expert (Stat-Ease [32]), with the t21, t
2
2, and t2t3

terms being statistically non-significant (p>0.10). Dropping
those terms and refitting the model yielded

cTC ¼ 17:6844� 1:3770t1 � 0:8932t2 þ 1:2610t3 þ 0:2512t1t2
�0:0918t1t3 � 0:2931t23

ð17Þ

with R2=0.9837, R2
A ¼ 0:9762 , and R2

P ¼ 0:9474 . The
analysis of variance table for (17) is given in Table 3 and
shows that the model has a non-significant lack of fit.

For this truck axle example illustrating the CA approach,
the optimization problem (14) is

Minimize cTC given in 17ð Þ
subject to 1 � t1 � 4; 2 � t2 � 5; 2 � t3 � 7;

and 8 � T � 20:

Using Solver in Excel, the optimal values that minimize the
TC were determined to be (t1,t2,t3)=(4, 2, 7). The assembly
tolerance and predicted TC at the optimum tolerances are 13
and 4.29, respectively. The contour plot of TC at t3=7 is
given in Fig. 2, with the optimal solution shown to be on a
vertex of the constrained experimental region.

6 Example using the mixture-amount approach
for a tolerance design problem to minimize total cost

In this section, we modify an example used by Şehirlioğlu
and Özler [3] to illustrate using a mixture experiment ap-
proach for a tolerance allocation problem to minimize MC.
The modified example illustrates using an MA approach for
the tolerance design problem to minimize TC.

Figure 3 shows the four components of a portion of a
steering mechanism (C1, C2, C3, and C4) along with their
associated component tolerances (t1, t2, t3, and t4). There is
only one assembly characteristic (length) in this example.
With the MA approach, we are interested in studying how
the component tolerance proportions and the assembly tol-
erance influence TC. In this example, the lower and upper
limits of the assembly tolerance are equal to 3.8 and 5.0 mm,
respectively, and the tolerance of component 3 is constant at
0.2 mm (the same as Şehirlioğlu and Özler [3]). Hence, the
lower and upper limits of the assembly tolerance for the
remaining three components (denoted T) are 3.6 and
4.8 mm. The proportional tolerances of the remaining three
components are denoted as x1 (for C1), x2 (for C2), and x3
(for C4). The lower and upper constraints on the xi and T, as
well as the L-pseudocomponents (xi′) and coded total
amount (A′), are given in Table 4. The objective is to find
the optimal proportions (x1,x2,x3) and assembly tolerance
(T) that give the minimum TC. After the optimal settings of
these variables are determined in the xi′ and A′, they can be
converted back to xi and A (=T) values [using (4) and (8)],
and then the xi can be converted back to optimal tolerance
settings using ti ¼ xiT .

To construct an MA design using optimal experimental
design methods, an MA model adequate to represent the
relationship of TC as a function of the xi (i=1, 2, 3) and T
must be selected. An 18-term, quadratic-by-quadratic MA
model given by (5) with q=3 and r=3 was chosen. With
r=3, this MA model provides for the assembly tolerance (T)
to have a quadratic effect on TC. In (5), L-pseudocomponent
proportions xi′ per (3) and the coded total amount A′ per (7)
were used instead of the xi and A.

Design-Expert (Stat-Ease [32]) was used to generate a
28-point D-optimal MA design for the 18-term quadratic-
by-quadratic MA model. The design replicates five points
and includes five points for assessing model lack-of-fit
when the full 18-term MA model is fit. The experimental
runs were executed in a random order, with five parts

Fig. 2 Contour plot of total cost versus t1 and t2 with t3=7 for the truck
axle example, with the optimum solution shown as a dot

Fig. 3 Components and
tolerances for a portion of a
steering mechanism
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produced for each design point. Table 5 presents, for each
design point, the settings of x1, x2, x3, and A, as well as the
MC, QLC, and TC values. The TC values were obtained by
adding the MC and QLC values, as given in (13). The MC
values were obtained by measuring the times for operation,
inspection, assembly, and set-up per unit, and converting these

times to costs. The bEY and bσ2
Y values were calculated from

measurements on the five parts produced at each point (x1,
x2, …,xq, T) in the MA experimental design, and are listed in
Table 5. The QLC values were calculated with Eq. (11) using

the bEY and bσ2
Y values in Table 5 and K=10.

The stepwise regression method in Design-Expert (Stat-
Ease [32]) was used to select a reduced form of the full 18-
term quadratic×quadratic MA model for TC:

Table 4 Constraints on the pro-
portional component and assem-
bly tolerances for the steering
mechanism example Variable name

Original components and T L-Pseudocomponents and coded T

Variable Minimum Maximum Variable Minimum Maximum

C1 x1 0.500 0.667 x1′ 0 0.60

C2 x2 0.111 0.250 x2′ 0 0.50

C3 NA NA NA NA NA NA

C4 x3 0.111 0.250 x3′ 0 0.50

CT (assembly of 1, 2, and 4) T 3.6 4.8 A′ −1 +1

Table 5 D-Optimal mixture-amount design and values of manufacturing cost (MC), bEY , bσ2Y , quality-loss cost (QLC), and total cost (TC) for the
steering mechanism example

Design point Run order x1 x2 x3 A t1 t2 t4 T MC bEY bσ2Y QLC TC

1 24 0.6390 0.2500 0.1110 −1 2.30 0.90 0.40 3.6 19.44 400.07 0.38 3.85 23.29

2 12 0.6670 0.1665 0.1665 −1 2.40 0.60 0.60 3.6 20.23 400.20 0.32 3.57 23.80

3 16 0.5695 0.2500 0.1805 −1 2.05 0.90 0.65 3.6 21.57 400.14 0.43 4.48 26.05

4 23 0.6390 0.1110 0.2500 −1 2.30 0.40 0.90 3.6 19.33 400.04 0.34 3.42 22.75

5 7 0.6390 0.1110 0.2500 −1 2.30 0.40 0.90 3.6 20.74 400.52 0.17 4.39 25.13

6 6 0.5695 0.1805 0.2500 −1 2.05 0.65 0.90 3.6 23.60 399.96 0.43 4.36 27.96

7 17 0.5000 0.2500 0.2500 −1 1.80 0.90 0.90 3.6 23.43 400.08 0.38 3.81 27.24

8 1 0.5000 0.2500 0.2500 −1 1.80 0.90 0.90 3.6 24.86 399.98 0.45 4.53 29.39

9 26 0.6670 0.2220 0.1110 −0.5 2.60 0.87 0.43 3.9 18.68 400.03 0.41 4.08 22.76

10 20 0.5695 0.1805 0.2500 −0.5 2.22 0.70 0.98 3.9 19.54 400.27 0.37 4.39 23.93

11 15 0.6390 0.2500 0.1110 0 2.68 1.05 0.47 4.2 17.52 400.62 0.17 5.58 23.10

12 2 0.6670 0.1665 0.1665 0 2.80 0.70 0.70 4.2 14.57 399.87 0.51 5.29 19.86

13 18 0.5695 0.2500 0.1805 0 2.39 1.05 0.76 4.2 16.50 399.60 0.37 5.29 21.79

14 28 0.6390 0.1110 0.2500 0 2.68 0.47 1.05 4.2 15.76 400.43 0.42 5.99 21.75

15 22 0.5695 0.1805 0.2500 0 2.39 0.76 1.05 4.2 20.06 400.12 0.52 5.35 25.41

16 14 0.5000 0.2500 0.2500 0 2.10 1.05 1.05 4.2 19.47 400.50 0.32 5.65 25.12

17 9 0.6390 0.2500 0.1110 0.5 2.88 1.13 0.50 4.5 11.40 399.61 0.64 7.90 19.30

18 4 0.6390 0.1110 0.2500 0.5 2.88 0.50 1.13 4.5 12.95 400.01 0.71 7.08 20.03

19 27 0.5000 0.2500 0.2500 0.5 2.25 1.13 1.13 4.5 19.76 400.33 0.67 7.77 27.53

20 13 0.6390 0.2500 0.1110 1 3.07 1.20 0.53 4.8 12.34 399.82 0.81 8.38 20.72

21 3 0.6670 0.1665 0.1665 1 3.20 0.80 0.80 4.8 10.42 399.95 0.79 7.89 18.31

22 8 0.6670 0.1665 0.1665 1 3.20 0.80 0.80 4.8 10.42 400.37 0.65 7.89 18.31

23 10 0.5695 0.2500 0.1805 1 2.73 1.20 0.87 4.8 11.84 400.53 0.56 8.45 20.29

24 11 0.5695 0.2500 0.1805 1 2.73 1.20 0.87 4.8 14.01 399.76 0.71 7.69 21.70

25 5 0.6390 0.1110 0.2500 1 3.07 0.53 1.20 4.8 7.02 399.66 0.83 9.47 16.49

26 19 0.5695 0.1805 0.2500 1 2.73 0.87 1.20 4.8 11.25 399.93 0.93 9.31 20.56

27 21 0.5695 0.1805 0.2500 1 2.73 0.87 1.20 4.8 13.07 399.61 0.64 7.90 20.97

28 25 0.5000 0.2500 0.2500 1 2.40 1.20 1.20 4.8 14.01 400.08 0.89 8.96 22.97
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cTC ¼ 20:89x1
0 þ 22:63x2

0 þ 30:21x3
0 � 18:29x1

0x30

� 3:19x1
0A0 � 4:24x3

0A0 ð18Þ

For this estimated model, R2=0.880, R2
A ¼ 0:853 , and

R2
P ¼ 0:809 . The analysis of variance table for (18) is

given in Table 6 and shows that the model has a non-
significant lack of fit. Even though we started out con-
sidering the quadratic×quadratic MA model with 18
terms, the reduced MA model (18) contains only 6 terms.
This model shows that (i) the three tolerance proportions
have linear blending effects on TC, (ii) the first and third
tolerance proportions have a nonlinear blending effect on
TC, and (iii) the linear effects of the first and third
tolerance proprotions on TC depend on the total amount
(assembly tolerance) in a linear way. This type of inter-
pretation is possible with the MA approach but is not
possible with the CA approach.

For this steering mechanism example illustrating the MA
approach, the optimization problem (16) is

Minimize cTC given in 18ð Þ
subject to 0 � x10 � 0:60; 0 � x20 � 0:50; 0 � x30 � 0:50

ðequivalent to 0:500 � x1 � 0:667; 0:111 � x2 � 0:250;

0:111 � x3 � 0:250Þ;
and� 1 � A0 � 1 equivalent to 3:6 � T � 4:8ð Þ:

Using Solver in Excel, the optimal values that minimize
the TC were determined to be (x1′,x2′,x3′)=(0.60, 0,
0.40) and A′=1. The same solution was obtained using
the optimization capability of Design-Expert [32]. Using
Eq. (4) and T ¼ 0:6A0 þ 4:2 yielded (x1,x2,x3)=(0.667,
0.111, 0.222) and T=4.8. Finally, using ti=xiT gave the
optimal tolerances as t1=3.20, t2=0.53, t4=1.07 with
T=4.8. The predicted TC at the optimum tolerances is
16.61. The contour plot of TC as a function of (x1,x2,
x3) for T=4.8 is given in Fig. 4, with the optimal
solution shown to be on a vertex of the constrained
experimental region.

7 Summary and conclusions

This article discusses using CA or MA approaches for
tolerance design problems in which (i) there is one assembly
characteristic, (ii) the assembly tolerance is the sum of the
component tolerances, and (iii) the goal is to determine
the values of the tolerances that minimize the total cost
(manufacturing cost plus quality-loss cost). These are non-
standard applications of CA and MA experiments because
they do not involve mixtures of components (ingredients) in
the usual sense. However, this kind of tolerance design
problem has a structure to which CA and MA experimental

Table 6 ANOVA for the steer-
ing mechanism mixture-amount
model (18)

Source Sum of squares df Mean square F value P value Prob>F

Model 240.99 5 48.20 32.25 < 0.0001 Significant
Linear mixture 106.28 2 53.14 35.56 < 0.0001

x1′x3′ 5.71 1 5.71 3.82 0.0635

x1′A′ 18.20 1 18.20 12.18 0.0021

x3′A′ 30.21 1 30.21 20.21 0.0002

Residual 32.88 22 1.49

Lack of fit 26.66 17 1.57 1.26 0.4310 Not significant
Pure error 6.22 5 1.24

Cor total 273.87 27

Fig. 4 Contour plot of total cost versus component tolerance propor-
tions (x1,x2,x3) with T=4.8 for the steering mechanism example, with
the optimum solution shown as a dot
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designs and models can be adapted. In addition, CA and
MA designs avoid difficulties associated with using classi-
cal response surface designs such as a CCD or BBD (as
recommended by Jeang [5]). All design points in a CA or
MA design will be within the relevant experimental region,
whereas some design points in a CCD or BBD may fall
outside the relevant experimental region. This may result in
functional problems of the components and/or the assembly.
It also may affect the cost-tolerance model, and hence result
in a sub-optimum solution obtained using the model. Ulti-
mately, because a designer does not want to explore such
infeasible regions, using an MA or a CA design is more
reasonable than using a CCD or BBD. Further, the CA and
MA approaches to solving the tolerance design problem
provide less extreme solutions compared to the worst-case
method, so that the advantages of that method can be real-
ized while limiting the disadvantages.

In the planning stage of an experiment to address a
tolerance design problem for which the CA and MA
approaches are appropriate, a designer must make a choice
between two approaches. The CA approach is probably
most natural for many tolerance design problems because
component tolerances may naturally be thought of as com-
ponent amounts. However, there are two main advantages of
the MA approach compared to the CA approach. First, the
MA approach separately investigates the effects on the total
cost of (i) the assembly tolerance, and (ii) the proportional
tolerances of the assembly components. Hence, it is possible
to learn how the proportional allocation of component tol-
erances should change as the assembly tolerance changes. In
the CA approach, the effects of (i) and (ii) on total cost are
confounded and cannot be studied and understood separate-
ly. Second, as pointed out by Piepel and Cornell [30, 36],
CA models are special cases of corresponding MA models.
Hence, MA models have the potential to fit experimental
data from a tolerance design problem better than CA mod-
els. Ultimately, the choice between the CA and MA
approaches for a tolerance design problem to minimize total
cost depends on the naturalness of the CA approach versus
the possible interpretative and fitting advantages of the MA
approach. However, either the CA or MA approach is pre-
ferred to the inappropriate RSM approach using classical
designs such as the CCD and BBD.

Both the CA and MA approaches are easily implemented
in many software packages that (i) provide for single- and
multi-variable constraints to define the experimental region,
and (ii) apply optimal experimental design to construct a
design over the experimental region that is generally poly-
hedral in shape. Then, classical response surface models for
the CA approach, or MA models for the MA approach, can
be fit to the resulting experimental data to obtain a model for
total cost. Finally, the resulting model for total cost is used
with constrained optimization software to identify the

optimum tolerance design in terms of the CA or MA varia-
bles and their constraints, as shown in (14) and (16), respec-
tively. The optimum settings in terms of MA variables can
easily be converted back to optimum tolerance values.
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