
ORIGINAL ARTICLE

A hybrid assembly sequence planning approach based
on discrete particle swarm optimization and evolutionary
direction operation

Mingyu Li & Bo Wu & Youmin Hu & Chao Jin & Tielin Shi

Received: 2 July 2012 /Accepted: 21 January 2013 /Published online: 5 February 2013
Springer-Verlag London 2013

Abstract Assembly sequence planning (ASP) has al-
ways been an important part of the product development
process, and ASP problem can usually be understood as
to determine the sequence of assembly. A good assem-
bly sequence can reduce the time and cost of the man-
ufacturing process. In view of the local convergence
problem with basic discrete particle swarm optimization
(DPSO) in ASP, this paper presents a hybrid algorithm
to solve ASP problem. First, a chosen strategy of global
optimal particle in DPSO is introduced, and then an
improved discrete particle swarm optimization (IDPSO)
is proposed for solving ASP problems. Through an
example study, the results show that the IDPSO algo-
rithm can obtain the global optimum efficiently, but it
converges slowly compared with the basic DPSO. Sub-
sequently, a modified evolutionary direction operator
(MEDO) is used to accelerate the convergence rate of
IDPSO. The results of the case study show that the new
hybrid algorithm MEDO-IDPSO is more efficient for
solving ASP problems, with excellent global conver-
gence properties and fast convergence rate.

Keywords Assembly sequence planning . Discrete particle
swarm optimization . Modified evolutionary direction
operator . Hybrid algorithm

1 Introduction

Assembly sequence planning (ASP) is a widely researched
problem, which is an important part of assembly process
planning. Usually, most of the assembly sequence is deter-
mined on the basis of experience when the product design is
completed. However, optimal assembly sequence planning
is difficult to ensure based solely on experience. On the
other hand, the performance indexes of assembly resources
are hard to consider during the design process. With the
number of assembly parts growing, the number of possible
assembly sequences increases exponentially. Therefore, it is
hard to formulate the assembly sequence with no mistakes.
Along with the development of concurrent engineering,
computer-integrated manufacturing systems, the ASP prob-
lem, which is directly related to the assembly quality, efficien-
cy, and reliability in the assembly line, is one of the core issues
[1, 2]. In order to solve the ASP problem, the goal will focus
on saving cost and time during the assembly process [3].

To solve and optimize the ASP problem is one of the most
basic problems in the assembly process, and assembly se-
quence affects the underlying assembly process [4]. ASP
problem is crucial because it will determine many assembly
aspects including number of assembly orientation changes,
number of assembly tool changes, and number of assembly
operation type changes. The optimization results of the above
three problems can reduce the cost of the assembly process
and also reduce the time required for the assembly process.

Bourjault [5] proposed an assembly precedence relation
and the assembly association figure model to solve the
assembly sequence planning for the first time. De Fazio
and Whitney [6] optimized the method of Bourjault by
improving the form of questions and reducing the number
of questions to ask the operators. Hsu et al. [7] developed a
knowledge-based engineering system to assist engineers
predicting a near-optimal assembly sequence promptly,

M. Li :Y. Hu (*) : C. Jin : T. Shi
School of Mechanical Science & Engineering,
Huazhong University of Science and Technology,
Wuhan, Hubei, China 430074
e-mail: youmhwh@mail.hust.edu.cn

B. Wu
The State Key Laboratory of Digital Manufacturing Equipment
and Technology, Huazhong University of Science and Technology,
Wuhan, Hubei, China 430074

Int J Adv Manuf Technol (2013) 68:617–630
DOI 10.1007/s00170-013-4782-7

and the proposed system can facilitate feasible assembly
sequences in a virtual environment.

Bonneville et al. [8] first proposed the ASP approach using
a genetic algorithm (GA). In this method, each sequence was
treated as a chromosome in the initial population, and two
simple crossover and mutation operators were used to gener-
ate offspring individuals. In order to solve ASP problems by
using GA more efficiency, De et al. [9] and Marian et al. [10]
improved the coding principle and the fitness function to solve
ASP problems. Lu et al. [11] proposed an assembly planning
approach using a multi-objective genetic algorithm and estab-
lished different fitness functions through a fuzzy weight distribu-
tion algorithm. Tseng et al. [12] presented a multi-plant assembly
sequence planning model with a new GA encoding scheme to
solve themulti-plant assembly sequence planning problem. Zhou
et al. [13] combined bacterial chemotaxis (BC) and GA, and
proposed a novel BC–GA-based hybrid algorithm to decrease
the probability of trapping into local optimal solutions.

Milner et al. [14] used the network model to express the
assembly sequence and searched the lowest-cost assembly
sequence with simulated annealing (SA) algorithm. In order
to overcome the combination explosion problems of assembly
sequence optimization, Chen [15] proposed an artificial neural
networks algorithm method to transform the assembly con-
straint geometrical relationship to the assembly precedence
relations and optimized the ASP problem. Wang et al. [16]
proposed an ant colony optimization (ACO) algorithm to
solve disassembly sequence planning problems from the view
of geometric feasibility. Cheng et al. [17] investigated a ge-
netic algorithm and ants algorithm based on GA and ACO to
optimize ASP problem and assembly path feedback for com-
plex products. Gao et al. [18] proposed a memetic algorithm
(MA), which combined the parallel global search nature of
evolutionary algorithm with local search to improve individ-
ual solutions. The result showed that MA achieved significant
improvement for solving ASP problem.

In addition to the above algorithms, particle swarm opti-
mization (PSO) algorithms are a new methodology pro-
posed in recent years. PSO was first proposed by Kennedy
and Eberhart [19]. Basically, the PSO algorithm has power-
ful local and global search abilities and can convergence
efficiently. Moreover, the PSO algorithm is simple and easy
to implement, and does not need many parameters adjust-
ment. In view of the above advantages, the PSO algorithm
has been widely used in assembly sequence planning and
related fields [20–22]. Because the ASP solution is in dis-
crete solution space, the traditional PSO algorithms cannot
be used to solve the ASP problems directly. Kennedy and
Eberhart [23] proposed a binary particle swarm optimization
(BPSO) algorithm to solve the discrete combinatorial opti-
mization problem for the first time. Hu and Eberhart [24]
improved the BPSO algorithm to solve the permutation
replacement problems, and the improved BPSO imports

the mutation operation to prevent the optimal particles from
being trapped in a local minimum. Clerc [25] redefined the
position, velocity, and formulas of particles and proposed a
new discrete particle swarm algorithm (DPSO) to solve the
traveling salesman problem.

In recent years, more solutions based on DPSO are put
forward to solve the assembly sequence planning problem.
Wang and Liu [26] proposed a chaotic particle swarm opti-
mization algorithm. The algorithm can provide a better
assembly sequence by using chaos theory, but this method
will increase the solution time because of the selection of the
initial assembly sequence and the process. Lv and Lu [27]
proposed the assembly sequence planning approach with a
DPSO algorithm. The algorithm can achieve good results.
But the DPSO algorithm is easily affected by the individual
optimal fitness value, and the algorithm is easy to conver-
gence in the early evolution.

Evolutionary direction operator (EDO) is a kind of optimi-
zation operator, which can produce improved individuals
guided by a series of optimal evolutionary directions belong-
ing to the current population. EDO is widely used in GA [28,
29] andmany other research fields [30, 31], which can find the
global optimum efficiently. All these methods are optimiza-
tion problems solved in continuous solution space. Based on
the excellent properties of EDO, this paper presents a new
hybrid algorithm (MEDO-IDPSO) to improve the defects of
DPSO. This hybrid algorithm combines the modified evolu-
tionary direction operator (MEDO) and improved discrete
particle swarm optimization (IDPSO) to solve the ASP prob-
lem in discrete solution space for the first time. This hybrid
algorithm can improve the convergence rate and population
diversity and also balance the global search ability and local
search ability of particle swarm. Generally, the hybrid algo-
rithm will improve the global search solution and is proved to
have better performance than basic DPSO.

The rest of paper is organized as follows. “Section 2”
introduces the ASP methodology. “Section 3” discusses the
ASP approach with basic DPSO. In “Section 4,” a chosen
strategy of global optimal particle in DPSO is introduced.
Then, an IDPSO to solve the ASP problem is proposed. To
overcome the slow rate of convergence problem in IDPSO,
a MEDO is introduced. A new hybrid algorithm based on
IDPSO and MEDO is presented in “Section 5.” Finally, this
paper is concluded in “Section 6,” and the prospect of future
research is given.

2 ASP methodology

2.1 Interference matrix

An interference matrix is used to determine the geometric
feasibility of the product parts in each assembly direction.

618 Int J Adv Manuf Technol (2013) 68:617–630

An effective assembly sequence should satisfy the geomet-
ric constraint relation of assembly firstly, and the interfer-
ence information can be easily obtained from 3D CAD
software.

The interference matrix (IM) was first proposed by Dini
and Santoch [32] in assembly sequence planning and can be
derived from the geometric assembly relationship. General-
ly, an interference matrix can be established according to
±X, ±Y, and ±Z six direction spaces. Supposing an assembly
consists of n parts, the interference matrix can be repre-
sented as follows:

IM ¼

p1 p2 � � � pn
p1
p2
..
.

pn

I11xI11yI11z I12xI12yI12z � � � I1nxI1nyI1nz
I21xI21yI21z I22xI22yI22z � � � I2nxI2nyI2nz

..

. ..
. � � � ..

.

In1xIn1yIn1z In2xIn2yIn2z � � � InnxInnyInnz

2
6664

3
7775

Where, Iijk=1 (i∈[1 n], j∈[1 n]), if part Pj collides
with part Pi, when Pj is moved along the direction k to
the assembly position; Otherwise, Iijk=0. Especially, the
part cannot collide with itself, Iiik=0. As Ijik in the −k
direction is equal to Iijk in the +k direction, the three
interference matrixes M+x, M+y, and M+z can be used to
conclude the precedence feasibility of the given assem-
bly sequence.

The aim of ASP optimization is to reduce the assem-
bly costs and time by applying design for assembly
(DFA) approach in product design. Usually, the objec-
tive of ASP optimization can be confirmed by the
assembly orientation changes, tool changes, and opera-
tion type changes. Therefore, according to the character-
istics of the product assembly, the fitness function of
ASP in this paper is defined by the number of assembly
orientation changes, the number of assembly tool
changes, and the number of assembly operation type
changes.

2.2 The number of assembly orientation changes

For a feasible assembly sequence consisting of n parts,
the feasible assembly directions can be obtained for part
Pi to the subassembly which has been assembled before
part Pi. The number of assembly orientation changes
can be determined by the addition, and assembly orien-
tation changes depends on the previous assembly
operation.

Assume {P1, P2,…, Pm,…Pn} is the assembly sequence,
D(Pi) (i∈[1 n]) is the feasible assembly direction of each part
of the assembly sequence, which is determined by the geo-
metric feasibility method. The feasible assembly directions
D(Pi) can be obtained for each part Pi according to the

subassembly which has been assembled before part Pi. If parts
(P1, P2, …, Pi) exist \m

i¼1 DðpiÞ 6¼ f , there is no need to
change the direction of the assembly, and if \m

i¼1 DðpiÞ 6¼ f

and \mþ1
i¼1 DðpiÞ ¼ f , the assembly of part Pm+1 needs to

change the assembly direction once.
The fewer number of assembly orientation changes, the

fewer redirection operations, which can avoid complex as-
sembly tools and fixture design and increase quality of
assembly, realizing shorter time for assembly. Using the
interference matrix, it is also possible to determine the
number of assembly orientation changes f1, and it can be
calculated as follows:

f1 ¼
Xn
i¼1

fi ð1Þ

Where fi=1 (i∈[1 n]), if part i changes the assembly
direction relative to the part i−1, otherwise, fi=0.

2.3 The number of assembly tool changes

In assembly process, a given assembly sequence should
comply with the following basic principles: In the same
assembly direction, assemble as many parts using the
same assembly tools and assembly operation types as
possible.

A change of the assembly tools usually increases time of
assembly sequence. In complex product assembly process-
es, the more specialized assembly tools are used the more
assembly process may be complicated. Therefore, the fewer
number of assembly tool changes, the more favorable for the
assembly process.

The number of assembly tool changes can be carried out
with the following equation:

f2 ¼
Xn
i¼1

ti ð2Þ

Where ti=1 (i∈[1 n]), if part i changes the assembly tool
relative to the part i−1, otherwise, ti=0.

2.4 The number of assembly operation type changes

The number of assembly operation type changes will in-
crease the assembly time and assembly cost. Changes of the
assembly operations can also require tool changes, and the
number of assembly operation type changes can be deter-
mined as follows:

f3 ¼
Xn
i¼1

gi ð3Þ

Where gi=1 (i∈[1 n]), if part i changes the assembly
operation type relative to the part i−1, otherwise, gi=0.

Int J Adv Manuf Technol (2013) 68:617–630 619

2.5 Formulation of the fitness function

For a given assembly product, if the assembly sequence is
feasible, then the fitness function of the ASP can be given as
follows based on reference [11]:

F ¼ 2S � w1f1 � w2f2 � w3f3 ð4Þ
Where S is represents the total number of components

in an assembly sequence. f1 is the number of assembly
orientation changes; f2 is the number of assembly tool
changes, and f3 is the number of assembly operation type
changes. w1, w2, and w3 are the weights of f1, f2, and f3
respectively, and w1+w2+w3=1 (wi∈[0 1], i=1,2,3). In
this paper, the fitness function has the constant weight
distribution, and the weights are set as w1=0.4, w2=0.3,
w3=0.3.

Considering the assembly sequence priority constraints in
the assembly process, when the assembly sequence is infea-
sible, the fitness function is defined as follows:

F ¼ 2S � w1f1 � w2f2 � w3f3
2m

ð5Þ

Where m is number of the interference times in ASP.
In this condition, if the number of interference times of

a given assembly sequence is more than once, then the
assembly sequence is infeasible. m is used to reduce the
value of the sequence fitness function, in order to pun-
ish the infeasible assembly sequence. Therefore, a lower
probability of the infeasible assembly sequence is given
in the evolutionary process, and the infeasible sequence
is set to be in a disadvantage. However, it can also
cause the reduction of the diversity of the population in
algorithm.

Through the above definition, it can be seen that the
higher value of the fitness function is, the less time and cost
of ASP is used.

2.6 Case study introduction

An assembly product example from Lu [11] is used to study
and analyze the presented assembly sequence planning al-
gorithm. The assembly product example is shown in Fig. 1.

As shown in Fig. 1, the assembly product consists of 22
parts, and each part has six possible assembly directions
along with the ±X, ±Y, ±Z axes. In this study, the interference
matrix M+x, M+y, and M+z can be seen below, and the
number of tool types and operation types of the assembly
are given in Table 1.

Mþx ¼

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

2
666666666666666666666666666666666666664

3
777777777777777777777777777777777777775

620 Int J Adv Manuf Technol (2013) 68:617–630

Table 1 Tool types and operation types in the assembly

Part no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tool type 1 2 2 1 3 3 3 3 4 4 4 4 1 5 2 3 3 4 6 6 6 6

Operation type 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 2 2 2 2

Fig. 1 An assembly product example

Mþy ¼

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

2
666666666666666666666666666666666666664

3
777777777777777777777777777777777777775

Int J Adv Manuf Technol (2013) 68:617–630 621

Mþz ¼

0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0
0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0

2
666666666666666666666666666666666666664

3
777777777777777777777777777777777777775

3 An ASP approach with DPSO

3.1 Particle swarm optimization

In a traditional PSO algorithm method for solving continuous
space optimization problems, the solution space of position
and velocity belongs to the continuous real number domain.
The basic concepts of PSO are a randomly initialized swarm
of m particles in the n-dimensional search-space. The move-
ments of the particles are guided by their own best known
position in the search-space, as well as the entire swarm best
known positions. Based on those two best known positions,
the particles change their own position in the search space. In
the n-dimensional search-space, the position of particle i is
denoted by Xi=(xi1, xi2, …, xij, …, xin), and the velocity is
denoted by Vi=(vi1, vi2,…, vij,…, vin). The personal historical
best position is denoted by Pi=(pi1, pi2, …, pij, …, pin), and
the global historical best position is denoted by Pg=(pg1, pg2,
…, pgj,…, pgn), in which 1≤j≤n. The position and velocity of
the particle can be illustrated as follows:

Vijðt þ 1Þ ¼ w � VijðtÞ þ c1r1½Pij � XijðtÞ� þ c2r2½Pgj � XijðtÞ�
ð6Þ

Xijðt þ 1Þ ¼ XijðtÞ þ Vijðt þ 1Þ ð7Þ
Where w is the inertia weight, which determines the

proportion of the inheritance of the particles on the current
speed. c1 and c2 are learning factors, which make the parti-
cle have the ability to learn from current personal and global

excellence by searching space. r1 and r2 are random numb-
ers between [0 1] in the n-dimensional search-space.

3.2 Discrete particle swarm optimization

ASP problems are discrete optimization problems; the posi-
tion and velocity of the ASP solution space belongs to the
discrete domain. To solve ASP problems, the position and
velocity of the PSO algorithm should be improved properly.
The position, velocity, variable quantity, and other operation
rules of the particles are redefined below, and DPSO algo-
rithm for solving ASP problems is presented.

3.2.1 Position of particle i

The position of particle i is equivalent to an ordered arrange-
ment of an assembly sequence in production, and the posi-
tion vector of each particle i is defined as follows:

Xi ¼ xi1; xi2; � � � ; xij; � � � xin
� � ð8Þ

Where xij∈{1,2, …,n} are the part numbers, n is the total
number of the parts of the assembly. In order to ensure the
local searching behaviors and the population diversity, the
initial position vector of each particle is generated randomly.

3.2.2 Velocity of particle i

The velocity of particle i is equivalent to a transformation of
an assembly sequence. The velocity of the particles is

622 Int J Adv Manuf Technol (2013) 68:617–630

defined as the change of the particles position, which is the
change of an assembly sequence. The velocity vector of
each particle i is defined as follows:

Vi ¼ vi1; vi2; � � � ; vij; � � � vin
� � ð9Þ

And vij∈{0,1,2,…,n}.

3.2.3 Addition operator (position and velocity)

The addition operator of position and velocity of particle i is
equivalent to an update of an assembly sequence. Supposed
that a particle position is Xi=(xi1, xi2, …, xij, …, xin), and a
particle velocity is Vi=(vi1, vi2, …, vij, …, vin), then the
updating rule of the addition operator is as follows:

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ

xijðt þ 1Þ ¼ xijðtÞ if vijðt þ 1Þ ¼ 0
vijðt þ 1Þ if vijðt þ 1Þ 6¼ 0

�
ð10Þ

Where Xi (t+1) is the new position of the assembly
sequence in the t+1 times iteration, and Vi (t+1) is the
velocity in the t+1 times iteration. If velocity vector
element vij (t+1) is zero, the position vector xij (t+1) is
still xij(t). Otherwise, the new particles position vector
xij (t+1) is changed into vij (t+1), and the element of
original position vector which equals vij (t+1) is
changed into xij (t).

3.2.4 Subtraction operator (position and position)

A new velocity vector can be obtained by the subtraction
operation between two position vectors. Supposed that X1=
(x11, x12, …, x1j, …, x1n) and X2=(x21, x22, …, x2j, …, x2n)
are two different position vectors, then the subtraction op-
erator is defined as follows:

V ¼ X2 � X1 ð11Þ
Where V=(v1, v2,…vn). If x1j=x2j, vj=0, otherwise,

vj=x2j. Especially, the addition operator and subtraction
operator are irreversible.

3.2.5 Multiplication operator of velocity vectors

Multiplication operator of velocity vectors is used to make
adjustment of the velocity. Suppose that V1=(v11, v12, …,
v1j, …, v1n) is velocity vector of particles, c is a control
parameter, c∈[0 1], then the multiplication operator is de-
fined as follows:

V2 ¼ c � V1 ð12Þ

Where V2=(v21, v22,…, v2j, …, v2n), and the multiplica-
tion operation of velocity and control parameters can be
ensured as follows:

v2j ¼ v1j; r � c
0; else

�
ð13Þ

Where r (r∈[0 1]) is a randomly uniform distribution
number. It can be seen that, the greater control parameter c
is, the more elements V2 inherits from the vector V1.

3.2.6 Addition operator of velocity vectors

The addition operator of velocities is used to obtain the
effect of the superposed velocities. The sum of two veloci-
ties is a new velocity. Supposed that the particles velocity
vectors are V1=(v11, v12, …, v1j, …, v1n) and V2=(v21, v22,
…, v2j, …, v2n), then

V3 ¼ V1 þ V2 ð14Þ
Where V3=(v31, v32, …, v3j, …, v3n), and the addition

operation of velocity can be ensured as follows:

v3j ¼
v1j; v1j 6¼ 0; v2j ¼ 0
v1j; v1j 6¼ 0; v2j 6¼ 0; r < 0:5
v2j; else

8<
: ð15Þ

Based on special definitions of the position and velocity,
the mutative equations of the position and velocity of parti-
cle i is as follows:

Viðt þ 1Þ ¼ w � ViðtÞ þ c1½Pi � XiðtÞ� þ c2½Pg � XiðtÞ�
ð16Þ

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ ð17Þ

3.2.7 Weight coefficient and learning factors

The weight coefficient and learning factors should be rede-
fined in DPSO to allow the particles to have the ability of self-
learning and individual learning in groups. The weight coef-
ficient and learning factors are variables in DPSO; the value of
variables are determined according to the following equations:

w ¼ wmin þ wmax � wmin

Gmax
� n ð18Þ

c1 ¼ c1s þ c1l � c1s
Gmax

� n ð19Þ

c2 ¼ c2s þ c2l � c2s
Gmax

� n ð20Þ

Int J Adv Manuf Technol (2013) 68:617–630 623

Where wmax and wmin are the initial weight and final
weight, and wmax=0.9, wmin=0.1. Gmax is the maximum
iteration number, while n denotes current iteration number.
c1l, c1s, c2l, and c2s are constant parameters defined in
advance, c1l=0.8, c1s=0.2, c2l=0.2, and c2s=0.8. The
weight coefficient w and learning factors c1, c2 greatly
impact the performance of the DPSO. The weight strategies
described have following advantages: (1) In the beginning
of DPSO, a smaller value of w is helpful to escape from the
local minimum, while a bigger value of w is beneficial to
algorithm convergence at the end; (2) by changing c1 from
0.8 to 0.2 and changing c2 from 0.2 to 0.8, the method can
reserve more diversity of the swarm at the beginning period
of the algorithm and thus have more ability to escape from
local minimum.

3.3 The case study of DPSO

Applying the DPSO algorithm to the case study, set the
initial parameters as follows: The maximum number of
iterations Gmax=200, and the initial iteration number t=1.

To study the convergence performance of DPSO, the
population size Nsize is respectively set as 30, 60, 90, 120,
150, 180, 210, 240, 270, and 300. The DPSO algorithm
program runs 20 times to search out the optimal solution or
near-optimal solution for the different swarm size and the
average number of iterations. The results are shown in
Table 2.

As indicated in Table 2, nt is the number of algo-
rithm program runs, nnd is the number of the best
fitness value obtained from DPSO, tnd is the average
number of iterations, and Fnd is the average fitness
value of the DPSO algorithm.

As seen in Table 2, after the DPSO algorithm runs 20
times, there are only a few global optimal solutions nnd
found, which means the premature convergence phenomena
is a serious problem with the DPSO algorithm. That is to
say, the DPSO algorithm is easily falls into the local optimal
solution, as seen in Fig. 2. It can be seen that the solution
falls into local optimum of 9.325 with 21 iterations. Al-
though the average number of the global optimal solutions
obtained is few in DPSO, the convergence rate of algorithm
is very fast, as shown in Fig. 3. It obtains the global opti-
mum of 38.7 with 34 iterations.

In the DPSO algorithm, the position and velocity of each
particle will be updated according to the individual best
fitness value and global best fitness value. Therefore, DPSO
algorithm is subjected to these two values, which is useful
for fast search and convergence of the DPSO algorithm
ostensibly. However, the DPSO algorithm in the early evo-
lution can quickly converge to the local optimum along with
the increase of the iterative numbers, and the evolution
process of the DPSO algorithm remains unchanged. In this
situation, the obtained global best fitness value is the local
optimum, and DPSO algorithm is easy to fall into local
convergence.

Table 2 The convergence per-
formance of DPSO Nsize 30 60 90 120 150 180 210 240 270 300

nt 20 20 20 20 20 20 20 20 20 20

nnd 1 2 3 3 5 6 6 7 8 7

tnd 53 47.5 45 39 46 56 47.5 42.14 38.25 37.43

Fnd 36.5 37.62 38.13 38.25 38.5 38.45 38.63 38.75 38.73 38.82

Fig. 2 The premature convergence phenomena in DPSO algorithm Fig. 3 The fast convergence of DPSO algorithm

624 Int J Adv Manuf Technol (2013) 68:617–630

4 An ASP approach with IDPSO

4.1 Chosen strategy of global best particle

From above section, the basic DPSO algorithm needs to be
improved, to solve the local convergence problem. In this
paper, the particles are trained by the historical best fitness
value of other particles with the larger probability in the
early evolutionary stage and by the global best fitness value
with the larger probability in the later evolutionary stage.
This method will increase the ability of DPSO algorithm to
search the solution space and increase the opportunity for
the DPSO to reach the global optimum.

In the IDPSO algorithm, suppose that n is the number of
iterations, Gmax is the maximum number of iterations, and
Gt is a variable as follows:

Gt ¼ n

Gmax
ð21Þ

Suppose r is an equally distributed random number be-
tween [0 1]. If r>Gt, then randomly select a particle from
the whole population except the global best particle, and use
the optimal location position of the particle Pr instead of
global optimal position Pg. The velocity of particle i is
renewed as follows:

Viðt þ 1Þ ¼ w � ViðtÞ þ c1½Pi � XiðtÞ� þ c2½Pr

� XiðtÞ� ð22Þ
If r≤Gt, the position and velocity of particle i is still

renewed using Eqs. 16 and 17.

4.2 Proposed IDPSO algorithm for ASP

The inputs of the proposed IDPSO algorithm are the number of
assembly parts, interferencematrixM+x,M+y, andM+z , and the
weight coefficient w1=0.4, w2=0.3, w3=0.3. The main proce-
dure of the proposed IDPSO algorithm is shown in Fig. 4:

Fig. 4 Flow chart of improved
discrete particle swarm
optimization

Int J Adv Manuf Technol (2013) 68:617–630 625

Step 1 Set the population size Nsize, the maximum number
of iterations Gmax, the inertial weight w, the learning
factors c1, c2, and the initial iteration number t=1.

Step 2 Randomly generate the position vector X and ve-
locity vector V in the initial population.

Step 3 Calculate the fitness value of each particle. If the
current fitness value is better than the individual
best fitness value Pi in an iterative process, then
substitute the individual best fitness value Pi with
the current fitness value.

Step 4 According to the fitness value of each particle,
determine the individual best fitness value Pi and
the global best fitness value Pg.

Step 5 Calculate Gt and generate a uniform distribution
random numbers r in the range [0 1].

Step 6 If r>Gt, generate the new position vector X and
velocity vector Vaccording to Eqs. 22 and 17; if r≤
Gt, generate the new position vector X and velocity
vector V according to Eqs. 16 and 17.

Step 7 Determine the iteration numbers. If n≥Gmax, go to
step 8. Otherwise, go to step 3.

Step 8 Output the best fitness value of assembly sequence
Pg and the fitness function value.

4.3 The case study of IDPSO

Apply the IDPSO algorithm to the previous case study and
set the initial parameters as follows: the maximum number
of iterations Gmax=200, and the initial iteration number t=1.

To study the convergence performance of IDPSO,
population size Nsize is respectively set as 30, 60, 90,
120, 150, 180, 210, 240, 270, and 300. The IDPSO
algorithm program runs 20 times to search the optimal
solution or near-optimal solution for the different popu-
lation size and the average number of iterations. The
results are shown in Table 3.

As indicated in Table 3, nt is the number of algorithm
program runs, nni is the number of the best fitness value of
IDPSO algorithm obtained, tni is the average number of
iterations, and Fni is the average fitness value of IDPSO
algorithm. The convergence performance of IDPSO is
depicted in Fig. 5, and the best fitness value is 39.3 with
118 iterations.

Comparing Table 3 with Table 2, it can be seen that the
local convergence problem of basic DPSO algorithm has
been greatly improved by IDPSO, which shows the IDPSO
algorithm has better searching efficiency in solution space.
As shown in Table 3, when the population size Nsize is 300,
the average iterations of IDPSO tni is 121.16, which increase
obviously compared with the average iterations of basic
DPSO tnd=37.43 as shown in Table 2.

As shown in Fig. 6, comparing the convergence perfor-
mance between DPSO and IDPSO, the iteration number of
IDPSO is 120, while the iteration number of DPSO is 33.
Through the comparison, IDPSO has a significantly lower
convergence rate than DPSO.

In IDPSO algorithm, the global best particle may not be
the global optimum in the early iteration process, and the

Table 3 The convergence per-
formance of IDPSO Nsize 30 60 90 120 150 180 210 240 270 300

nt 20 20 20 20 20 20 20 20 20 20

nni 6 9 10 11 13 15 16 18 18 19

tni 125.83 123.22 129.6 126.82 122.92 119.87 115.5 125.39 116.17 121.16

Fni 38.55 38.37 38.5 38.82 38.57 38.77 38.81 38.83 38.84 38.81

Fig. 5 The convergence performance of IDPSO Fig. 6 Compare the convergence performance of DPSO and IDPSO

626 Int J Adv Manuf Technol (2013) 68:617–630

diversity of the whole population has been kept, which is
obviously the reason why the average iteration number
increases. In order to reduce the iteration number and im-
prove the efficiency of the algorithm, the IDPSO algorithm
will be improved in the next section.

5 An ASP approach with hybrid algorithm

The influencing factors on the global convergence of the
IDPSO algorithm mainly depend on two aspects: One is the
initial distribution of the particle swarm, and the other is the
search strategy. The search strategy of the IDPSO algorithm
is reflected mainly in the performance of the particle veloc-
ity mainly. Firstly, the updating of the personal best particle
location reflects its local search ability, which will improve
the precision of local position and speed up the local con-
vergence rate. Secondly, the updating of the global best
particle location reflects its guidance of the global optimal
solution. Both above-mentioned updating strategies will
help to improve the convergence rate of the algorithm.

In order to reduce the average iteration number of the
IDPSO algorithm, a hybrid algorithm MEDO-IDPSO based
on IDPSO and the MEDO is proposed below, which is proven
to improve the local and global search capability of IDPSO.

5.1 MEDO

Yamamoto and Inoue [28] used the EDO in GAs for the first
time, which can be adopted to determine a better direction
for solution searching. The modified EDO presented in this
paper does not require gradient evaluation, and thus, it is
much faster than the gradient-based optimizers. If numerous
local optimum solutions exist in the search space, then EDO
cannot easily exploit its searching ability.

To improve the local optimum solution and reduce the
average iteration number of the IDPSO algorithm more
efficiently, the MEDO is proposed in discrete solution
space. In the MEDO process, three best particles in each
generation are chosen to perform the evolutionary direction

Fig. 7 The flowchart of MEDO

Fig. 8 The flowchart of the
hybrid algorithm

Int J Adv Manuf Technol (2013) 68:617–630 627

operator algorithm, and then a new particle superior to the
original best particle will be obtained. The three best particles
are obtained after a generation of learning. These three best
particles are ordered according to their fitness value, and called
the “high”, “medium” and “low” particles. Three input and the
output particles of the MEDO process are denoted as follows:

Input particles:
“high” particle, Ph=(ph1, ph2,…, phj, …, phn), and the

fitness value is Fh.
“medium” particle, Pm=(pm1, pm2,…, pmj, …, pmn), and

the fitness value is Fm.
“low” particle, Pl=(pl1, pl2,…, plj,…, pln), and the fitness

value is Fl.
Output particle:
Po=(po1, po2,…, poj, …, pon), and the fitness value is Fo.
Where n represents the dimension of particles in IDPSO. The

MEDO process proposed in this paper is described as follows:

Step 1 Set the evolution direction parameters D1and D2

randomly, theMEDO initial index Ts=1, and the total
number of the MEDO loop NL=5. Find the three
particles with the best fitness values from a genera-
tion of IDPSO and mark them as Ph, Pm, and Pl.

Step 2 Generate the new particle Po as follows

Poj ¼ Plj þ D1 � ðPlj � PmjÞ þ D2 � ðPlj � PhjÞ
ð23Þ

Step 3 Calculate the fitness value Fo of the new particle.
Step 4 Update the particles Ph, Pm, and Pl, and the updat-

ing principle is as follows:

1. If Fo>Fh, then Ph=Po, Pm=Ph, and Pl=Pm;
2. Else if Fm<Fo<Fh, the Ph=Ph, Pm=Po, and Pl=Pm;
3. Else if Fl<Fo<Fm, the Ph=Ph, Pm=Pm, and Pl=Po;
4. Else if Fl=Fo=Fm, then Fo=Fo+Nr, Nr is a random

permutation of the number between [1 N], where N
is the number of parts in the assembly.

5. Else if Fo<Fl, then initialize D1 and D2 randomly,
D1, D2∈[0 1].

Step 5 If Ts>NL, then go to next step. Otherwise, Ts=Ts+1,
go to step 2.

Step 6 If the fitness value of the new particle is higher than
the global best fitness value, then the global best
particle will be replaced by the new particle. Figure 7
shows the flowchart of the proposed MEDO.

The flowchart of the hybrid algorithm MEDO-IDPSO is
shown in Fig. 8, and the whole learning process is described
step-by-step as follows. In the iteration process of hybrid
algorithm, the role of the MEDO is to accelerate the velocity
of all the iterations and meanwhile reduce the time of
algorithm operation. On the other hand, the role of Gt is to
prevent the hybrid algorithm from falling into local opti-
mum. These are two key points in the hybrid algorithm.

5.2 The case study of hybrid algorithm

Apply the hybrid algorithm MEDO-IDPSO to the previous
case study and set the initial parameters as follows: the
maximum number of iterations Gmax=200 and the initial
iteration number t=1.

To study the convergence performance of the hybrid algo-
rithm, population size Nsize is set as 30, 60, 90, 120, 150, 180,
210, 240, 270, and 300. The hybrid algorithm program runs
20 times to search out the optimal solution or near-optimal
solution for the different population size and the average
number of iterations. The results are shown in Table 4.

As shown in Table 4, nt is the time of algorithm program
runs, nnh is the number of the best fitness value obtained from
the hybrid algorithm, tnh is the average number of iterations,
and Fnh is the average fitness value of the hybrid algorithm.

The fitness function value of an optimal assembly sequence
obtained is 39.9 with 68 iterations, as shown in Fig. 9, and the
corresponding assembly sequence is given in Table 6. The
optimal assembly sequence has two orientation changes, eight

Table 4 The convergence per-
formance of hybrid algorithm Nsize 30 60 90 120 150 180 210 240 270 300

nt 20 20 20 20 20 20 20 20 20 20

nnh 5 8 10 13 14 15 15 16 17 17

tnh 75.40 76.63 78.90 78.15 80.14 78.33 76.47 75.31 77.06 72.47

Fnh 37.60 38.28 38.51 38.65 38.56 38.68 38.79 38.88 38.85 38.91

Fig 9 An optimal assembly sequence value from hybrid algorithm

628 Int J Adv Manuf Technol (2013) 68:617–630

tool changes, and three operation type changes. Comparison
about the results of ASP optimization performance between
GA, DPSO, IDPSO, DPSO-SA, andMEDO-IDPSO is shown
in Table 5 using the same nsize and Gmax (except GA and
DPSO-SA). The computation time of each algorithm is
obtained using Dell Laptop XPS L412Z with Intel (R) Core
(TM) i5-2430 M CPU 2.4 GHz (except GA).

As shown in Table 5, all different optimization algorithm
population size is 300 (expect GA). The maximum iteration
number of GA, DPSO, IDPSO, and MEDO-IDPSO is Gmax=
200, while GA isGmax=500 and DPSO-SA areGmax=400. ntc
is the number of algorithm program runs, nnc is the number of
the best fitness value obtained from different algorithms, tnc is
the average number of iterations, Fnc is the average fitness
value, and Fop is the best fitness value. From the GA approach
of Lu’s [11], the crossover probability pc=0.8 and mutation
probability pm=0.2.

Comparing different algorithm results in Table 5, the
number of the optimal solutions obtained with the hybrid
algorithm increases remarkably compared with DPSO. On
the other hand, the average iteration number of the hybrid
algorithm reduced significantly compared with IDPSO. The
proposed MEDO-IDPSO method obtained the best fitness
value of 39.9 while keeping the algorithm stability (nnc=17)
and searching efficiency (tnc=72.47).

From the above optimization approaches, the best assem-
bly sequences with different algorithms are shown in Table 6.
And the best assembly sequence of MEDO-IDPSO has two
orientation changes, eight tool changes, and three operation
type changes.

The case study proves the correctness, advantage, and
effectiveness of the hybrid algorithm to solve ASP problems.
The hybrid algorithm not only has the stability but can also
overcome the weakness of the slow convergence of IDPSO.

In summary, the hybrid algorithm has stronger convergence
properties than basic DPSO and solved the local convergence
problem of the basic DPSO algorithm, which is proven to be
more suitable to solve the ASP problems. Moreover, the pro-
posed hybrid algorithm is simple and easy to realize.

6 Conclusions

To solve ASP problem, the interference matrix has been
used to determine the directions of the geometric feasibility
in this paper. The fitness function reflects the number of
assembly orientation changes, the number of assembly tool
changes, and the number of assembly operation type
changes, whose object is to reduce the time and cost of the
manufacturing process. In view of the local convergence
problem of basic DPSO in ASP, this paper presented a
hybrid algorithm MEDO-IDPSO based on DPSO and
MEDO to overcome this problem. Initially, an IDPSO
was proposed to improve the stability of basic DPSO
with careful choice of global optimal particles, where-
after, a MEDO was brought in to accelerate the conver-
gence rate of IDPSO, and a hybrid algorithm MEDO-
IDPSO was presented.

The case study results show that the hybrid algorithm
MEDO-IDPSO not only had better global convergence
properties than basic DPSO but also had a faster conver-
gence rate than IDPSO in solving the ASP problem.
Through the case studies of an assembly product example
from Lu [11], the best fitness value obtained in this paper is
39.9 with 68 iterations. This result is much better than Lu’s
[11] GA (genetic algorithm) method, whose best fitness
value is 38.82 with around 400 iterations. And it is also
better than Lv’s [27] DPSO method, whose best value is
39.4 with around 100 iterations. The results of the case
study showed that the hybrid algorithm based on IDPSO
and MEDO is efficient for solving ASP problem, which can
obtain more satisfactory optimization results than GA and
DPSO.

Future works will be mainly focused on the improve-
ment of the evolutionary direction in MEDO, such as
proper choice of direction parameters D1 and D2 with
consideration of DPSO and to make the hybrid algo-
rithm MEDO-IDPSO more efficient and stable to solve
the ASP problem.

Table 6 The best assembly sequence among different optimization
approaches

Algorithm The best assembly sequence

GA 4-2-3-1-5-6-8-7-16-17-10-9-13-14-15-18-11-12-21-
20-19-22

DPSO 14-5-6-9-10-1-13-3-2-4-7-8-17-16-18-11-12-21-20-
22-19-15

IDPSO 10-9-5-6-13-1-2-3-4-14-17-7-16-8-18-12-11-20-19-
22-21-15

DPSO-SA 10-9-5-6-13-1-2-3-4-14-17-7-16-8-18-12-11-20-19-
22-21-15

MEDO-IDPSO 10-9-18-13-1-5-6-17-16-14-15-2-3-4-8-7-12-11-22-
20-21-19

Table 5 Performance evaluation between different optimization
approaches

Algorithm/
item

GA [11] DPSO IDPSO DPSO-SA MEDO-
IDPSO

nsize 80 300 300 300 300

Gmax 500 200 200 400 200

ntc 20 20 20 20 20

nnc 18 7 19 17 17

tnc – 37.43 121.16 367 72.47

Fnc – 38.82 38.81 38.6 38.91

Fop 38.82 39 39.3 39.3 39.9

Int J Adv Manuf Technol (2013) 68:617–630 629

Acknowledgments This work is sponsored by the National Key
Technology R&D program of China (No. 2009BAG12A01-G01-3),
the National Natural Science Foundation of China (No. 51175208, No.
51075161), and the State Key Basic Research Program of China
(NO.2011CB706803). The CSR Sifang Locomotive & Rolling Stock
Co., Ltd, very gratefully acknowledged.

References

1. Demoly F, Yan XT, Eynard B, Rivest L, Gomes S (2011) An
assembly oriented design framework for product structure engi-
neering and assembly sequence planning. Robot Comput Integr
Manuf 27(1):33–46

2. Lai HY, Huang CT (2004) A systematic approach for automatic
assembly sequence plan generation. Int J Adv Manuf Technol 24
(9–10):752–763

3. Rashid MFF, Hutabarat W, Tiwari A (2012) A review on assembly
sequence planning and assembly line balancing optimization using
soft computing approaches. Int J Adv Manuf Technol 59(1–
4):335–349

4. Wang LH, Keshavarzmanesh S, Feng HY, Buchal RO (2009)
Assembly process planning and its future in collaborative manu-
facturing: a review. Int J Adv Manuf Technol 2009(1–2):132–144

5. Bourjault A (1984) Contribution á une approche méthodologique
de l’assemblage automatisé: Elaboration automatique des sequen-
ces opératoires. Ph.D. thesis, Faculté des Sciences et des Techni-
ques de l’Université de Franche-Comté, France

6. De Fazio TL, Whitney DE (1987) Simplified generation of all
mechanical assembly sequences. IEEE Trans Robot Autom 3
(6):640–658

7. Hsu YY, Tai PH, Wang MW, Chen WC (2011) A knowledge-based
engineering system for assembly sequence planning. Int J Adv
Manuf Technol 55(5–8):763–782

8. Bonneville F, Perrard C, Henrioud JM (1995) A genetic algorithm to
generate and evaluate assembly plans. IEEE Symposium on Emerg-
ing Technology and Factory Automation, Paris, France 2:231–239

9. De LP, Latinne P, Rekiek B (2001) Assembly planning with an
ordering genetic algorithm. Int J Prod Res 39(16):3623–3640

10. Marian RM, Luong LHS, Abhary K (2006) A genetic algorithm
for the optimisation of assembly sequences. Comp Ind Eng 50
(4):503–527

11. Lu C, Wong YS, Fuh JYH (2006) An enhanced assembly planning
approach using a multi-objective genetic algorithm. Proc Inst
Mech Eng Part B J Eng Manuf 220(2):255–272

12. Tseng YJ, Yu FY, Huang FY (2010) A multi-plant assembly
sequence planning model with integrated assembly sequence plan-
ning and plant assignment using GA. Int J Adv Manuf Technol 48
(1–4):333–345

13. Milner JM, Graves SC, Whitney DE (1994) Using simulated
annealing to select least-cost assembly sequences. Proceedings of
the IEEE International Conference on Robotics and Automation,
San Diego, CA, USA, pp 2058–2063

14. Zhou W, Zheng JR, Yan JJ, Wang JF (2011) A novel hybrid
algorithm for assembly sequence planning combining bacterial
chemotaxis with genetic algorithm. Int J Adv Manuf Technol 52
(5–8):715–724

15. Chen W, Tai P, Deng W, Hsieh L (2008) A three-stage integrated
approach for assembly sequence planning using neural networks.
Expert Syst Appl 34(3):1777–1786

16. Wang JF, Liu JH, Zhong YF (2005) A novel ant colony algorithm
for assembly sequence planning. Int J Adv Manuf Technol 25
(11):1137–1143

17. Cheng H, Li Y, Zhang KF (2009) Efficient method of assembly
sequence planning based on GAAA and optimizing by assembly
path feedback for complex product. Int J Adv Manuf Technol 42
(11–12):1187–1204

18. Gao L, Qian WR, Li XY, Wang JF (2010) Application of memetic
algorithm in assembly sequence planning. Int J Adv Manuf Tech-
nol 49(9–12):1175–1184

19. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Pro-
ceedings of the IEEE International Conference on Neural Net-
works, Perth, Australia, pp 1942–1948

20. Liao C, Tseng C, Luarn P (2007) A discrete version of particle
swarm optimization for flowshop scheduling problems. Comput
Oper Res 34(10):3099–3111

21. Tseng YJ, Yu FY, Huang FY (2011) A green assembly sequence
planning model with a closed-loop assembly and disassembly
sequence planning using a particle swarm optimization method.
Int J Adv Manuf Technol 57(9–12):1183–1197

22. Guo YW, Li WD, Mileham AR, Owen GW (2009) Applications of
particle swarm optimization in integrated process planning and
scheduling. Robot Comput Integr Manuf 25(2):280–288

23. Kennedy J, Eberhart RC (1997) A discrete binary version of the
particle swarm algorithm. Proceedings of the IEEE international
conference on Systems, Man and Cybernetics, Piscataway, NJ,
USA, pp 4104–4108

24. Hu XH, Eberhart RC, Shi YH (2003) Swarm intelligence for
permutation optimization: a case study of n-queens problem. Pro-
ceedings of the IEEE Swarm Intelligence Symposium, Indianap-
olis, IN, USA, pp 243–246

25. Clerc M (2004) Discrete particle swarm optimization, illustrated
by the traveling salesman problem. In: Onwubolu GC, Babu BV
(eds) New optimization techniques in engineering. Studies in fuzz-
iness and soft computing. Springer, Heidelberg, pp 219–239

26. Wang Y, Liu JH (2010) Chaotic particle swarm optimization for
assembly sequence planning. Robot Comput Integr Manuf 26
(2):212–222

27. Lv HG, Lu C (2010) An assembly sequence planning approach
with a discrete particle swarm optimization algorithm. Int J Adv
Manuf Technol 50(5–8):761–770

28. Yamamoto K, Inoue O (1995) New evolutionary direction operator
for genetic algorithms. AIAA J 33(10):1990–1993

29. Chiang CL (2005) Improved genetic algorithm for power econom-
ic dispatch of units with vale-point effects and multiple fuels. IEEE
Trans Power Syst 20(4):1690–1699

30. Su CT, Lii GR, Hwung HR (2000) Position control employing
fuzzy-sliding mode and genetic algorithms with modified evolu-
tionary direction operator. Cybern Syst 31(8):873–891

31. Lin CJ, Wang JG, Lee CY (2009) Pattern recognition using neural-
fuzzy networks based on improved particle swam optimization.
Expert Syst Appl 36:5402–5410

32. Dini G, Santochi M (1992) Automated sequencing and subassem-
bly detection in assembly planning. CIRP Ann Manuf Technol 41
(1):1–4

630 Int J Adv Manuf Technol (2013) 68:617–630

	A hybrid assembly sequence planning approach based on discrete particle swarm optimization and evolutionary direction operation
	Abstract
	Introduction
	ASP methodology
	Interference matrix
	The number of assembly orientation changes
	The number of assembly tool changes
	The number of assembly operation type changes
	Formulation of the fitness function
	Case study introduction

	An ASP approach with DPSO
	Particle swarm optimization
	Discrete particle swarm optimization
	Position of particle i
	Velocity of particle i
	Addition operator (position and velocity)
	Subtraction operator (position and position)
	Multiplication operator of velocity vectors
	Addition operator of velocity vectors
	Weight coefficient and learning factors

	The case study of DPSO

	An ASP approach with IDPSO
	Chosen strategy of global best particle
	Proposed IDPSO algorithm for ASP
	The case study of IDPSO

	An ASP approach with hybrid algorithm
	MEDO
	The case study of hybrid algorithm

	Conclusions
	References

