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Abstract In this note, we consider a single-machine
scheduling problem with truncated sum-of-processing-
times-based learning considerations. We show that even
with the introduction of the proposed model to job process-
ing times, several single-machine problems remain polyno-
mially solvable. For the following objective functions, the
discounted total weighted completion time, the maximum
lateness, we present heuristics according to the correspond-
ing problems without learning effect. We also analyze the
worst-case bound of our heuristics.

Keywords Scheduling · Single machine · Learning effect

1 Introduction

In classical scheduling problems, the processing time of a
job is assumed to be constant. However, in many realis-
tic problems of operations management, both machines and
workers can improve their performance by repeating the
production operations. Therefore, the actual processing time
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of a job is shorter if it is scheduled later in a sequence.
This phenomenon is known as the “learning effect” in the
literature [1]. Biskup [2] and Cheng and Wang [3] were
among the pioneers that brought the concept of learning
into the field of scheduling, although it has been widely
employed in management science since its discovery by
Wright [4]. An extensive survey of different scheduling
models and problems with learning effects could be found
in Biskup [5]. More recent papers which have considered
scheduling jobs with learning effects include those of Cheng
et al. [6, 7, 9, 22], Mosheiov [8], Lee and Wu [10, 11],
Wu and Lee [12], Yang and Kuo [13, 16], Yin et al. [14],
Wang et al. [15, 17, 27, 31], Wang and Wang [18, 19, 26],
Wang and Li [20], Wu et al. [21, 25, 32], Yin and Wang [23],
Huang et al. [24], Bai et al. [28], Shen et al. [29], and Wang
and Feng [30].

However, the actual processing time of a given job drops
to zero precipitously when the normal job processing times
are large in the time-dependent learning model proposed by
Yang and Kuo [33]. Motivated by this observation, Cheng
et al. [22] and Wu et al. [25] proposed a learning model with
truncated sum-of-processing-times-based learning consid-
erations where the actual job processing time is a function
which depends not only on the total normal processing
times of the jobs already processed but also on a control
parameter. The use of the truncated function can be justified
on the grounds that learning, like other human activities,
is limited. This paper extends the results of Cheng et al.
[22] and Wu et al. [25] by considering some other single-
machine scheduling with truncated sum-of-processing-
times-based learning considerations. The remaining part of
this note is organized as follows. In Section 2, we formu-
late the model. In Section 3, we consider several single-
machine scheduling problems. The last section presents
the conclusions.
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2 Problem description

There are given single-machine and n-independent and
nonpreemptive jobs that are immediately available for pro-
cessing. The machine can handle one job at a time, and
preemption is not allowed. Associated with each job Jj

(j = 1, 2, ..., n), there is a normal processing time pj (the
normal processing time of a job is incurred if the job is
scheduled first in a sequence), a due date dj and a weight
wj . In addition, let p[k] be the normal processing time of
a job if it is scheduled in the kth position in a sequence,
where [k] is the index of the kth position of the sequence
for k = 1, 2, . . . , n. Let pA

jr be the actual processing time
of job Jj if it is scheduled in position r in a sequence. As in
Cheng et al. [22] and Wu et al. [25], we consider a learning
effect model, i.e.,

pA
jr = pj max

⎧
⎨

⎩

(

1 +
r−1∑

i=1

p[i]

)a

, β

⎫
⎬

⎭
, r, j = 1, 2, . . . , n,

(1)

where a ≤ 0 is the learning index and β is a truncation
parameter with 0 < β < 1.

For a given schedule π = [J1, J2, . . . , Jn], let Cj =
Cj (π) denote the completion time of job Jj . In this paper,
we will consider the minimization of the following objec-
tive functions: the total lateness

∑
Lj , the sum of the

θ th (θ ≥ 0) power of job completion times
∑

Cθ
j , the

discounted total weighted completion time
∑n

j=1 wj (1 −
e−γCj ), where γ ∈ (0, 1) is the discount factor (see
Section 3.1 in Pinedo [34]), the maximum lateness Lmax =
max{Lj |j = 1, 2, . . . , n}, where Lj = Cj − dj . In the
remaining part of the paper, all the problems considered will
be denoted using the three-field notation scheme introduced
by Grahamet al. [35].

3 Single-machine scheduling problems

Lemma 1 (Wu et al. [25]) For the problem 1|pA
jr =

pj max
{(

1 +∑r−1
l=1 p[l]

)a

, β
}

|Cmax, an optimal schedule

can be obtained by sequencing the jobs in nondecreasing
order of pj (the shortest processing time (SPT) rule), where
Cmax = max{Cj |j = 1, 2, . . . , n} is the makespan of
all jobs.

Lemma 2 (Wu et al. [25]) For the problem 1|pA
jr =

pj max
{(

1 +∑r−1
l=1 p[l]

)a

, β
}

|∑Cj , an optimal sched-

ule can be obtained by sequencing the jobs in nondecreasing
order of pj (the SPT rule).

Townsend [36] studied the single-machine scheduling
with quadratic objective. He showed that the problem
1||∑C2

j can be solved optimally by the SPT rule. By
the similar proof of Wu et al. [25], we can show that the
solution of Townsend still holds for the problem 1|pA

jr =
pj max

{(
1 +∑r−1

l=1 p[l]
)a

, β
}

|∑Cθ
j , where θ > 0.

Theorem 1 For the problem 1|pA
jr = pj max

{(
1+

∑r−1
l=1 p[l]

)a

, β
}

|∑Cθ
j , an optimal schedule can be ob-

tained by sequencing the jobs in nondecreasing order of pj

(the SPT rule).

Proof The proof follows directly from the pairwise inter-
change analysis. Let π and π ′ be two job schedules where
the difference between π and π ′ is a pairwise inter-
change of two adjacent jobs Jj and Jk , that is, π =
[S1, Jj , Jk, S2], π ′ = [S1, Jk, Jj , S2], where S1 and S2 are
partial sequences. Furthermore, we assume that there are
r −1 jobs in S1. Thus, Jj and Jk are the rth and the (r+1)th
jobs with pj ≤ pk , respectively, in π . Likewise, Jk and
Jj are scheduled in the rth and the (r + 1)th positions in
π ′. To further simplify the notation, let A denote the com-
pletion time of the last job in S1 and Jh be the first job
in S2. In order to show that π dominates π ′, it suffices to
show that (a) Ck(π) ≤ Cj (π

′) and (b) Cθ
j (π) + Cθ

k (π) ≤
Cθ

k (π ′)+Cθ
j (π ′). Under π , the completion times of jobs Jj

and Jk are

Cj (π) = A + pj max

⎧
⎨

⎩

(

1 +
r−1∑

i=1

p[i]

)a

, β

⎫
⎬

⎭
(2)

and

Ck(π) = A + pj max

⎧
⎨

⎩

(

1 +
r−1∑

i=1

p[i]

)a

, β

⎫
⎬

⎭

+ pk max

⎧
⎨

⎩

(

1 +
r−1∑

i=1

p[i] + pj

)a

, β

⎫
⎬

⎭
. (3)

Under π ′, the completion times of jobs Jk and Jj are

Ck(π
′) = A + pk max

⎧
⎨

⎩

(

1 +
r−1∑

i=1

p[i]

)a

, β

⎫
⎬

⎭
(4)

and

Cj (π
′) = A + pk max

⎧
⎨

⎩

(

1 +
r−1∑

i=1

p[i]

)a

, β

⎫
⎬

⎭

+ pj max

⎧
⎨

⎩

(

1 +
r−1∑

i=1

p[i] + pk

)a

, β

⎫
⎬

⎭
. (5)
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From Lemma 1, we have Ck(π) ≤ Cj (π
′); this com-

pletes the proof of part (a). In addition, from pj ≤ pk , we
have Cj (π) ≤ Ck(π

′), hence

Cθ
j (π) + Cθ

k (π) ≤ Cθ
k (π ′) + Cθ

j (π ′).
This completes the proof of part (b) and thus of the theorem.

Theorem 2 For the problem 1|pA
jr = pj max

{(
1 +

∑r−1
l=1 p[l]

)a

,β
}∣
∣
∣
∑

Lj , an optimal schedule can be ob-

tained by sequencing the jobs in nondecreasing order of pj

(the SPT rule).

Proof The total lateness
∑n

j=1 Lj can be calculated by
n∑

j=1

Lj =
n∑

j=1

(Cj − dj ) =
n∑

j=1

Cj −
n∑

j=1

dj .

The total lateness
∑n

j=1 Lj is minimized if
∑n

j=1 Cj is minimized as
∑n

j=1 dj is a constant.
From Lemma 2, we can obtain that the problem

1|pA
jr = pj max

{(
1 +∑r−1

l=1 p[l]
)a

, β
}

|∑Cj can be

solved by the SPT rule. This completes the proof.

It is well known that the weighted discounted smallest
processing time first (WDSPT) rule yields an optimal sched-
ule for the classical scheduling problem to minimize the
total weighted discounted completion time, i.e., sequenc-

ing jobs in nondecreasing order of 1−e
−γpj

wj e
−γpj

. However, this

rule does not yield an optimal schedule under the proposed
model as shown in the following example.

Example 1 n = 2, p1 = 1, p2 = 2, w1 = 10, w2 =
31, β = 0.8, a = −0.5, γ = 0.1. The schedule

according to the WDSPT rule is [J2, J1], yielding the
value

∑n
j=1 wj (1 − e−γCj ) = 8.0615. Obviously, the

optimal sequence is [J1, J2], yielding the optimal value
∑n

j=1 wj

(
1 − e−γCj

) = 8.0490.
In order to solve the problem approximately, we will use

the WDSPT rule as a heuristic for the problem 1|pA
jr =

pj max
{(

1 +∑r−1
l=1 p[l]

)a

, β
}

|∑wj

(
1 − e−γCj

)
. The

performance of the heuristic will be evaluated by its
worst-case error bound.

Lemma 3 (Pinedo [34]) For the problem 1||∑wj(
1 − e−γCj

)
, an optimal schedule can be obtained by

sequencing the jobs in nondecreasing order of 1−e
−γpj

wje
−γpj

(the

WDSPT rule).

Lemma 4 (Wang et al. [17]) 1 − e−γ α ≥ α(1 − e−γ ) if
0 ≤ γ ≤ 1 and 0 ≤ α ≤ 1.

Theorem 3 Let π∗ be an optimal schedule and π

be a WDSPT schedule for the problem 1|pA
jr =

pj max
{(

1 +∑r−1
l=1 p[l]

)a

, β
}

|∑wj (1 − e−γCj ). Then

ρ1 =
∑n

j=1 wj

(
1 − e−γCj (π)

)

∑n
j=1 wj

(
1 − e−γCj (π∗))

≤ 1

max
{(

1 +∑n
j=1 pj − pmin

)a

, β
} ,

and this bound is tight, where pmin = min{p1, p2, . . . , pn}.

Proof Without loss of generality, we can suppose that
1−e−γp1

w1e
−γp1

≤ 1−e−γp2

w2e
−γp2

≤ . . . ≤ 1−e−γpn

wne−γpn , then

n∑

j=1

wj

(
1 − e−γCj (π)

)
= w1(1 − e−γp1) + w2

(

1 − e
−γ
[
p1+p2 max{(1+p1)

a,β}
])

+ . . . +wn

(

1−e
−γ
[
p1+p2 max{(1+p1)

a,β}+...+pn max
{(

1+∑n−1
i=1 pi

)a
,β
}])

≤
n∑

j=1

wj

(
1−e−γ

∑j

k=1pk

)
.

n∑

j=1

wj

(
1− e−γCj (π∗)

)
= w[1]

(
1 − e−γp[1])+ w[2]

(
1 − e−γ

[
p[1]+p[2] max{(1+p[1])a

,β}])

+ . . . + w[n]
(

1 − e
−γ

[
p[1]+p[2] max{(1+p[1])a,β}+...+p[n] max

{(
1+∑n−1

i=1 p[i]
)a

,β
}])

≥
n∑

j=1

w[j ]
(

1 − e
−γ max

{(
1+∑n

j=1 pj −pmin

)a
,β
}∑j

k=1 p[k]
)

≥ max

⎧
⎨

⎩

⎛

⎝1 +
n∑

j=1

pj − pmin

⎞

⎠

a

, β

⎫
⎬

⎭

n∑

j=1

w[j ]
(

1 − e−γ
∑j

k=1 p[k]
)

≥ max

⎧
⎨

⎩

⎛

⎝1 +
n∑

j=1

pj − pmin

⎞

⎠

a

, β

⎫
⎬

⎭

n∑

j=1

wj

(
1 − e−γ

∑j

k=1 pk

)
.
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The first inequality derived from 1 − e−γCj is an
increasing function on Cj and 1 ≥ (1 + p[1])a ≥ . . . ≥
(

1 +∑n−1
i=1 p[i]

)a ≥
(

1 +∑n
j=1 pj − pmin

)a

; the

second inequality is obtained from Lemma 4, i.e.,(

1 − e
−γ max

{(
1+∑n

j=1 pj −pmin

)a
,β
}∑j

k=1 p[k]
)

≥max
{(

1 +
∑n

j=1 pj −pmin

)a

, β
}(

1 − e−γ
∑j

k=1 p[k]
)

; while the third

inequality is obtained by Lemma 3, i.e.,
∑n

j=1 w[j ]
(

1−
e−γ

∑j

k=1 p[k]
)
≥∑n

j=1 wj

(
1−e−γ

∑j

k=1 pk

)
for 1−e−γp1

w1e
−γp1

≤
1−e−γp2

w2e
−γp2

≤ . . . ≤ 1−e−γpn

wne−γpn . Hence,

ρ1 =
∑n

j=1 wj

(
1 − e−γCj (π)

)

∑n
j=1 wj

(
1 − e−γCj (π∗))

≤ 1

max
{(

1 +∑n
j=1 pj − pmin

)a

, β
} .

It is not difficult to see that the bound is tight, since if

a = 0, we have ρ1 =
∑n

j=1 wj (1−e
−γCj (π)

)
∑n

j=1 wj (1−e
−γCj (π∗)

)
= 1

max{1,β} = 1.

This result is intuitive as when a=0, the WDSPT schedule
is optimal.

Although the WDSPT sequence does not pro-
vide the optimal schedule for the problem 1|pA

jr =
pj max

{(
1 +∑r−1

l=1 p[l]
)a

, β
}

|∑wj (1 − e−γCj ), it is

still optimal for some special conditions.

Theorem 4 For the problem 1|pA
jr = pj max

{(
1 +

∑r−1
l=1 p[l]

)a

, β
}

|∑wj

(
1 − e−γCj

)
, if the jobs have

agreeable weights, i.e., pj ≤ pk implies wj ≥ wk for all
the jobs Ji and Jj , an optimal schedule can be obtained by

sequencing the jobs in nondecreasing order of 1−e
−γpj

wje
−γpj

(the

WDSPT rule).

Proof Here, we still use the same notations as in the proof
of Theorem 1. From Theorem 1, we have Ck(π) ≤ Cj (π

′),
Cj (π) ≤ Ck(π

′) and Ck(π
′) ≤ Cj (π

′). Suppose that
1−e

−γpj

wj e
−γpj

≤ 1−e−γpk

wke
−γpk

, implies that pj ≤ pk and wj ≥ wk ,

hence from Theorem 1, we have Cj (π) ≤ Ck(π
′), Ck(π) ≤

Cj (π
′) and Cj (π

′) ≥ Ck(π
′). In order to show that π dom-

inates π ′, it suffices to show that
∑n

j=1 wj (1−e−γCj (π)) ≤
∑n

j=1 wj

(
1 − e−γCj (π ′)).

It should be clear that the completion times of Ji in
sequences π and π ′ are equal if it is in S1 because
both sequences have the same jobs in these positions, i.e.,
C[i](π) = C[i](π ′) for positions i = 1, 2, . . . , r − 1.

From Eqs. 2–5, we have

wk

(
1 − e−γCk(π

′))+ wj

(
1 − e−γCj (π ′))

− wj

(
1 − e−γCj (π)

)− wk

(
1 − e−γCk(π)

)

= wje
−γCj (π) + wke

−γCk(π)

− wke
−γCk(π

′) − wje
−γCj (π ′)

≥ wje
−γCk(π

′) + wke
−γCj (π ′)

− wke
−γCk(π

′) − wje
−γCj (π ′)

= (wj − wk)
(
e−γCk(π

′) − e−γCj (π ′))

≥ 0.

From Lemma 1, we have Cu(π ′) ≤ Cu(π) for any
Ju in S2. Hence, we have

∑n
j=1 wj

(
1 − e−γCj (π)

) ≤
∑n

j=1 wj

(
1 − e−γCj (π ′)). This completes the proof of

the theorem.

Corollary 1 For the problem 1|pA
jr = pj max

{(
1 +

∑r−1
l=1 p[l]

)a

, β
}

, pj = p|∑wj

(
1 − e−γCj

)
, an optimal

schedule can be obtained by sequencing the jobs in nonin-
creasing order of wj .

Corollary 2 For the problem 1|pA
jr = pj max

{(
1 +

∑r−1
l=1 p[l]

)a

, β
}

, wj = w|∑wj

(
1 − e−γCj

)
, an opti-

mal schedule can be obtained by sequencing the jobs in
nondecreasing order of pj (the SPT rule).

Corollary 3 For the problem 1|pA
jr = pj max

{(
1 +

∑r−1
l=1 p[l]

)a

, β
}

, wjpj = μ|∑wj

(
1 − e−γCj

)
, an opti-

mal schedule can be obtained by sequencing the jobs in
nondecreasing order of pj (the SPT rule).

The earliest due date (EDD) rule provides an optimal
schedule for the classical problem to minimize the maxi-
mum lateness. However, it does not yield an optimal sched-
ule under the proposed model as shown in the following
example.

Example 2 n = 2, p1 = 1, p2 = 100, d1 = 1, d2 =
0, β = 0.8, a = −0.5. The schedule according to the EDD
rule is [J2, J1], yielding the value Lmax = 100. Obviously,
the optimal sequence is [J1, J2], yielding the optimal value
Lmax = 81.

In order to solve the problem approximately, we use
the EDD rule as a heuristic for the problem 1|pA

jr =
pjmax

{(
1+∑r−1

l=1 p[l]
)a

, β
}
|Lmax. To develop a worst-case

performance ratio for a heuristic, we have to avoid cases
involving nonpositive Lmax. Similar to that of Cheng
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and Wang [3], the worst-case error bound is defined as
follows:

ρ2 = Lmax(π) + dmax

Lmax(π∗) + dmax
,

where π and Lmax(π) denote the heuristic schedule and
the corresponding maximum lateness, respectively, while
π∗ and Lmax(π

∗) denote the optimal schedule and the min-
imum maximum lateness value, respectively, and dmax =
max{dj |j = 1, 2, . . . , n}.
Theorem 5 Let π∗ be an optimal schedule and π

be an EDD schedule for the problem 1|pA
jr =

pj max
{(

1 +∑r−1
l=1 p[l]

)a

, β
}

|Lmax. Then

ρ2 = Lmax(π) + dmax

Lmax(π∗) + dmax
≤
∑n

i=1 pi

C∗
max

,

and the bound is tight, where C∗
max is the optimal makespan

of 1|pA
jr = pj max

{(
1 +∑r−1

l=1 p[l]
)a

, β
}

|Cmax.

Proof Without loss of generality, supposing that d1 ≤ d2 ≤
. . . ≤ dn, we have

Lmax(π) = max{p1 + p2 max{(1 + p1)
a, β}

+ . . . + pj max

⎧
⎨

⎩

⎛

⎝1 +
j−1∑

i=1

pi

⎞

⎠

a

, β

⎫
⎬

⎭

− dj |j = 1, 2, . . . , n}
≤ max{p1 + p2 + . . . + pj − dj |j = 1, 2, . . . , n}
= L

′
max(π),

where L
′
max(π) is the optimal value of the classical version

of the problem, i.e., pj,r = pj .

Lmax(π
∗) = max{p[1] + p[2] max{(1 + p[1])a, β} + . . . + p[j ] max

⎧
⎨

⎩

⎛

⎝1 +
j−1∑

i=1

p[i]

⎞

⎠

a

, β

⎫
⎬

⎭
− d[j ]|j = 1, 2, . . . , n}

= max

⎧
⎨

⎩

j∑

i=1

p[i] − d[j ] −
j∑

i=1

p[i] +
j∑

i=1

p[i] max

⎧
⎨

⎩

(

1 +
i−1∑

l=1

p[l]

)a

, β

⎫
⎬

⎭
|j = 1, 2, . . . , n

⎫
⎬

⎭

= max

⎧
⎨

⎩

j∑

i=1

p[i] − d[j ] −
j∑

i=1

p[i]

⎛

⎝1 − max

⎧
⎨

⎩

(

1 +
i−1∑

l=1

p[l]

)a

, β

⎫
⎬

⎭

⎞

⎠ |j = 1, 2, . . . , n

⎫
⎬

⎭

≥ max

⎧
⎨

⎩

j∑

i=1

p[i] − d[j ] −
n∑

i=1

p[i]

⎛

⎝1 − max

⎧
⎨

⎩

(

1 +
i−1∑

l=1

p[l]

)a

, β

⎫
⎬

⎭

⎞

⎠ |j = 1, 2, . . . , n

⎫
⎬

⎭

= max

⎧
⎨

⎩

j∑

i=1

p[i] − d[j ]|j = 1, 2, . . . , n

⎫
⎬

⎭
−

n∑

i=1

p[i] +
n∑

i=1

p[i] max

⎧
⎨

⎩

(

1 +
i−1∑

l=1

p[l]

)a

, β

⎫
⎬

⎭

≥ L
′
max(π) −

n∑

i=1

pi + C∗
max,

hence,

Lmax(π) ≤ L
′
max(π) ≤ Lmax(π

∗) +
n∑

i=1

pi − C∗
max,

and so

ρ2 = Lmax(π) + dmax

Lmax(π∗) + dmax

≤ Lmax(π
∗) +∑n

i=1 pi − C∗
max + dmax

Lmax(π∗) + dmax

≤ 1 +
∑n

i=1 pi − C∗
max

Lmax(π∗) + dmax

≤ 1 +
∑n

i=1 pi − C∗
max

C∗
max

=
∑n

i=1 pi

C∗
max

,

where C∗
max can be obtained by the SPT rule (see

Lemma 1).
It is not difficult to see that the bound is tight, since if

a = 0, we have Cmax = ∑n
i=1 pi and ρ2 = Lmax(π)+dmax

Lmax(π∗)+dmax
=

∑n
i=1 pi∑n
i=1 pi

= 1. This result is intuitive because when a = 0,

the EDD schedule is optimal.

4 Conclusions

In this note, we considered single-machine scheduling
problems with truncated sum-of-processing-times-based
learning considerations. We proved that the total late-
ness minimization problem and the sum of the θ th
power of job completion times minimization problem
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can be solved by the SPT rule, respectively. For the
discounted total weighted completion time and the maxi-
mum lateness minimization problems, we studied popular
heuristics used in the corresponding problems with-
out learning effects. We also analyze the worst-case
bound of heuristics WDSPT and EDD. We fur-
ther showed that under certain conditions, these
heuristic rules do provide optimal schedules. The
computational complexity of the problems 1|pA

jr =
pj max

{(
1 +∑r−1

l=1 p[l]
)a

, β
}

|∑wjCj , 1|pA
jr =

pj max
{(

1 +∑r−1
l=1 p[l]

)a

, β
}

|∑wj

(
1 − e−γCj

)
and

1|pA
jr = pj max

{(
1 +∑r−1

l=1 p[l]
)a

, β
}

|Lmax remains

unsolved. These unsolved problems seem to be an
interesting topic for future research.
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