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Abstract This paper investigates an optimisation design
of the various machining parameters for the electrical dis-
charge machining (EDM) processes on AISI D2 tool steel
using a hybrid optimisation method. A new combination
of response surface methodology (RSM) and grey rela-
tional analysis coupled with principal component analysis
(PCA) has been proposed to evaluate and estimate the
effect of machining parameters on the responses. The major
responses selected for this analysis are material removal
rate, tool wear rate and radial overcut or gap, and the cor-
responding machining parameters considered for this study
were pulse current (Ip), pulse duration (Ton), duty cycle
(Tau) and discharge voltage (V). Thirty experiments were
conducted on AISI D2 steel workpiece materials based on
a face-centred central composite design. The experimen-
tal results obtained were used in grey relational analysis,
and the weights of the responses were determined by
the PCA and further evaluated using RSM. The results
indicate that the grey relational grade (GRG) was signifi-
cantly affected by the machining parameters considered and
some of their interactions. The R2 value for the GRG model
was found to be 0.83, and the optimal parameter setting
was determined for the grey relational grades. The analysis
of variance results reveal that Tau is the most influencing
parameter having 28.57 of percentage contribution followed
by Ip, V and Ton with 11.52, 5.89 and 5.83 %, respectively.
The interaction of the parameters contributes 31.19 % of
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percentage contribution. These results provide useful infor-
mation on how to control the machining parameters and
thereby responses and ensure high productivity and accu-
racy of the EDMed component. This method is simple with
easy operability, and the results have also been verified by
running confirmation tests.

Keywords Electrical discharge machining · Material
removal rate · Tool wear rate · Overcut · Response surface
methodology · Grey relational analysis · Principal
component analysis

1 Introduction

There is a growing trend to use light weight, slim and
compact mechanical component in the recent years; hence,
there has been an increased interest in the advance mate-
rials in modern day industries. These advanced materials
having attractive attributes such as high strength, high bend-
ing stiffness, good damping capacity, low thermal expansion
and better fatigue characteristics, which make them poten-
tial materials for modern day industrial application used
in mould and die making industries, aerospace component,
medical appliance and automotive industries. These indus-
tries are facing challenges from such advanced materials,
viz. super alloys, ceramics and composites, that are hard and
difficult to machine, requiring high precision and surface
quality which leads to increase machining cost [1].

For the last six decades, electrical discharge machining
(EDM) has been extending inimitable capabilities to ma-
chine “difficult to machine” materials with desired shape,
size and required dimensional accuracy. It has been impres-
sively applied for machining in the advance industries like
automotive, medical, aerospace, consumer electronics and
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optoelectronic industries development. In the past, with the
continuing advances of technology, there has been a sig-
nificant enhancement in EDM technology also, to improve
productivity, accuracy and the versatility of the process. The
key interest in the active research was to choose the opti-
mal setting of the process parameters in such a way that
material removal rate (MRR) and accuracy should increase
and, concurrently, overcut or gap, tool wear and surface
roughness should reduce. Moreover, a process can be iden-
tified better when a model replicates its behavior by its vital
parameters. The factors that are significant for the system
are to be recognised and different aspects of the process are
to be correlated while constructing the model. It is expen-
sive, unpractical or impossible to experiment directly with
the process so a good model can be cost-effective to predict
the actual process very closely. There are a large number
of factors to be considered for the EDM process. Based on
experience and literature on EDM research and the work-
ing characteristics of the machine, the prime parameters
chosen, in the present chapter, are pulse current (Ip), pulse
duration (Ton), duty cycle (Tau) (defined as the ratio of
pulse on time to the total pulse period) and discharge volt-
age (V) (Table 1). The motivation as to why these factors
have been selected is that these are often used among EDM
researchers [2–5] for the aforesaid responses and are found
to significantly influence them. Extensive experiments were
conducted, and the proposed models used the experimental
data on EDMed AISI D2 tool steel and the performances of
the developed models are compared.

In the past, significant improvement has been carried out
to enhance the productivity, accuracy and versatility of the
EDM process. The key issue is to pick the process param-
eters in such a way that the productivity and accuracy will
increase. To identify the factor and their interactions respon-
sible for this issue, various research studies were reported
in the literature [6]. Dhar et al. [2] estimated the effect of
Ip, Ton and V on MRR, tool wear rate (TWR) and radial
overcut or gap (G) on EDM of Al–4Cu–6Si alloy–10 wt%
SiCP composites. Using three factors, three-level full facto-
rial designs, a second-order, non-linear mathematical model
has been developed for establishing the relationship among

Table 1 Input variables used in the experiment and their levels

Variable Unit Levels

1 2 3

Discharge current (Ip) A 4 7 10

Pulse on time (Ton) μs 100 200 300

Duty cycle (Tau) % 80 85 90

Voltage (V) volt 40 50 60

machining parameters. The MRR, TWR and G increase
with increase in Ip and Ton. Salonitis et al. [7] developed
a simple thermal-based model to determine the MRR and
surface roughness and assert that the increase of Ip, V or
Ton results in higher MRR and simultaneously a higher
value of surface roughness. On the other hand, on reduc-
ing idling time, MRR increases. The model’s predictions
were compared with experimental results and found to be
in good agreement. El-Taweel [8] investigated the corre-
lation of process parameters in EDM of CK45 steel with
Al–Cu–Si–TiC composite produced using powder metal-
lurgy technique and evaluated MRR and TWR. It was found
that such electrodes are more sensitive to Ip and Ton than
conventional electrodes. To achieve maximum MRR and
minimum TWR, the process parameters are optimised, and
on experimental verification, the results are found to be in
good agreement. Pradhan and Biswas [9] investigated the
effects of Ip, Ton, Tau and V on various responses using
two neuro-fuzzy and one neural network model. Chiang and
Chang [10] reported optimisation of the wire EDM process
using multiple response analysis based on the grey relational
analysis. The Ton and pulse off time, V, wire feed, dielec-
tric flow and cutting radius of workpiece were correlated
on responses such as surface removal rate and maximum
surface roughness.

Optimal selection of process parameters in EDM is
vitally essential since it is an expensive process, and the
materials generally used in EDM are difficult to machine
and are pretty costly. Consequently, efforts are made to
increase a production rate considerably by reducing the
machining time. EDM is a highly complex and stochas-
tic process, and it is absolutely difficult to decide optimal
parameters for best machining performance, i.e. produc-
tivity and accuracy. MRR, TWR and radial over cut are
the primary responses that judge the machining perfor-
mance, but these are contradictory in nature. The higher
the MRR, the best, whereas the lower the tool wear and
radial over cut, the best. In EDM, it is difficult to find a
single optimal combination of process parameters for the
performance’s parameters, as the process variables influ-
ence them differently. Consequently, there is a necessity
for a multi-objective optimisation method to succeed at the
solutions to this problem. Moreover, in recent years, the
customer’sconcern is also oriented towards more than one
response, where multi-response experiments and compu-
tations on several responses are attained for each setting
of a range of control input variables. In design and in
designing manufacturing processes, multi-response objec-
tives frequently conflict with each other. To solve this
type of multi-optimisation problem, Lin et al. [11] used
grey relational analysis based on an orthogonal array
and fuzzy-based Taguchi method. Su and Tong [12] and
Antony [13] have tried to combine Taguchi method with
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principal component analysis. Latter on Liao [14] and Wu
and Chyu [15] proposed methods on the basis of weighted
principal components. Routara et al. [16] performed princi-
pal component analysis (PCA) on normalised response vari-
ables and compute the multi-response performance index as
a weighted summation of PC values. Ribeiro et al. [17] has
presented a simultaneous optimisation of correlative mul-
tiple response and used score vector of the first principal
component acquired from PCA on responses to find optimal
conditions by response surface methodology (RSM).

Even though numerous efforts have been made to
enhance the productivity, accuracy and versatility of EDM
process, association of RSM, grey relational analysis (GRA)
and PCA method for obtaining optimal setting on EDM on
AISI D2 tool steel has never been attempted. AISI D2 tool
steel has abundant growing ranges of applications in manu-
facturing tools in mould industries. Therefore, the multiple
objective optimisation problems have been of increasing
interest to the researchers to minimize this complexity. A
trouble-free and trustworthy technique based on statistically
designed experiments and RSM approach has been adopted
with a face-centred central composite design (CCD), as
a special case of CCD; later on, it synergies with GRA
and PCA methods for maximising MRR and minimising
TWR and G to produce intricate precise components. Grey
analysis delivers excellent solution to uncertain, multi-input
and discrete data problems. As EDM process is analogous
in nature, the technique is wonderfully fit in parameter
optimisation of such experimental work.

2 Description of the experiments

2.1 Equipment and workpiece material

So as to obtain the data for modelling, a sequence of exper-
iments were accomplished on a CNC Electrical discharge
die sinking machine “Electronica Electraplus PS 50ZNC”
shown in Fig. 1 , which has the facilities of programming in
the Z-vertical axis and manually operated X- and Y -axes. A
cylindrical pure copper (99.9 % Cu) was used in this study
as a tool electrode with a diameter of 30 mm depicted in
Fig. 2, and a commercial grade EDM oil (specificgravity =
0.763, freezingpoint = 94 ◦C) was used as dielectric fluid.
The power supply was linked with the tool electrode (tool:
positive polarity, workpiece: negative polarity). A lateral
flushing system was used for effective flushing of machin-
ing debris from the working gap region with a pressure of
0.4 kgf/cm2. The workpiece material used was AISI D2
steel plates with the following chemical composition by
weight: 1.5 % C, 0.3 % Si, 0.3 % Mn, 1.0 % Mo, 12.0 % Cr,
0.3 % Ni, 0.8 % V and 1.0 % Co, which is widely used in
the mould industry.

Fig. 1 Experimental set-up used for experimentation

2.2 Experimental procedure

The workpiece material was initially a circular bar with a
diameter of 100 mm and was cut into specimens of thickness
10 mm. The top and bottom faces of the workpiece were
ground to make it flat and to have a good quality surface

Fig. 2 Copper electrode and AISI D2 workpiece



594 Int J Adv Manuf Technol (2013) 68:591–605

finish prior to experimentation. The bottom of the cylindri-
cal electrode was polished by a very fine grade emery sheet
prior to every experimental run. Each treatment of the exper-
iment was run for 15 min, and the time was measured with
a stopwatch with an accuracy of 0.1 s. The workpiece as
well as the tool was detached from the machine, cleaned and
dried up, to make it free from the dirt, debris and dielec-
tric. They were weighed, before and after machining, on a
precision electronic balance (maximumcapacity = 300 g,
precision = 0.001 g). The diameter of the cavity machined
on the workpiece was measured by a Tool Maker’s micro-
scope (Carl Zeiss, Germany) with an accuracy of 1 μm.

2.3 Measurement of responses

2.3.1 Material removal rate

MRR is calculated by using the volume loss from the
workpiece divided by the time of machining. The calcu-
lated weight loss is converted to volumetric loss in cubic
millimeter per minute as per Eq. 1:

MRR = �Vw

T
= �Ww

ρwgT
(1)

where �Vw is the volume loss from the workpiece, �Ww is
the weight loss from the workpiece, T is the duration of the
machining process and ρw = 7,700 kg/m3 is the density of
the workpiece.

2.3.2 Tool wear rate

TWR is expressed as the volumetric loss of tool per unit
time, expressed as

TWR = �Vt

T
= �Wt

ρtgT
(2)

where �Vt is the volume loss from the electrode, �Wt is
the weight loss from the electrode, T is the duration of the
machining process and ρt = 8,960 kg/m3 is the density of
the electrode.

2.3.3 Radial overcut or gap

G (in micrometer) is expressed as half the difference of the
diameter of the hole produced to the tool diameter, that is,

G = (di − dt)

2
(3)

where dt is the diameter of the tool and di is the diame-
ter of the impression or cavity produced by the tool on the
workpiece.

3 Analysis method

3.1 Experimental design with RSM

RSM is a collection of mathematical and statistical tech-
niques that are useful for modelling and analysis of prob-
lems in which response is influenced by several input
variables, and the objective is to find the correlation between
the response and the variables investigated [18]. RSM has
many advantages, and has effectively been applied to study
and optimise the processes. It offers enormous informa-
tion from a small number of experiments. In addition, it is
possible to detect the interaction effect of the independent
parameters on the response. The model easily clarifies the
effect for binary combination of the independent process
parameters. Furthermore, the empirical model that related
the response to the independent variables is used to obtain
information. It has been widely used in analysing vari-
ous processes, designing the experiment, building models,
evaluating the effects of several factors and searching for
optimum conditions to give desirable responses and reduce
the number of experiments [19]. In the EDM process, as
several machining factors are associated, therefore, RSM
can be an appropriate approach to analyse the process. The
second-order model is normally used when the response
function is not known or non-linear, thus suitable in this
study. Based on RSM with a face-centred CCD shown in
Table 2, 30 experiments are carried out. The experimen-
tal values are analysed, and the mathematical model is
then developed that illustrates the relationship between the
process variable and response. The following second-order
model explains the behavior of the system:

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βiiX
2
i +

k∑

i,j=1,i �=j

βijXiXj +ε (4)

where Y is the corresponding response, Xi is the input vari-
ables and X2

ii and XiXj are the squares and interaction
terms, respectively, of these input variables. The unknown
regression coefficients are βo, βi , βij and βii , and the error
in the model is depicted as ε.

3.1.1 Data analysis using RSM

Minitab [20] software is used to analyse the process param-
eters of the response equation, and subsequent analysis of
variance (ANOVA) was assessed. Probability (p values) was
used to check the significance of the coefficients, which are
essential to recognise the pattern of the related interactions
between the test variables. The smaller value of the proba-
bility reveals a very significant correlation coefficient. The
significance of the coefficient was tested by a t test with the
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Table 2 CCD and
experimental results for four
variables in uncoded units

Run Ip Ton Tau V MRR TWR G

order A μs % Volt mm3/min mm3/min μm

1 10 300 80 40 21.970 0.060 0.190

2 10 100 80 60 19.360 0.424 0.150

3 10 300 90 60 24.896 0.056 0.230

4 4 100 90 60 6.870 0.089 0.005

5 7 200 85 50 15.370 0.076 0.138

6 7 200 85 50 14.770 0.079 0.132

7 4 100 80 40 5.766 0.075 0.050

8 4 300 80 60 3.320 0.022 0.080

9 10 100 90 40 33.780 0.547 0.160

10 4 300 90 40 5.750 0.000 0.065

11 7 200 85 50 13.760 0.071 0.123

12 4 100 80 60 5.532 0.100 0.038

13 7 200 85 50 13.060 0.067 0.117

14 4 300 90 60 3.130 0.011 0.060

15 4 300 80 40 3.532 0.022 0.090

16 4 100 90 40 8.221 0.045 0.010

17 10 100 80 40 23.480 0.625 0.160

18 10 300 80 60 17.960 0.052 0.170

19 10 300 90 40 31.250 0.033 0.210

20 10 100 90 60 26.662 0.647 0.160

21 10 200 85 50 24.420 0.208 0.181

22 7 200 85 50 14.340 0.073 0.128

23 7 100 85 50 14.768 0.168 0.095

24 7 200 85 40 16.169 0.070 0.142

25 7 200 85 50 13.160 0.068 0.131

26 7 200 85 60 13.078 0.080 0.120

27 4 200 85 50 6.485 0.028 0.080

28 7 200 80 50 12.162 0.083 0.125

29 7 200 90 50 16.234 0.066 0.105

30 7 300 85 50 13.755 0.050 0.130

confidence of 95 %. The excellence of the fit of the model
equation was articulated by the coefficient of determina-
tion (R2), and its statistical significance was checked by
an F test. Response surface plots were produced, and sub-
sequently, confirmation experiments were accompanied to
verify the validity of the statistical experimental strategies.

3.2 Grey relational analysis

GRA is a decision-making technique based on the grey sys-
tem theory originally developed by Deng [21]. In the grey
theory, black represents a system with deficient informa-
tion, while a white system stands for complete information.
However, the grey relation is the relation with incomplete
information and is used to characterise the grade of asso-
ciation between two sequences so that the distance of two

factors can be measured discretely. When experiments are
unclear or if the experimental method cannot be carried
out accurately, grey analysis assists to reimburse for the
deficiency in statistical regression. Figure 3 shows a flow
chart calculation using the grey relational analysis. Grey
relational analysis is an effective means of analysing the
relationship between sequences with less data and can anal-
yse many factors that can overcome the disadvantages of a
statistical method [22].

Besides, it is necessary to know the most significant
influential parameters for EDM. EDM is a very complex
process involving several branch of engineering such as can
be considered as grey systems due to their high complexity
and lacking of sufficiently defined or precise information.
For such systems, GRA, as one of the most important
contents of grey theory, has been applied extensively. The
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Fig. 3 Flow chart of MRR,
TWR and G using grey
relational analysis

principle of GRA is to estimate the similarity and degree
of the compactness among factors based on the geometric
shape of the different sequences [21].

3.2.1 Data preprocessing

Data preprocessing is the method of transferring the origi-
nal sequence to a comparable sequence, where the original
data normalise to a range of 0 and 1. Generally, three differ-
ent kinds of data normalisations are carried out to render the
data, whether the lower is better (LB), the higher is better
(HB) or nominal the best (NB). For “the-larger-the-better’
characteristics such as productivity or MRR, the original
sequence can be HB and should be normalised as [23]

X∗
i (k) = Xi(k) − minXi(k)

maxXi(k) − minXi(k)
. (5)

However, if the expectancy is the as small as possible for
characteristics such as TWR, G or surface roughness, then
the original sequence should be normalised as LB:

X∗
i (k) = maxXi(k) − Xi(k)

maxXi(k) − minXi(k)
. (6)

Conversely, if a specific target value is to be achieved,
then the original sequence will be normalised by the follow-
ing equation of NB:

X∗
i (k) = 1 − |Xi(k) − Xob(k)|

maxXi(k) − Xob(k)
(7)

where i = 1, 2n; k = 1, 2, y, p; X∗
i (k) is the normalised

value of the kth element in the ith sequence; X0b(k) is the

desired value of the kth quality characteristic; max X∗
i (k) is

the largest value of Xi(k); min X∗
i (k) is the smallest value of

Xi(k); n is the number of experiments; and p is the number
of quality characteristics.

3.2.2 Grey relational coefficient and grey relational grade

After normalising the data, usually grey relational coeffi-
cient is calculated to display the relationship between the
optimal and actual normalised experimental results. The
grey relational coefficient can be expressed as

γi(k) = γ (X0(k) − Xi(k)) = �min + ζ�max

�0,i (k) + ζ�max
, (8)

i = 1, ..., n; k = 1, ..., p,

where �0,i (k) = |X0(k) − Xi(k)| is the difference of the
absolute value called deviation sequence of the reference
sequence X0(k) and comparability Xi(k). ζ is the distin-
guishing coefficient or identification coefficient, in which
the value range is 0 ≤ ζ ≤ 1. In general, it is set to 0.5;
hence, same is adopted in this study. Deng [21] stated that
the value of 0.5 is normally applied. The aim of defining
the grey relational coefficient is to express the relational
degree between the reference sequence X0(k) and the com-
parability sequences Xi(k), where i = 1, 2, ..., m and k =
1, 2, ..., n with m = 30 and n = 3 in this study. The
grey relational grade (GRG) is a weighting sum of the grey
relational coefficients and it is defined as

γ (x0, xi) =
n∑

k=1

βk(x0, xi) (9)
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where βk represents the weighting value of the kth perfor-
mance characteristic and

∑k=1
n βk = 1. In the present anal-

ysis, the weights are computed using principal component
analysis discussed in Section 3.3.

The grey relational grade γ (x0, xi) indicates the level of
association between the reference sequence and the com-
parability sequence. A higher grey relational grade value
infers a stronger relational degree between the comparative
and referential (ideal) sequence. For illustration, if the two
sequences are identically coincidence, then GRG is equal
to 1. This grade also specifies the degree of influence that
the comparability sequences could employ over the refer-
ence sequence. Consequently, if a specific comparability
sequence is more vital to the reference sequence than the
other comparability sequences, then the GRG for that com-
parability sequence will be greater than the other. Thus, grey
analysis is essentially a measurement of the absolute value

Table 3 Normalized values for MRR, TWR and G

Run order MRR TWR G

1 0.615 0.907 0.178

2 0.530 0.345 0.356

3 0.710 0.913 0.000

4 0.122 0.862 1.000

5 0.399 0.883 0.409

6 0.380 0.878 0.436

7 0.086 0.884 0.800

8 0.006 0.966 0.667

9 1.000 0.155 0.311

10 0.085 1.000 0.733

11 0.347 0.891 0.475

12 0.078 0.845 0.853

13 0.324 0.896 0.502

14 0.000 0.983 0.756

15 0.013 0.966 0.622

16 0.166 0.930 0.978

17 0.664 0.034 0.311

18 0.484 0.919 0.267

19 0.917 0.949 0.089

20 0.768 0.000 0.311

21 0.695 0.679 0.217

22 0.366 0.887 0.453

23 0.380 0.741 0.600

24 0.425 0.892 0.391

25 0.327 0.896 0.440

26 0.325 0.876 0.489

27 0.109 0.957 0.667

28 0.295 0.872 0.467

29 0.428 0.898 0.556

30 0.347 0.923 0.444

Table 4 The deviation sequences for MRR, TWR and G

Run order MRR TWR G

1 0.385 0.093 0.822

2 0.470 0.655 0.644

3 0.290 0.087 1.000

4 0.878 0.138 0.000

5 0.601 0.117 0.591

6 0.620 0.122 0.564

7 0.914 0.116 0.200

8 0.994 0.034 0.333

9 0.000 0.845 0.689

10 0.915 0.000 0.267

11 0.653 0.109 0.525

12 0.922 0.155 0.147

13 0.676 0.104 0.498

14 1.000 0.017 0.244

15 0.987 0.034 0.378

16 0.834 0.070 0.022

17 0.336 0.966 0.689

18 0.516 0.081 0.733

19 0.083 0.051 0.911

20 0.232 1.000 0.689

21 0.305 0.321 0.783

22 0.634 0.113 0.547

23 0.620 0.259 0.400

24 0.575 0.108 0.609

25 0.673 0.104 0.560

26 0.675 0.124 0.511

27 0.891 0.043 0.333

28 0.705 0.128 0.533

29 0.572 0.102 0.444

30 0.653 0.077 0.556

of data difference between sequences, and it could be used
to measure approximation correlation between sequences.

3.3 Principal component analysis

PCA is a mathematical approach that converts a set of obser-
vations of probably correlated variables into a set of values
of uncorrelated variables. It was invented very early and

Table 5 The Eigenvalues and explained variation for principal
components

Principal Eigenvalue Explained

component variations (%)

First 1.9826 66.1

Second 0.7091 23.6

Third 0.3084 10.3



598 Int J Adv Manuf Technol (2013) 68:591–605

Table 6 The Eigenvectors for
principal components and
contribution

Responses Eigenvectors

First principal Second principal Third principal Contribution

component component component

MRR 0.643 0.002 0.766 0.413

TWR −0.541 0.709 0.452 0.293

G −0.542 −0.705 0.457 0.294

later mostly used as a tool in investigative data analysis and
for the formation of predictive models. PCA can be done
by eigenvalue decomposition of a data covariance matrix or
singular value decomposition of a data matrix. It is used for
identifying patterns in data and expressing the data in such
a way as to highlight their similarities and differences [24].
The main advantage of PCA is that once the patterns in data
have been identified, the data can be compressed, i.e. by
reducing the number of dimensions, without much loss of
information. The explicit goals of PCA are to:

1. Extract the most significant information from the data,
2. Squeeze the size of the data set by keeping only the

significant,
3. Simplify the explanation of the data set, and
4. Analyze the structure of the observations and the

variables.

The procedure is described as follows [25]:

1. The original multiple quality characteristic array
Xi(j), i = 1, 2, ..., m; j = 1, 2, ..., n

X =

⎡

⎢⎢⎢⎢⎣

x1(1) x1(2) ... .... x1(n)

x2(1) x2(2) ... .... x2(n)

: : ... .... :
: : ... .... :

xm(1) xm(2) ... .... xm(n)

⎤

⎥⎥⎥⎥⎦
(10)

where m is the number of experiment and n is the
number of the response. In the present work, x is the
grey relational coefficient of each response and m = 30
and n = 3.

2. Correlation coefficient array
The correlation coefficient array is evaluated as

follows:

Rjl =
(

Cov(xi(j), xi(l)

σxi(j) × σxi(l)

)
, j = 1, 2, ...., m;

l = 1, 2, ...., n (11)

where Cov(xi(j), xi(l) is the covariance of sequences
xi(l) and xi(l), σ(xi)(j) is the standard deviation of
sequence xi(j) and σ(xi)(l) is the standard deviation of
sequence xi(l).

3. Determining the eigenvalues and eigenvectors

The eigenvalues and eigenvectors are determined
from the correlation coefficient array:

(R − λkIm)Vik = 0 (12)

Table 7 Grey relational coefficient, grey relational grade and rank of
the MRR, TWR and G

Run Grey relational coefficient Grey relational Rank

order MRR TWR G Grade

1 0.565 0.843 0.378 0.572 16

2 0.515 0.433 0.437 0.591 12

3 0.633 0.852 0.333 0.546 26

4 0.363 0.784 1.000 0.594 9

5 0.454 0.810 0.458 0.555 24

6 0.446 0.804 0.470 0.557 23

7 0.354 0.812 0.714 0.565 17

8 0.335 0.936 0.600 0.540 27

9 1.000 0.372 0.421 0.561 20

10 0.353 1.000 0.652 0.549 25

11 0.434 0.820 0.488 0.503 28

12 0.352 0.764 0.773 0.724 1

13 0.425 0.828 0.501 0.574 15

14 0.333 0.967 0.672 0.470 29

15 0.336 0.936 0.570 0.692 2

16 0.375 0.878 0.957 0.580 14

17 0.598 0.341 0.421 0.618 6

18 0.492 0.861 0.405 0.565 18

19 0.858 0.907 0.354 0.596 8

20 0.683 0.333 0.421 0.562 19

21 0.621 0.609 0.390 0.630 5

22 0.441 0.816 0.478 0.645 4

23 0.446 0.659 0.556 0.588 13

24 0.465 0.822 0.451 0.593 10

25 0.426 0.827 0.472 0.558 22

26 0.425 0.802 0.495 0.559 21

27 0.360 0.920 0.600 0.673 3

28 0.415 0.796 0.484 0.609 7

29 0.466 0.830 0.529 0.468 30

30 0.434 0.866 0.474 0.591 11
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Table 8 Estimated regression
coefficients for GRG (before
elimination)

Term Coef SE coef t value p value

Constant 0.559552 0.006345 88.187 0.001

Block 1 0.000339 0.004719 0.072 0.944*

Block 2 0.003339 0.004719 0.708 0.492*

Ip −0.023944 0.003963 −6.042 0.001

Ton 0.017000 0.003963 4.290 0.001

Tau 0.037722 0.003963 9.519 0.001

V −0.017000 0.003963 −4.290 0.001

Ip×Ip 0.016409 0.010553 1.555 0.144*

Ton×Ton 0.000909 0.010553 0.086 0.933*

Tau×Tau 0.013409 0.010553 1.271 0.226*

V×V 0.004909 0.010553 0.465 0.649*

Ip×Ton 0.034375 0.004203 8.178 0.001

Ip×Tau 0.007625 0.004203 1.814 0.093*

Ip×V −0.016000 0.004203 −3.807 0.002

Ton×Tau −0.008625 0.004203 −2.052 0.061*

Ton×V 0.001500 0.004203 0.357 0.727*

Tau×V −0.017500 0.004203 −4.163 0.001

S = 0.01681 R2 = 95.9 % R2
(adj) = 90.8 %

t value was obtained from
the t test, which indicates the
significance of the regression
coefficients

* non-significant terms

where λx eigenvalue
∑n

k=1 λk = n, k = 1, 2, ..., n, and
Vik [ak1ak2......akm]T is the eigenvectors corresponding
to the eigenvalue λk .

4. Principal components
The uncorrelated principal component is formulated

as

Ymk =
n∑

i=1

xm(i) · Vik (13)

where Ym1 is called the first principal component, Ym2

is called the second principal component and so on.

The principal components are aligned in descending
order with respect to variance, and therefore, the first
principal component Ym1 accounts for most variance in
the data.

4 Results and discussion

The procedure of grey relational analysis coupled with
principal analysis to compute the optimal arrangements of
the machining parameters for EDM of AISI D2 steel is
described step by step as follows:

1. Obtain the experimental data.

Fig. 4 Response graph for grey
relational grade
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Table 9 The ANOVA table
Source DF Seq SS Adj SS F value p value % contribution

Regression 7 0.0742 0.0742 15.3500 0.0000 83.00

Linear 4 0.0463 0.0463 16.7600 0.0000 51.81

Ip 1 0.0103 0.0103 14.8663 0.0009 11.52

Ton 1 0.0052 0.0052 7.5317 0.0118 5.83

Tau 1 0.0256 0.0256 36.8879 0.0000 28.57

V 1 0.0053 0.0053 7.6094 0.0115 5.89

Interaction 3 0.0279 0.0279 13.4600 0.0000 31.19

Ip × Ton 1 0.0189 0.0189 27.3179 0.0000 21.16

Ip × V 1 0.0041 0.0041 5.8798 0.0240 4.55

Tau × V 1 0.0049 0.0049 7.1276 0.0140 5.52

Residual error 22 0.0152 0.0152 17.00

Total 29 0.0894

2. Normalize the experimental values.
3. Calculate the equivalent grey relational coefficients.
4. Calculate the grey relational grade using principal com-

ponent analysis.
5. Accomplish statistical ANOVA.
6. Select the optimal levels of cutting parameters.
7. Run conformation experiments.

4.1 Optimal combination of the process parameters

At the outset, the experiments were conducted as discussed
in Section 2 and the experimental results were transformed
to the volumetric unit using Eqs. 1, 2 and 3 for the responses
such as MRR, TWR and G which are recorded in Table 2.
Typically, MRR is considered to be as large as possible
and TWR and G are considered to be as small as possi-
ble. Therefore, all MRR values were substituted in Eq. 5
and TWR and G were substituted in Eq. 6 to get nor-
malised values which are presented in Table 3. As said by
Deng [21], larger values of the normalised results stand for
better performance, and the maximum normalised results
that are equal to 1 specify the best performance. The results
shown in Table 3 were substituted in Eq. 8 to compute grey
relational coefficients of the aforementioned responses. The
deviation sequences �0i (Table 4) in the range are calcu-
lated as follows:

�0,1(k) = |x0(1) − x1(1)| = |1.00 − 0.615| = 0.385

�0,2(k) = |x0(2) − x2(2)| = |1.00 − 0.907| = 0.093

�0,3(k) = |x0(3) − x3(3)| = |1.00 − 0.178| = 0.822

Therefore, the value of �0,1 = (0.385 0.093 0.822) and
the result of all �0i for i = 1 − 30 are presented in Table 7.
As it is known from Table 3 that

�max = �9(1) = �10(2) = �4(3) = 1.00

�min = �14(1) = �20(2) = �3(3) = 0.00

The distinguishing coefficient ζ can be substituted for the
grey relational coefficient in Eq. 8. ζ is a distinguishing
coefficient to adjust the range of the comparison environ-
ment, which was selected as 0.5 in this study [26]. Table 7
lists the grey relational coefficient and grade for each exper-
iment of the FCCD experimental arrangement by applying
Eqs. 8 and 9. The table lists the values of each the grey rela-
tional grade. Let us say, for the grey relational coefficient,
experiment no. 1 can be expressed as

γi(1) = �min + ζ�max

�0,i (1) + ζ�max
= 0 + 0.5 × 1

0.385 + 0.5 × 1
= 0.565

γi(2) = �min + ζ�max

�0,i (2) + ζ�max
= 0 + 0.5 × 1

0.093 + 0.5 × 1
= 0.843

γi(3) = �min + ζ�max

�0,i (3) + ζ�max
= 0 + 0.5 × 1

0.822 + 0.5 × 1
= 0.378

The weightage for each response is not same as it reflects
its comparative significance in the grey relational analy-
sis which is decided in this study by principal component
analysis. The components of the array for multiple response
are listed in Table 5, each of which indicates the grey rela-
tional coefficient of each response. These data were used

Fig. 5 Percentage contributions of factors on the grey relational grade
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Fig. 6 Residual plots of
quadratic model

Fitted Value
St

an
da

rd
iz

ed
  R

es
id

ua
l

0.700.650.600.550.500.45

3

2

1

0

-1

-2

-3

to assess the correlation coefficient and to decide the cor-
responding eigenvalues from Eq. 12. The eigenvalues are
presented in Table 5. The eigenvector corresponding to each
eigenvalue is listed in Table 6. The square of the eigenvalue
signifies the contribution of the corresponding response to
the principal component. The contribution of MRR, TWR
and G is 0.413, 0.293 and 0.294, respectively, and is shown
in Table 6. Furthermore, the variance contribution for the
first principal component characterising the three responses
is as high as 66.1 %. Therefore, for this analysis, the
squares of its corresponding eigenvectors were selected as
the weighting values of the related response, and coeffi-
cients β1, β2 and β3 in Eq. 8 were thus set as 0.413, 0.293
and 0.294, respectively. Based on Eq. 8 and data listed in
Table 7, the grey relational grades were calculated as

γ (x0, xi) = 0.565 × 0.413 + 0.843

×0.293 + 0.378 × 0.294 = 0.636

γ (x0, xi) = 0.515 × 0.413 + 0.433

×0.293 + 0.437 × 0.294 = 0.468.

Also, the values were intended for each factor at same
level and summarised in Table 7. Therefore, the opti-
misation design was accomplished relating to a single
grey relational grade instead of complex multi-response
characteristic. The GRG of each combination is then ranked
as per value, and it is found that a set of optimal machining
parameters based on the highest GRG value of 0.724 peak
value is obtained with Ip = 10, Ton = 300 μs, Tau = 90 %
and V = 40 V.

4.2 Statistical analysis of GRG

Statistical analysis was carried out on the GRG data
obtained, through face-centred CCD using statistical soft-
ware Minitab [20]. The experimental conditions with the
observations are given in Table 2 and GRG in Table 7.
The regression coefficient values, standard deviations, T
values and probability (p) values are given in Table 8.
Regression analysis is performed to find out the relationship
between the input factors and the response GRG. To test

Fig. 7 Normal probability plot
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Fig. 8 Influence of process
parameters on multiple
performances
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the adequacy of the model, ANOVA is used for testing the
null hypothesis (H0) of the experimental data with a con-
fidence level of 95 %. The p value for the F statistic is
expressing the probability of observing a value of F at least
as large if H0 is true, and with this, the treatments have
no effect. If the p value ≤0.05, it is concluded that Hα is
true and the treatments have a statistically significant effect.
Responses obtained from the experiments are compared
with the predicted value calculated from the model. Table 8
is an analysis of variance summary that depicts the terms in
the model, corresponding coefficients (coef), t statistic and
p value to decide whether to reject or fail to reject the null
hypothesis. The terms marked with an asterisk in the table
are exceeding the α value. Thus, these terms are eliminated
for further analysis. The blocking does not have any signifi-
cant effect on the response GRG (Fig. 4), which reveals that
the uncontrollable factors of the experiment conducted were
held constant. The backward elimination process discards
the insignificant terms (p value greater than 0.05) to adjust
the fitted quadratic model. The model, with the rest of the

terms, is eliminated after the ANOVA analysis. This way,
the simplified truncated model has the highest value of R2

which is 0.83, indicating a high significance of the model.
ANOVA is a statistical tool employed to understand the

experimental results, and it is extensively used to establish
the performance of a cluster of parameters under analysis.
In this study, ANOVA is effectively applied to inspect the
EDM parameter that significantly influences the GRG. The
ANOVA table is depicted in Table 9 with various parame-
ters considered for the analysis and their contribution. The
percentage contributions for each term influencing grey
relational grade are also presented in Fig. 5. It can be seen
that Tau is the most significant process parameter due to
its highest percentage contribution of 28.56 % followed by
pulse current with 11.51 %, V and Ton with 5.89 and 5.83 %,
respectively, which total to 51.81 % contribution of linear
terms. However, the percentage contribution of interaction
terms is 31.1 % with 21.16, 4.55 and 5.52 % for Ip × Ton,
Ip × V , and Tau × V , respectively . The estimated stan-
dard deviation of the error in the models is S = 0.0263

Fig. 9 Two-dimensional
contour plots for GRG: effect of
a pulse current and pulse
duration, b pulse current and
discharge voltage and c duty
cycle and discharge voltage.
* - Other combinations being
insignificant
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for GRG. It can also be seen that the residual error has
a 17 % contribution. Based on the above discussion, the
optimal operational conditions established by grey analysis
approach are as follows: a pulse current 10 A, pulse dura-
tion 300 μs, duty cycle 90 % and discharge voltage 40 V.
Therefore, experiment 19 shown in Table 2 fits the optimal
process conditions.

The effect of each machining parameter on the GRG
at different levels can be independent. The mean of the
GRG for each level of the EDM process parameters is
presented in Table 7. Furthermore, the total mean of the
GRG for all the 30 experiments is computed and listed in
Table 7. Fundamentally, the larger the GRG, the better is the
multiple performance characteristics. Conversely, the rel-
ative importance among the EDM process parameters for
the multiple performance characteristics still needed to be
investigated so that the optimum combination of the EDM
process parameter levels can be decided more correctly.
Figure 5 shows the percentage contribution of factors and
their interactions on the grey relational grade and Fig. 5
displays the EDM parameter levels on the GRG. From the
figure of the GRG for various levels (Table 7), the signif-
icance of each parameter can be visually understood. In
Fig. 6, a random distribution was noticed for the residual
plots for the models, indicating that the residual distribution
follows normal and independent patterns. This suggests the
adequacy of the quadratic models for evaluating the GRG.
The normal probability plot is shown in Fig. 7, and it can be
concluded that the points lie close to the straight line, indi-
cating that the data follow a normal distribution, except one
outlier. Wherever there is a large slope in the figure, it could
be inferred that the parameter has a significant influence on
the EDM process. In this study, it can be visually understood
and found that Tau and Ip have a significant effect. Figure 8
depicts the plots of the main effects on GRG, and those can
be used to graphically assess the effects of the factors on

4
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Fig. 10 Response surface plot representing the effect of Ip and Ton
on GRG
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Fig. 11 Response surface plot representing the effect of Ip and V
on GRG

the response. It indicates that Tau and Ip have a significant
effect on GRG, which is supported by the results presented
in Table 8; however, Tau is the most influencing machining
parameter.

With GRG as the response, the contour plots of the model
keeping two variables at their mean levels and varying the
other two within the experimental ranges are, separately,
shown in Fig. 9. The shapes of the contour plots may be cur-
vature with circular, elliptical or saddle implying whether
the interactions between the variables are significant or not.
The contour plot in Fig. 9a shows that the interactive effects
of Ip and Ton on GRG were significant. Similar conclusion
was shown by previous researches [3, 9, 27]. Similar counter
plots were also observed in Fig. 9b, c showing the interac-
tive effects of Ip and V as well as Tau and V, respectively, on
GRG indicating the significance of the said factors. These
results are also supported by the p values in Table 8. The
other combinations are also presented in the figure but they
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Fig. 12 Response surface plot representing the effect of Tau and V
on GRG
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Table 10 Conformation results for MRR, TWR and G model

Best combination MRR TWR G

Ip3 Ton3 Tau3 V1 mm2/min mm2/min μm

10 300 90 40 32.551 0.036 0.215

do not have a significant contribution on GRG. The sur-
face plot of the said significant factors are also exhibited in
Figs. 10, 11 and 12, respectively, for the interactive effect
of Ip × Ton, Ip × V and T au × V , respectively, keeping the
other factors at their mean level.

4.3 Confirmation experiments

Once the optimal level of the cutting parameters is identi-
fied, which is acquired from the analysis, it is customary
to validate the responses. The confirmation experiments are
performed to facilitate the verification of the EDM die sink-
ing at the obtained feasible optimal input parametric setting
(Ip = 10 A, Ton = 300 μs, Tau = 90 % and V = 40 V) for
the MRR, TWR and G. The results of the confirmation runs
for the responses are listed in Table 10.

5 Conclusion

This investigation proposes a hybrid, integrated approach of
grey relational analysis coupled with principal component
analysis for the optimisation of the machining parameters
of EDM process. Grey relational analysis transforms opti-
misation of the multiple responses into optimisation of a
single response problem, the grey relational grade. Fac-
tors having a significant effect are retrieved using ANOVA,
and by regulating these process parameters, optimisation of
responses was carried out. It has also been found that Tau
is the most significant process parameter due to its high-
est percentage contribution of 28.56 % followed by Ip with
11.51 %, V and Ton with 5.89 and 5.83 %, respectively.
However, the percentage contribution of interaction terms
such as Ip × Ton, Tau × V and Ip × V is 21.51, 5.52 and
4.55 %, respectively. The optimal operational conditions
established by grey analysis approach are as follows: pulse
current 10 A, pulse duration 300 μs, duty cycle 90 % and
discharge voltage 40 V. This study will help in identify-
ing the significant factors which are efficiently regulated to
decrease error, time consumption and cost and to increase
quality and productivity. This study may provide the exper-
imenter and practitioners an effective guideline to select
optimum parameter settings for achieving the desired MRR,
TWR and G during EDM die sinking of AISI D2 tool steel.
This method can also be applied for the optimisation of the

processing parameters in other manufacturing processes, to
promote manufacturing efficiency.
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