
ORIGINAL ARTICLE

A hybrid GA–PSO approach for reliability optimization
in redundancy allocation problem

M. Sheikhalishahi & V. Ebrahimipour & H. Shiri &
H. Zaman & M. Jeihoonian

Received: 5 June 2010 /Accepted: 2 January 2013 /Published online: 26 January 2013
Springer-Verlag London 2013

Abstract This paper presents a novel hybrid genetic algorithm
(GA)-particle swarm optimization (PSO) approach for reliabil-
ity redundancy allocation problem (RRAP) in series, series–
parallel, and complex (bridge) systems. The proposed approach
maximizes overall system reliability while minimizing system
cost, system weight and volume, simultaneously, under nonlin-
ear constraints. To meet these objectives, an adaptive hybrid
GA–PSO approach is developed to identify the optimal solu-
tions and improve computation efficiency for these NP-hard
problems. An illustrative example is applied to show the capa-
bility and effectiveness of the proposed approach. According to
the results, in all three cases, reliability values are improved.
Moreover, computational time and variance are decreased com-
pared to the similar studies. The proposed approach could be
helpful for engineers and managers to better understand their
system reliability and performance, and also to reach a better
configuration.

Keywords Redundancy allocation problem . Genetic
algorithm . Particle swarm optimization . Reliability
optimization . Mixed-integer problems

1 Introduction

Due to the importance of reliability applications in industries,
especially in complex systems including nuclear powers,

powerhouses, etc., it is studied from different points of view
in the literature. The primary goal of reliability engineering is
to improve the system reliability. In the initial design activity,
the redundancy allocation is a direct way of enhancing system
reliability. Both reliability and redundancy optimization (reli-
ability–redundancy optimization) should be considered as a
gainful way for designing systems that are largely assembled
andmanufactured [1]. The integer values of redundancy levels
lead to continuous zero–one interval for component’s reliabil-
ity. Following this point, one can notice that the reliability
redundancy-allocation problem (RRAP) falls into category of
mixed-integer programming. The RRAP can be formulated in
two forms: (1) minimizing the total cost under constraints as
volume, weight, etc. and (2) maximizing system reliability
subject to such constraints [2].

In reality, systems usually include four types of series,
parallel, series–parallel, and complex (bridge) configura-
tions. Chern [3] proved that even in an ordinary structure
such as series system, RRAP is organized as a NP-hard
class. Hikita et al. [4] developed an algorithm to solve the
RRAP in cases of series, series–parallel, and complex sys-
tem based on surrogate-constraint method. The method
made the solutions of the surrogate dual problem and omit-
ted the surrogate gap by using dynamic programming in a
series–parallel case under one constraint and two special
conditions of monotonicity and separability.

It is ordinary that in optimization problems, some deci-
sion variables have only discrete values. Finding optimal
solutions to such problems is defined as combinatorial op-
timization. Classical approaches such as enumeration, La-
grangian relaxation, decomposition, and cutting plane
techniques or their combinations may not be computation-
ally feasible or efficient to solve a combinatorial optimiza-
tion problem of a practical size. Therefore, researchers focus
on heuristic techniques that seek a good solution to a com-
plex combinatorial problem within a reasonable time [5]. To
improve computation efficiency, hybrid optimization
algorithms have been increasingly used to achieve their

V. Ebrahimipour
Mathematics and Industrial Engineering Department, Ecole
Polytechnique de Montreal, Québec, Canada

M. Sheikhalishahi :V. Ebrahimipour (*) :H. Shiri :H. Zaman :
M. Jeihoonian
Department of Industrial Engineering, College of Engineering,
University of Tehran, Tehran, Iran
e-mail: vahid.ebrahimipour@polymtl.ca

V. Ebrahimipour
e-mail: vebrahimi@ut.ac.ir

Int J Adv Manuf Technol (2013) 68:317–338
DOI 10.1007/s00170-013-4730-6

individual advantages, simultaneously. Ant colony optimi-
zation, genetic algorithm (GA), and simulated annealing
(SA) have been widely and successfully employed to deal
with reliability optimization problems [6–12]. GA has been
combined with other meta-heuristics and heuristics to attain
more efficiency from computational point of view [2].

Altumi et al. [13] developed a mathematical model to
achieve the overall system reliability and cost optimization
through allocation of required spares tool in a flexible man-
ufacturing system. Lee et al. [14] applied max–min ap-
proach and the Nakagawa and Nakashima method for the
series–parallel redundancy allocation problem and com-
pared them with each other based on quality and computa-
tional complexity point of view. They proved that Min–Max
approach is better in terms of quality but inferior in compu-
tational complexity in comparison with Nakagawa and
Nakashima method. Lillo and Neuts [15] proposed a heu-
ristic search method to find the optimal spacing of inspec-
tions of a parallel system in which the given database
contains general life time distribution. Zhongliang et al.
[16] addressed a reliability optimization approach based on
neural networks to specify the choice of components in
series–parallel systems. Their neural network is based on
McCulloch–Pittes neuron network model which minimizes
the energy function of the neural networks to obtain opti-
mum solution. Li et al. [17] proposed a new exact method
which is the combination of the convexification transforma-
tion and branch-and-bound method to find an optimal solu-
tion of reliability optimization in complex systems. They
applied a new exact approach for four typical cases to show
the efficiency of the method. Norkin and Onishchenko [18]
maximized the mean life of a network in an optimal redun-
dancy problem. They applied branch-and-bound method to
solve this stochastic optimization problem. Valdebenito et
al. [19] provided a survey on various methods existing in the
field of reliability optimization and proposed a qualitative
comparison between different approaches to clarify the ap-
plication of methods.

Genetic algorithms have been successfully applied for
RRAP in the literature [20–22]. Hsieh et al. [23] presented
the mixed-integer nonlinear reliability problems in types of
series, parallel, series–parallel, and complex systems and
proposed an efficient genetic algorithm as a solution tech-
nique. The application of simulated annealing in optimal
reliability design can be found in the work of Kuo et al.
[24]. Moreover, Kim and Bae [25] addressed SA algorithm
to solve RRAP and showed that it provides better solutions
in comparison to the previous works [4, 23, 26]. In another
similar work, Coelho [27] considered series and complex
(bridge) systems and proposed particle swarm optimization
(PSO) algorithm to solve them. The presented method

calling PSO-GC is based on chaotic sequence and Gaussian
distribution. The solution quality improvement over the
hybrid methods, PSO–CA and PSO–CO, has been shown
through two examples.

According to the literature GA and PSO are widely used
for solving redundancy allocation problem. In this paper a
hybrid GA–PSO approach is applied to benefit from advan-
tages of both genetic algorithm and particle swarm optimi-
zation. However, both models have strengths and
weaknesses. Comparisons between GAs and PSOs have
been performed by Eberhart and Angeline and both con-
clude that a hybrid of the standard GA and PSO models
could lead to further advances [28–30]. In a GA, if an
individual is not selected the information contained by that
individual is lost, but PSOs have memory. However, without
a selection operator, PSOs may waste resources on poor
individuals. While GAs have trouble finding an exact solu-
tion and are best at reaching a global region, a PSO’s group
interactions boosts the search for an optimal solution, [29].

This paper considers mixed-integer nonlinear program-
ming models for series, series–parallel, and complex
(bridge) configurations. To improve the computation effi-
ciency, a GA–PSO approach is proposed and developed to
obtain better solutions along with less variation and process-
ing time in comparison to the similar studies in this area.
The remainder of this paper is organized as follows. Section
2 introduces three typical cases of the reliability-redundancy
optimization problems. Section 3 elaborates the proposed
hybrid GA–PSO approach as well as a brief overview of GA
and PSO methods. In Section 4, the performance of the
proposed approach is illustrated via numerical experiments,
and concluding remarks are presented in Section 5.

2 Problem definition

The following formulation is considered as the general
reliability–redundancy allocation problem, in which reliabil-
ity is considered as the objective function. The problem is to
determine the optimal combination of components and
redundancy levels in order to maximize the overall sys-
tem reliability under volume, cost, and weight con-
straints. The mixed-integer nonlinear programming
model with reliability maximization objective function
is shown as follows.

Nomenclature

W The upper bound on the weight of the
system

V The upper bound on the volume of the
system

318 Int J Adv Manuf Technol (2013) 68:317–338

C The upper bound on the cost of the
system

Wi The component weight of subsystem
vi The component volume of subsystem i
ci The component cost of subsystem i
n, r The vector of the redundancy allocation

and component reliabilities of the
system

r (r1,…,rm)
b The upper limit on the resource
N Population of n

GAPopSize Population size of GA
PSOMaxPopSize Final population size in PSO
PSOPopIncRate Increasing rate of PSO population size
PSOMinIteration First maximum iteration number of PSO
PSONumMin Minimum number of individuals that

effected by PSO
PSONumDecRate Decreasing rate of number of individuals

that effected by PSO
PSOMaxIter Current max iteration number in PSO
keepPer Elite percentage
c1 Individual intelligence coefficient
w and wfinal Initial and final inertia
m The number of subsystems
ui The upper limit of redundancy level of

subsystem i
ri The component reliability of subsystem i

rn
r5r4r3r2r1n5n4n3n2n1

Fig. 1 A chromosome in GA population

PSO (n, r)

i = i + 1;

i = 0;

If i <= PSONum

Choose one of individuals = (n, r)

NO

YES

NO

YES

For each particle in the swarm
Vj = w*Vj + c1*rand()*(pbest -RSwarm) + c2*rand()*(gbest -RSwarm)

gbest = r

Evolution of each particle
Update pbest, gbest

If psoi <= PSOMaxIter

RSwarm = random swarm of r
vectors with PSOPopSize particle

RSwarm(1) = r

Pbest = RSwarm

RSwarm = RSwarm + V

V = velocity matrix in the same
size with RSwarm

psoi = psoi + 1;

psoi = 0;

NO

YES

Keep elite (N, R)

Evolution of each individual

Evolution of each individual

Crossover using one point crossover (N, R)

Mutation (N)

Update PSO parameters:
PSOPopSize
PSOMaxIter

PSONum
w

gai = gai + 1;

gai = 0

If gai < GAMaxIter

Stop

Fig. 2 Procedure of hybrid approach

Int J Adv Manuf Technol (2013) 68:317–338 319

gj The jth constraint function
ni The number of redundancy of subsystem

i (i=1,2,…,m)
N (n1,…,nm)
Ri The reliability of subsystem i
Rs The system reliability
αi ,βi Physical feature of each component
R Population of r
GAMaxIteration Maximum iteration of GA
PSOMinPopSize First population size in PSO
PSOMaxIteration Last maximum iteration number of PSO
PSOIterationIncRate Increasing rate of PSO maximum

iteration
PSONumMax Maximum number of individuals that

are affected by PSO
PSOPopSize Current population size in PSO
PSONum Current number of individuals that

effected by PSO
crossoverPer Crossover percentage
c2 Social intelligence coefficient
walpha Decreasing rate of inertia

MaxRs ¼ f r; nð Þ
s: t

g r; nð Þ � b
1 � i � m; 0 � ri � 1; ni 2 Zþ

ð1Þ

The inequality g r; nð Þ � b has been described in the
literature [23, 25, 27], and it is formulated as follows:

g1 n; rð Þ ¼
Xm

i¼1

wiv
2
i n

2
i � V ð2Þ

g2 n; rð Þ ¼
Xm

i¼1

ai
�1000

ln ri

� �bi

ni þ exp
ni
4

� �� �
� C ð3Þ

g3 n; rð Þ ¼
Xm

i¼1

wini exp
ni
4

� �
� w ð4Þ

1 � i � m; 0 � ri � 1 ð5Þ
Constraint (2) indicates a combination of weight (w),

redundancy allocation (n), and volume (v) in which V
represents the upper limit on the sum of the subsystems’
products of volume and weight. According to constraint
(3), the system overall cost is restricted to an upper limit
denoted by C. The parameters αi and βi are physical
features of system components. In this constraint, 1,000
is the operating time during which the component must
not fail. Finally, Eq. (4) constrains the system total
weight. The term exp(ni/4) accounts for the interconnect-
ing hardware. In this paper series, series–parallel, and
complex (bridge) systems are used as three typical con-
figurations of RRAP problems [4, 23–27, 31]. Notewor-
thy, in each case, the constraints are the same whereas
the objective function is different, and it is defined due
to system structure. Thus, Eqs. (6)–(8) state the overall
reliability function for series, series–parallel, and complex
(bridge) systems, respectively. In order to compare the
results of the proposed GA–PSO approach with previous
works, four subsystems are considered for series system,
and five subsystems are considered for series–parallel and
complex (bridge) systems.

f n; rð Þ ¼ R1R2R3R4 ð6Þ

f n; rð Þ ¼ 1� 1� R1R2ð Þ
� 1� 1� 1� R3ð Þ 1� R4ð Þð ÞR5ð Þ ð7Þ

Table 2 Input data for series–parallel system

Stage 105αi βi vi wi V C W

1 2.500 1.5 2 3.5 180 175 100

2 1.450 1.5 4 4

3 0.541 1.5 5 4

4 0.541 1.5 8 3.5

5 2.100 1.5 4 4.5

Table 3 Input data for complex system

Stage 105αi βi vi wi V C W

1 2.330 1.5 1 7 110 175 200

2 1.450 1.5 2 8

3 0.541 1.5 3 8

4 8.050 1.5 4 6

5 1.950 1.5 2 9

Table 1 Input data for series system

Stage 105αi βi vi wi V C W

1 1.0 1.5 1 6 250 400 500

2 2.3 1.5 2 6

3 0.3 1.5 3 8

4 2.3 1.5 2 7

320 Int J Adv Manuf Technol (2013) 68:317–338

f n; rð Þ ¼ R1R2 þ R3R4 þ R1R4R5 þ R2R3R5 � R1R2R3R4

�R1R2R3R5 � R1R3R4R5 � R2R3R4R5 � R1R2R4R5

þ 2R1R2R3R4R5

ð8Þ

3 Methodology: hybrid GA–PSO approach

In this paper a hybrid GA–PSO approach is applied to
benefit from advantages of both genetic algorithm and par-
ticle swarm optimization. However, both models have
strengths and weaknesses. In a GA if an individual is not
selected the information contained by that individual is lost,
but PSOs have memory. However, without a selection op-
erator PSOs may waste resources on poor individuals. While
GAs have trouble finding an exact solution and are best at
reaching a global region, a PSO’s group interactions boosts
the search for an optimal solution, [29]. These key points
and RRAP structure lead us to take the advantages of both
algorithms into account, simultaneously. It means GA is
applied for searching space of vector n, and PSO is used
for searching space of vector r. GA makes a population of
vectors (n, r), in which every pair constitutes a chromosome
(Fig. 1). In this hybrid approach, vectors n and r are mod-
ified by GA; however, PSO only operates in direction of
improving vector r. In other words, PSO searches a better
solution of r for an associated vector n.

After forming a new generation in GA iterations,
some chromosomes of new population are selected
and then PSO is applied for each of them separately.
The selected chromosomes of vectors r will be altered
in direction of fitness function incensement. PSO is not
applied on the whole population, because it is very
time consuming. Two critical questions, therefore,
would necessarily be answered: How many and which
chromosomes should be evolved in each GA renewal

generation? We consider Eqs. (9) and (10) as the most
comfortable and flexible answers to these questions
(GAi denotes current GA iteration):

PSONum ¼ PSONumMax � GAi

GAMaxIteration

� �PSONumDecRate

ðPSONumMax � PSONumMinÞ

ð9Þ

Max� Index ¼ 1� GAi

GAMaxIteration

� �
: GAPopSize � PSONum

� �

þ PSONum

ð10Þ

The candidate chromosomes should be selected between
the first and the Max-Index chromosome of the current

54

3

1 2

Fig. 5 The structure of complex (bridge) system

Table 4 Control pa-
rameter for the proposed
hybrid GA–PSO

GAPopSize 200

GAMaxIteration 100

PSOMaxPopSize 200

PSOMinPopSize 5

PSOPopIncRate 15

PSOMaxIteration 400

PSOMinIteration 5

PSOIterationIncRate 15

PSONumMax 3

PSONumMin 1

PSONumDecRate 2

keepPer 10 %

crossoverPer 70 %

c1 1

c2 1

w 0.99

wfinal 0.8

walpha 1.0021

1 2

3

4

5

Fig. 4 The structure of series–parallel system

1 2 3 4

Fig. 3 The structure of series system

Int J Adv Manuf Technol (2013) 68:317–338 321

population. In order to decrease time and memory usage,
PSO iterations number and initial population size are not
fixed, and have a direct relationship with current GA itera-
tion (GAi). The following equations satisfy this purpose:

PSOPopSize ¼ GAi
GAMaxIteration

� �PSOPopIncRate

PSOMaxPopSize � PSOMinPopSize

� �

þPSOMinPopSize

ð11Þ

PSOMaxIter ¼ GAi
GAMaxIteration

� �PSOIterationIncRate

PSOMaxIteration � PSOMinIterationð Þ

þPSOMinIteration

ð12Þ
Number of the selected chromosomes will decrease when

the algorithm iterations increase; however, PSO iterations
number and population size will gradually increase to their
final values. Lastly, inertia coefficient has been used to
control particles velocity. It begins from an initial value

Table 5 Comparison of the best GA–PSO results with other algorithms—series system

Parameter Simulated annealing
algorithms [25]

Genetic algorithm
[26]

Particle swarm
approach [27]

Proposed GA–
PSO algorithm

f(r, n) 0.99946800 0.99994500 0.99995300 0.99995467

n1 3 5 5 5

n2 6 5 6 5

n3 3 5 4 4

n4 5 5 5 6

r1 0.965593 0.895644 0.902231 0.901628

r2 0.760592 0.885878 0.856325 0.888230

r3 0.972646 0.912184 0.948145 0.948121

r4 0.804660 0.887785 0.883156 0.849921

Slacka of the first constraint 92 50 55 55

Slacka of the second constraint 70.733576− 0.938000 0.975465 0.000006

Slacka of the third constraint 127.583189 28.803700 24.801882 15.363463

a Slack: the unused resource

Table 6 Comparison of the best GA–PSO results with other algorithms—series–parallel system

Parameter Surrogate-constraint
algorithm [4]

Genetic
algorithm [23]

Simulated annealing
algorithms [25]

Proposed GA–
PSO algorithm

f(r, n) 0.99996875 0.99997418 0.99997631 0.99997665

n1 3 2 2 2

n2 3 2 2 2

n3 1 2 2 2

n4 2 2 2 2

n5 3 4 4 4

r1 0.838193 0.785452 0.812161 0.819640

r2 0.855065 0.842998 0.853346 0.845091

r3 0.878859 0.885333 0.897597 0.895482

r4 0.911402 0.917958 0.900710 0.895517

r5 0.850355 0.870318 0.866316 0.868430

Slacka of the first constraint 27 40 40 40

Slacka of the second constraint 0 1.194440 0.007300 0.000001

Slacka of the third constraint 7.518918 1.609289 1.609289 1.609289

a Slack: the unused resource

322 Int J Adv Manuf Technol (2013) 68:317–338

and gradually decreases with walpha factor; hence, the veloc-
ity of particles will decrease and PSO algorithm focuses on
the solutions precision according to the following equations:

w ¼ walpha:w ð13Þ

walpha ¼ wfinal

w

� � 1
GAMaxIteration

� �

ð14Þ

To sum up, a representation of the described procedure is
presented in Fig. 2.

3.1 Genetic algorithm

GA is a powerful optimization method based on natural
selection introduced by Holland [32]. The basic elements
of a GA that must be specified for any given implementation
are representation, population, evaluation, selection,

operators and parameters. The procedure for implementing
this algorithm is given briefly by the following steps:

Step 1: A random initial population is generated;
Step 2: The fitness function for each individual in the

current population is evaluated;
Step 3: Predefined stopping criteria is checked;
Step 4: Reproduction, crossover, and mutation are per-

formed on the current population;
Step 5: The new generation is formed from Step4’ individ-

uals. Steps 2 to 5 will be repeated. The problem is
categorized as partition and allocation problems
according to the Levitin category classification [33].

3.2 Particle swarm optimization

PSO algorithm first introduced by Kennedy and Eberhart
[34, 35], and it is a population-based method modeled after

Table 7 Comparison of the best GA–PSO results with other algorithms—complex system

Parameter Surrogate-constraint
algorithm [4]

Genetic
algorithm [23]

Simulated annealing
algorithms [25]

Particle swarm
approach [27]

Proposed GA–PSO
algorithm

f(r, n) 0.9997894 0.99987916 0.99988764 0.99988957 0.99988964

n1 3 3 3 3 3

n2 3 3 3 3 3

n3 2 3 3 2 2

n4 3 3 3 4 4

n5 2 1 1 1 1

r1 0.814483 0.814090 0.807263 0.826678 0.828134

r2 0.821383 0.864614 0.868116 0.857172 0.857831

r3 0.896151 0.890291 0.872862 0.914629 0.914192

r4 0.713091 0.701190 0.712673 0.648918 0.648069

r5 0.814091 0.734731 0.751034 0.715290 0.704476

Slacka of the first
constraint

18 18 40 5 5

Slacka of the second
constraint

1.854075 0.376347 0.007300 0.000339 0.000000

Slacka of the third
constraint

4.264770 4.264770 1.609289 1.560466 1.560466

a Slack: the unused resource

Fig. 6 Population size and
maximum number of iterations
of PSO

Int J Adv Manuf Technol (2013) 68:317–338 323

the simulation of the social behavior of bird flocks. The
main purpose is to reach the best position of each particle.
Each particle moves in direction of continuously updating
velocity vector. All particles memorized two parameters: the
local best (pbest), and the global best position (gbest). Each
particle position is determined by considering these param-
eters. First, the velocity vector (vi) is calculated through the
previous velocity, the local best, and the global best position
according to Eq. (15), and then the next particle position (xi)
is derived due to Eq. (16).

viðtÞ ¼ w:vi t � 1ð Þ þ c1:r1 pbest � xi t � 1ð Þð Þ
þ c2:r2 gbest � xi t � 1ð Þð Þ ð15Þ

xiðtÞ ¼ xi t � 1ð Þ þ vi t � 1ð Þ ð16Þ

Where w is decreasing factor; r1 and r2∼U (0, 1);
c1 and c2 are individual and social coefficients,
respectively.

4 Numerical results

In this section, the performance of the proposed hybrid GA–
PSO approach in terms of the solution quality and compu-
tation time is evaluated through three well-known test prob-
lems. The parameters defining the characteristics of these

series, series- parallel, and complex (bridge) systems are
presented in Tables 1, 2, and 3 [4, 23, 25–27, 31]. The
proposed GA–PSO approach is coded in MATLAB and
performed on a core 2 Duo CPU processor with a 2.4 GHz
and 4 GB of RAM (MATLAB codes are provided in appen-
dices I, II, III). In each case, 50 independent runs were
performed for the proposed optimization approach, and then
the results compared with previous works in the literature.
The first reliability–redundancy problem belongs to the
category of series system, and the mathematical formulation
is defined in Eqs. (2)–(5) and (6). The structure of the series
system is illustrated in Fig. 3.

Tables 1, 2, and 3 show input data which are used for
series, series–parallel, and complex systems, respectively.

The second and third problems are known as series–
parallel and complex system. As stated before, the
difference between these three systems is their objec-
tive functions definition. Figures 4 and 5 show a rep-
resentation of both series–parallel and complex system.

Table 4 shows a set of control parameters which are
adjusted in the proposed GA–PSO approach.

Tables 5, 6, and 7 compared the obtained results in
this paper with those of previous works in the litera-
ture, and by individual GA and PSO based results. In
these tables, the second row indicates the reliability
objective function value. Rows containing ni and ri
are associated with number and reliability of compo-
nents in each subsystem, respectively. Finally, the slack
rows imply the remainders of resources vector.

Table 5 reveals that the solutions of the series problem
(Rs=0.99995467) found by GA–PSO are better than those
reported by previous works [25–27].

Table 6 reports that the GA–PSO solutions for the
series–parallel system (Rs=0.99997665) is better than
previous works [4, 23, 25].

Finally, better performance of the proposed approach
in comparison with previous works (4, 23, 25, and 27)
for the represented complex (bridge) system is shown in
Table 7 (Rs=0.99988964). According to the results, although
in some cases reliability improvements are marginal, it is
noteworthy that the proposed GA–PSO algorithm found

Fig. 7 Number of individuals that affected by PSO (PSOnum) during
Iterations

Table 8 Overall reliability results of series, series–parallel, and complex systems

Problems Maximum (best) Minimum (worst) Mean Standard deviation

This paper Series 0.99995467 0.99995467 0.99995467 1.00E−16

Series–parallel 0.99997665 0.99997015 0.99997613 4.533E−12

Complex 0.99988964 0.99988935 0.999889623 2.2826E−11

Coelho [27] Series 0.99995300 0.99963800 0.99990700 0.000011

Complex 0.99988957 0.99987750 0.99988594 6.90E−07

324 Int J Adv Manuf Technol (2013) 68:317–338

better results in all three series, series–parallel and complex
(bridge) systems in comparison to the previously best-
known solutions. The PSOPopSize, PSOMaxIter, and PSOnum

curves behavior during the running iterations of the proposed
approach for all three series, series–parallel, and complex
systems are displayed in Figs. 6 and 7. As it was expected,
PSO current population size (PSOPopSize) is increased
gradually.

Table 8 presents statistical analysis of the GA–PSO ap-
proach including the best and the worst solutions, as well as
the standard deviation for all three problems in comparison
with those of Coelho [27]. According to the results, the
standard deviation of the proposed approach is very small
in 50 independent runs. Notably, it reveals that the worst
solution obtained by the proposed GA–PSO approach is
better than the best of Kim and Bae [25] and Yokota et al.
[26]. Furthermore, the worst solution of the proposed GA–
PSO approach in case of complex system is better than the
best of similar previous works, except in that of Coelho
[27]. Table 8 compares the results of the proposed GA–
PSO approach with the best of the literature [27].

The best results of vectors n, r, and unused resources
values as well as the overall reliability of the proposed
approach are shown in Table 9.

Table 10 shows both average and standard deviation
of CPU time for implementing the hybrid GA–PSO
approach in 50 independent runs for all three cases.

5 Conclusion

This paper addresses a hybrid approach based on GA and
PSO to solve reliability redundancy allocation problem
(RRAP). Three different cases including series, series–par-
allel, and complex (bridge) systems are considered. The
objective of the proposed approach is to maximize overall
system reliability subject to volume, cost, and weight con-
straints. To improve computation efficiency, a hybrid GA–
PSO approach has been applied for searching solution space
more efficiently. Moreover, the proposed approach benefits
from advantages of both genetic algorithm and particle
swarm optimization. As illustrated, the solutions found by
the proposed hybrid approach are better than the results
obtained by the other heuristic and meta-heuristic algorithms
that are reported in the literature, for all series, series–parallel
and complex (bridge) systems. Furthermore, the proposed
approach shows lower variance (at most e−10), as well as very
low CPU time to derive the near global optimal solutions. The
proposed GA–PSO could be recommended as a profitable
solution method for MINLP problems.

Acknowledgments The authors are grateful for the valuable com-
ments and suggestion from the respected reviewers. Their valuable
comments and suggestions have enhanced the strength and signifi-
cance of our paper. The authors would like to acknowledge the finan-
cial support of University of Tehran for this research under grant
number 27775/01/06.

Table 9 Best results for series,
series–parallel and complex sys-
tem (50 runs)

aSlack: the unused resource

Parameter Series Series–parallel Complex

f(r,n) 0.99995467 0.99997665 0.99988964

n1 5 2 3

n2 5 2 3

n3 4 2 2

n4 6 2 4

n5 – 4 1

r1 0.901628 0.819640 0.828134

r2 0.888230 0.845091 0.857831

r3 0.948121 0.895482 0.914192

r4 0.849921 0.895517 0.648069

r5 – 0.868430 0.704476

Slacka of the first constraint 55 40 5

Slacka of the second constraint 0.000006 0.000001 0.000000

Slacka of the third constraint 15.363463 1.609289 1.560466

Table 10 Average and standard deviation time (50 runs)

Problems Average time (s) Standard deviation (s)

Series 3.14 0.06

Series–parallel 3.36 0.14

Complex 3.32 0.09

Int J Adv Manuf Technol (2013) 68:317–338 325

Appendix I

function result = EvalRelOfSys
tic
%% initialization
% problem parameters
% N = matrix of n, (population of n)
% n = vector of ni
% ni = the number of redundancy of ith subsystem
% R = matrix of r, (population of r)
% r = vector of ri
% ri = reliability of component of ith subsystem
s = 4; %number of sub systems
rimin = 0.5;
rimax = 1-10^-6;
nimin = 1;
nimax = 10;
% algorithm parameters
GAPopSize = 200;
GAMaxIteration = 100;
PSOMaxPopSize = 200;
PSOMinPopSize = 5;
PSOPopIncRate = 15;
PSOMaxIteration = 400;
PSOMinIteration = 5;
PSOIterationIncRate = 15;
PSONumMax = 3;
PSONumMin = 2;
PSONumDecRate = 2;

PSOPopSize = PSOMaxPopSize;
PSOMaxIter = PSOMinIteration;
PSONum = PSONumMax;
keepPer = 0.1;
crossoverPer = 0.7;
keepNum = round(GAPopSize * keepPer);
crossoverNum = round(GAPopSize * crossoverPer);
c1 = 1;
c2 = 1;
w = 0.99;
wfinal = 0.8;
wAlpha = (wfinal/w)^(1/GAMaxIteration);

N = round(rand(GAPopSize, s) * (nimax - nimin)) + nimin;
R = rand(GAPopSize, s).*(rimax-rimin) + rimin;
newN = zeros(GAPopSize, s);
newR = zeros(GAPopSize, s);
RelOfPop = EvalRelOfPop(N, R, GAPopSize);
gai = 0;
%% main cycle
while (gai < GAMaxIteration)

gai = gai + 1;
[RelOfPop, idx] = sort(RelOfPop, 'descend');
%keep elite
newN(1, :) = N(idx(1), :);
newR(1, :) = R(idx(1), :);
j = 1;
i = 1;

326 Int J Adv Manuf Technol (2013) 68:317–338

while i < keepNum
j = j + 1;
use = true;
for k= 1:i

if ~any(N(idx(j), :) ~= newN(k, :))
use = false;
break;

end
end
if use == true

i = i + 1;
newN(i, :) = N(idx(j), :);
newR(i, :) = R(idx(j), :);

end
end
%selection
slctd = randperm(GAPopSize);
slctd = slctd(1: crossoverNum);
%one point crossover
for i= 1:2:crossoverNum

k = ceil(rand() * s);
newN(i + keepNum, :) = [N(slctd(i), 1:k), N(slctd(i + 1), k+1:s)];
newN(i + keepNum + 1, :) = [N(slctd(i + 1), 1:k), N(slctd(i), k+1:s)];
newR(i + keepNum, :) = [R(slctd(i), 1:k), R(slctd(i + 1), k+1:s)];
newR(i + keepNum + 1, :) = [R(slctd(i + 1), 1:k), R(slctd(i), k+1:s)];

end
%mutation
for i= 1 + keepNum + crossoverNum: GAPopSize

p = ceil(rand() * GAPopSize);
newN(i, :) = N(p, :);
newR(i, :) = R(p, :);
choice = round(rand() * 3);
switch choice

case 0
mask = round(rand(1, s) * 2 - 1);
newN(i, :) = newN(i, :) + mask(1, :);

case 1
mask = round(rand(1, s));
mask(mask == 0) = -1;
newN(i, :) = newN(i, :) + mask(1, :);

case 2
k = ceil(rand() * s);
newN(i, k) = newN(i, k) + 1;

case 3
k = ceil(rand() * s);
newN(i, k) = newN(i, k) - 1;

otherwise
end

end
newN(newN < nimin) = nimax;

Int J Adv Manuf Technol (2013) 68:317–338 327

newN(newN > nimax) = nimin;
N = newN;
R = newR;
RelOfPop = EvalRelOfPop(N, R, GAPopSize);
domin = (1 - gai/GAMaxIteration) * (GAPopSize - PSONum) + PSONum;
selectedn = randperm(round(domin));
sn = selectedn(1:PSONum);
%PSO__
for i= 1:PSONum

RSwarmVel = rand(PSOPopSize, s)./50;
mask = randint(PSOPopSize, s);
RSwarmVel(mask == 0) = -RSwarmVel(mask == 0);
RSwarm = rand(PSOPopSize, s).*(rimax-rimin) + rimin;
RSwarm(1, :) = R(sn(i), :);
ROfPSOPop = EvalRelOfSwarm(N(sn(i), :), RSwarm, PSOPopSize);
gbestCost = RelOfPop(sn(i));
gbest = RSwarm(1, :);
pbestCost = ROfPSOPop;
pbest = RSwarm;
psoi = 0;
while (psoi < PSOMaxIter)

psoi = psoi + 1;
r1 = rand(PSOPopSize, s);
r2 = rand(PSOPopSize, s);
RSwarmVel = (w*RSwarmVel + ...

c1*r1.*(pbest - RSwarm) + ...
c2*r2.*(ones(PSOPopSize, 1)*gbest - RSwarm));

RSwarm = RSwarm + RSwarmVel;
RSwarm(RSwarm < rimin) = rimin;
RSwarm(RSwarm > rimax) = rimax;
ROfPSOPop = EvalRelOfSwarm(N(sn(i), :), RSwarm, PSOPopSize);
for k = 1:PSOPopSize

if ROfPSOPop(k) > pbestCost(k)
pbest(k, :) = RSwarm(k, :);
pbestCost(k) = ROfPSOPop(k);

end
end
[bestOfIter, gbestIdx] = max(ROfPSOPop);
if bestOfIter > gbestCost

gbestCost = bestOfIter;
gbest = RSwarm(gbestIdx, :);

end
end
R(sn(i), :) = gbest;
RelOfPop(sn(i)) = gbestCost;

end
%update PSO parameters
PSOPopSize = round(((gai/GAMaxIteration)^PSOPopIncRate)*(PSOMaxPopSize-

PSOMinPopSize)+PSOMinPopSize);

328 Int J Adv Manuf Technol (2013) 68:317–338

PSOMaxIter = round(((gai/GAMaxIteration)^PSOIterationIncRate)*(PSOMaxIteration-
PSOMinIteration)+ PSOMinIteration);

PSONum = PSONumMax - round(((gai/GAMaxIteration)^PSONumDecRate) *
(PSONumMax - PSONumMin));

w = wAlpha * w;
end
%% print results
totalTime = toc;
[RelOfPop, idx] = sort(RelOfPop, 'descend');
N = N(idx, :);
R = R(idx, :);
result = RelOfPop(i);
bestnf = N(1, :);
bestrf = R(1, :);
[s1, s2, s3] = EvalSlacks(bestnf, bestrf);
%{
fprintf('\n population data\n [i] [N] [R] [system reliability] \n');
for i= 1:GAPopSize

fprintf('%5d', i);
fprintf('%5d', N(i,:));
fprintf('%10.6f', R(i,:));
fprintf('%20.8f', RelOfPop(i));
fprintf('\n');

end
%}
fprintf('\nfinal solution = \n');
fprintf('%5d', bestnf);
fprintf('%10.6f', bestrf);
fprintf('%20.8f', RelOfPop(1));
fprintf('\n');
fprintf('\nslack 1 = %10.6f', s1);
fprintf('\nslack 2 = %10.6f', s2);
fprintf('\nslack 3 = %10.6f', s3);
fprintf('\nTotal time = %5.8f second\n', totalTime);
end

Int J Adv Manuf Technol (2013) 68:317–338 329

Appendix II

function result = EvalRelOfSys
tic
%% initialization
% problem parameters
% N = matrix of n, (population of n)
% n = vector of ni
% ni = the number of redundancy of ith subsystem
% R = matrix of r, (population of r)
% r = vector of ri
% ri = reliability of component of ith subsystem
s = 5; %number of sub systems
rimin = 0.5;
rimax = 1-10^-6;
nimin = 1;
nimax = 5;
% algorithm parameters
GAPopSize = 200;
GAMaxIteration = 100;
PSOMaxPopSize = 200;
PSOMinPopSize = 5;
PSOPopIncRate = 15;
PSOMaxIteration = 400;
PSOMinIteration = 5;
PSOIterationIncRate = 15;
PSONumMax = 3;
PSONumMin = 2;
PSONumDecRate = 2;
PSOPopSize = PSOMaxPopSize;
PSOMaxIter = PSOMinIteration;
PSONum = PSONumMax;
keepPer = 0.1;
crossoverPer = 0.7;
keepNum = round(GAPopSize * keepPer);
crossoverNum = round(GAPopSize * crossoverPer);
c1 = 1;
c2 = 1;
w = 0.99;
wfinal = 0.8;
wAlpha = (wfinal/w)^(1/GAMaxIteration);
% Genetic initialization__
N = round(rand(GAPopSize, s) * (nimax-nimin)) + nimin;
R = rand(GAPopSize, s).*(rimax-rimin) + rimin;
newN = zeros(GAPopSize, s);
newR = zeros(GAPopSize, s);
RelOfPop = EvalRelOfPop(N, R, GAPopSize);
gai = 0;
%% main cycle
while (gai < GAMaxIteration)

gai = gai + 1;
[RelOfPop, idx] = sort(RelOfPop, 'descend');
%keep elite
newN(1, :) = N(idx(1), :);
newR(1, :) = R(idx(1), :);
j = 1;
i = 1;
while i < keepNum

j = j + 1;
use = true;
for k= 1:i

if ~any(N(idx(j), :) ~= newN(k, :))
use = false;
break;

end

330 Int J Adv Manuf Technol (2013) 68:317–338

end
if use == true

i = i + 1;
newN(i, :) = N(idx(j), :);
newR(i, :) = R(idx(j), :);

end
end
%selection
slctd = randperm(GAPopSize);
slctd = slctd(1: crossoverNum);
%one point crossover
for i= 1:2:crossoverNum

k = ceil(rand() * s);
newN(i + keepNum, :) = [N(slctd(i), 1:k), N(slctd(i + 1), k+1:s)];
newN(i + keepNum + 1, :) = [N(slctd(i + 1), 1:k), N(slctd(i), k+1:s)];
newR(i + keepNum, :) = [R(slctd(i), 1:k), R(slctd(i + 1), k+1:s)];
newR(i + keepNum + 1, :) = [R(slctd(i + 1), 1:k), R(slctd(i), k+1:s)];

end
%mutation
for i= 1 + keepNum + crossoverNum: GAPopSize

p = ceil(rand() * GAPopSize);
newN(i, :) = N(p, :);
newR(i, :) = R(p, :);

choice = round(rand() * 3);
switch choice

case 0
mask = round(rand(1, s) * 2-1);
newN(i, :) = newN(i, :) + mask(1, :);

case 1
mask = round(rand(1, s));
mask(mask == 0) =-1;
newN(i, :) = newN(i, :) + mask(1, :);

case 2
k = ceil(rand() * s);
newN(i, k) = newN(i, k) + 1;

case 3
k = ceil(rand() * s);
newN(i, k) = newN(i, k) -1;

otherwise
end

end
newN(newN < nimin) = nimax;
newN(newN > nimax) = nimin;
N = newN;
R = newR;
RelOfPop = EvalRelOfPop(N, R, GAPopSize);
domin = (1-gai/GAMaxIteration) * (GAPopSize -PSONum) + PSONum;
selectedn = randperm(round(domin));
sn = selectedn(1:PSONum);

Int J Adv Manuf Technol (2013) 68:317–338 331

%PSO__
for i= 1:PSONum

RSwarmVel = rand(PSOPopSize, s)./50;
mask = randint(PSOPopSize, s);
RSwarmVel(mask == 0) = -RSwarmVel(mask == 0);
RSwarm = rand(PSOPopSize, s).*(rimax-rimin) + rimin;
RSwarm(1, :) = R(sn(i), :);
ROfPSOPop = EvalRelOfSwarm(N(sn(i), :), RSwarm, PSOPopSize);
gbestCost = RelOfPop(sn(i));
gbest = RSwarm(1, :);
pbestCost = ROfPSOPop;
pbest = RSwarm;
psoi = 0;
while (psoi < PSOMaxIter)

psoi = psoi + 1;
r1 = rand(PSOPopSize, s);
r2 = rand(PSOPopSize, s);
RSwarmVel = (w*RSwarmVel + ...

c1*r1.*(pbest - RSwarm) + ...
c2*r2.*(ones(PSOPopSize, 1)*gbest - RSwarm));

RSwarm = RSwarm + RSwarmVel;
RSwarm(RSwarm < rimin) = rimin;
RSwarm(RSwarm > rimax) = rimax;

ROfPSOPop = EvalRelOfSwarm(N(sn(i), :), RSwarm, PSOPopSize);
for k = 1:PSOPopSize

if ROfPSOPop(k) > pbestCost(k)
pbest(k, :) = RSwarm(k, :);
pbestCost(k) = ROfPSOPop(k);

end
end
[bestOfIter, gbestIdx] = max(ROfPSOPop);
if bestOfIter > gbestCost

gbestCost = bestOfIter;
gbest = RSwarm(gbestIdx, :);

end
end
R(sn(i), :) = gbest;
RelOfPop(sn(i)) = gbestCost;

end
%update PSO parameters
PSOPopSize = round(((gai/GAMaxIteration)^PSOPopIncRate)*(PSOMaxPopSize-

PSOMinPopSize)+PSOMinPopSize);
PSOMaxIter = round(((gai/GAMaxIteration)^PSOIterationIncRate)*(PSOMaxIteration-

PSOMinIteration)+ PSOMinIteration);
PSONum = PSONumMax - round(((gai/GAMaxIteration)^PSONumDecRate) *

(PSONumMax - PSONumMin));
w = wAlpha * w;

end
%% print results

332 Int J Adv Manuf Technol (2013) 68:317–338

totalTime = toc;
[RelOfPop, idx] = sort(RelOfPop, 'descend');
N = N(idx, :);
R = R(idx, :);
result = RelOfPop(i);
bestnf = N(1, :);
bestrf = R(1, :);
[s1, s2, s3] = EvalSlacks(bestnf, bestrf);
%{
fprintf('\n population data\n [i] [N] [R] [system reliability] \n');
for i= 1:GAPopSize

fprintf('%5d', i);
fprintf('%5d', N(i,:));
fprintf('%10.6f', R(i,:));
fprintf('%20.8f', RelOfPop(i));
fprintf('\n');

end
%}
fprintf('\nfinal solution = \n');
fprintf('%5d', bestnf);
fprintf('%10.6f', bestrf);
fprintf('%20.8f', RelOfPop(1));
fprintf('\n');

fprintf('\nslack 1 = %10.6f', s1);
fprintf('\nslack 2 = %10.6f', s2);
fprintf('\nslack 3 = %10.6f', s3);
fprintf('\nTotal time = %5.8f second\n', totalTime);
end

Int J Adv Manuf Technol (2013) 68:317–338 333

Appendix III

function result = EvalRelOfSys
tic
%% initialization
% problem parameters
% N = matrix of n, (population of n)
% n = vector of ni
% ni = the number of redundancy of ith subsystem
% R = matrix of r, (population of r)
% r = vector of ri
% ri = reliability of component of ith subsystem
s = 5; %number of sub systems
rimin = 10^-6;
rimax = 1 - 10^-6;
nimin = 1;
nimax = 10;
% algorithm parameters
GAPopSize = 200;
GAMaxIteration = 100;
PSOMaxPopSize = 200;
PSOMinPopSize = 5;
PSOPopIncRate = 15;
PSOMaxIteration = 400;
PSOMinIteration = 5;
PSOIterationIncRate = 15;
PSONumMax = 3;
PSONumMin = 2;
PSONumDecRate = 2;
PSOPopSize = PSOMaxPopSize;
PSOMaxIter = PSOMinIteration;
PSONum = PSONumMax;
keepPer = 0.1;
crossoverPer = 0.7;
keepNum = round(GAPopSize * keepPer);
crossoverNum = round(GAPopSize * crossoverPer);
c1 = 1;
c2 = 1;
w = 0.99;
wfinal = 0.8;
wAlpha = (wfinal/w)^(1/GAMaxIteration);
% Genetic initialization__
N = round(rand(GAPopSize, s) * (nimax - nimin)) + nimin;
R = rand(GAPopSize, s).*(rimax-rimin) + rimin;

newN = zeros(GAPopSize, s);
newR = zeros(GAPopSize, s);
RelOfPop = EvalRelOfPop(N, R, GAPopSize);
gai = 0;
%% main cycle
while (gai < GAMaxIteration)

gai = gai + 1;
[RelOfPop, idx] = sort(RelOfPop, 'descend');
%keep elite
newN(1, :) = N(idx(1), :);
newR(1, :) = R(idx(1), :);
j = 1;
i = 1;
while i < keepNum

j = j + 1;
use = true;
for k= 1:i

if ~any(N(idx(j), :) ~= newN(k, :))
use = false;
break;

end
end
if use == true

i = i + 1;
newN(i, :) = N(idx(j), :);
newR(i, :) = R(idx(j), :);

334 Int J Adv Manuf Technol (2013) 68:317–338

end
end
%selection
slctd = randperm(GAPopSize);
slctd = slctd(1: crossoverNum);
%one point crossover
for i= 1:2:crossoverNum

k = ceil(rand() * s);
newN(i + keepNum, :) = [N(slctd(i), 1:k), N(slctd(i + 1), k+1:s)];
newN(i + keepNum + 1, :) = [N(slctd(i + 1), 1:k), N(slctd(i), k+1:s)];
newR(i + keepNum, :) = [R(slctd(i), 1:k), R(slctd(i + 1), k+1:s)];
newR(i + keepNum + 1, :) = [R(slctd(i + 1), 1:k), R(slctd(i), k+1:s)];

end
%mutation
for i= 1 + keepNum + crossoverNum: GAPopSize

p = ceil(rand() * GAPopSize);
newN(i, :) = N(p, :);
newR(i, :) = R(p, :);
choice = round(rand() * 3);
switch choice

case 0
mask = round(rand(1, s) * 2 - 1);
newN(i, :) = newN(i, :) + mask(1, :);

case 1
mask = round(rand(1, s));
mask(mask == 0) = -1;
newN(i, :) = newN(i, :) + mask(1, :);

case 2
k = ceil(rand() * s);
newN(i, k) = newN(i, k) + 1;

case 3
k = ceil(rand() * s);
newN(i, k) = newN(i, k) - 1;

otherwise
end

end
newN(newN < nimin) = nimax;
newN(newN > nimax) = nimin;
N = newN;
R = newR;
RelOfPop = EvalRelOfPop(N, R, GAPopSize);
domin = (1 - gai/GAMaxIteration) * (GAPopSize - PSONum) + PSONum;
selectedn = randperm(round(domin));
sn = selectedn(1:PSONum);
%PSO__
for i= 1:PSONum

RSwarmVel = rand(PSOPopSize, s)./50;
mask = randint(PSOPopSize, s);
RSwarmVel(mask == 0) = -RSwarmVel(mask == 0);
RSwarm = rand(PSOPopSize, s).*(rimax-rimin) + rimin;

Int J Adv Manuf Technol (2013) 68:317–338 335

RSwarm(1, :) = R(sn(i), :);
ROfPSOPop = EvalRelOfSwarm(N(sn(i), :), RSwarm, PSOPopSize);
gbestCost = RelOfPop(sn(i));
gbest = RSwarm(1, :);
pbestCost = ROfPSOPop;
pbest = RSwarm;
psoi = 0;
while (psoi < PSOMaxIter)

psoi = psoi + 1;
r1 = rand(PSOPopSize, s);
r2 = rand(PSOPopSize, s);
RSwarmVel = (w*RSwarmVel + ...

c1*r1.*(pbest - RSwarm) + ...
c2*r2.*(ones(PSOPopSize, 1)*gbest - RSwarm));

RSwarm = RSwarm + RSwarmVel;
RSwarm(RSwarm < rimin) = rimin;
RSwarm(RSwarm > rimax) = rimax;
ROfPSOPop = EvalRelOfSwarm(N(sn(i), :), RSwarm, PSOPopSize);
for k = 1:PSOPopSize

if ROfPSOPop(k) > pbestCost(k)
pbest(k, :) = RSwarm(k, :);
pbestCost(k) = ROfPSOPop(k);

end
end
[bestOfIter, gbestIdx] = max(ROfPSOPop);
if bestOfIter > gbestCost

gbestCost = bestOfIter;
gbest = RSwarm(gbestIdx, :);

end
end
R(sn(i), :) = gbest;
RelOfPop(sn(i)) = gbestCost;

end
%update PSO parameters
PSOPopSize = round(((gai/GAMaxIteration)^PSOPopIncRate)*(PSOMaxPopSize-

PSOMinPopSize)+PSOMinPopSize);
PSOMaxIter = round(((gai/GAMaxIteration)^PSOIterationIncRate)*(PSOMaxIteration-

PSOMinIteration)+ PSOMinIteration);
PSONum = PSONumMax - round(((gai/GAMaxIteration)^PSONumDecRate) *

(PSONumMax - PSONumMin));
w = wAlpha * w;

end
%% print results
totalTime = toc;
[RelOfPop, idx] = sort(RelOfPop, 'descend');
N = N(idx, :);
R = R(idx, :);
result = RelOfPop(i);
bestnf = N(1, :);
bestrf = R(1, :);

336 Int J Adv Manuf Technol (2013) 68:317–338

[s1, s2, s3] = EvalSlacks(bestnf, bestrf);
%{
fprintf('\n population data\n [i] [N] [R] [system reliability] \n');
for i= 1:GAPopSize

fprintf('%5d', i);
fprintf('%5d', N(i,:));
fprintf('%10.6f', R(i,:));
fprintf('%20.8f', RelOfPop(i));
fprintf('\n');

end
%}
fprintf('\nfinal solution = \n');
fprintf('%5d', bestnf);
fprintf('%10.6f', bestrf);
fprintf('%16.8f', RelOfPop(1));
fprintf('\n');
fprintf('\nslack 1 = %10.6f', s1);
fprintf('\nslack 2 = %10.6f', s2);
fprintf('\nslack 3 = %10.6f', s3);
fprintf('\nTotal time = %5.8f second\n', totalTime);
end

References

1. Kulturel-Konak S, Smith AE, Coit DW (2003) Efficiently solving
the redundancy allocation problem using tabu search. IIE Trans 35
(6):515–526

2. Kuo W, Wan R (2007) Recent advances in optimal reliability
allocation. Comput Intell Reliab Eng Stud Comput Intell 39:1–36

3. Chern MS (1992) On the computational complexity of reliability
redundancy allocation in a series system. Oper Res Lett 11(5):309–
315

4. Hikita M, Nakagawa Y, Narihisa H (1992) Reliability optimization
of systems by a surrogate constraints algorithm. IEEE Trans Reliab
41(3):473–480

5. Levitin G (2007) Computational intelligence in reliability
engineering: evolutionary techniques in reliability analysis
and optimization. Springer, New York

6. Nahas N, Nourelfath M (2005) Ant system for reliability optimi-
zation of a series system with multiple-choice and budget
constraints. Reliab Eng Syst Saf 87:1–12

7. Shelokar PS, Jayaraman VK, Kulkarni BD (2002) Ant algorithm
for single and multi objective reliability optimization problems.
Qual Reliab Eng Int 18(6):497–514

8. Suman B (2003) Simulated annealing-based multi-objective
algorithm and their application for system reliability. Eng
Optim 35(4):391–416

9. Sung CS, Cho YK (2000) Reliability optimization of a series
system with multiple-choice and budget constraints. Eur J Oper
Res 48:158–171

10. Yun WY, Kim JW (2004) Multi-level redundancy optimization in
series systems. Comput Ind Eng 46(2):337–346

11. Zafiropoulos EP, Dialynas EN (2004) Reliability and cost optimi-
zation of electronic devices considering the component failure rate
uncertainty. Reliab Eng Syst Saf 84:271–284

12. Zhao R, Liu B (2004) Redundancy optimization problems with
uncertainty of combining randomness and fuzziness. Eur J Oper
Res 157:716–735

13. Altumi AA, Philipose AM, Taboun SM (2000) Reliability optimi-
sation of FMS with spare tooling. Int J Adv Manuf Technol
16:551–558

14. Lee H, Kuo W, Ha C (2003) Comparison of max–min approach
and NN method for reliability optimization of series–parallel
system. J Syst Sci Syst Eng J Sci Syst Eng 12(1):39–48

15. Lillo Rosa E, Neuts Marcel F (2000) Empirical optimization
in a reliability problem. Methodol Comput Appl Probab 2(4):413–
424

16. Pan Z, Chen L, Zhang G (2007) A neural network method for
reliability optimizations of complex systems. Wuhan Univ J Natl
Sci 12(1):139–142

17. Li D, Sun X, Mckinnon K (2005) An exact solution method for
reliability optimization in complex systems. Ann Oper Res
133:129–148

18. Norkina VI, Onishchenko BO (2008) Reliability optimization of a
complex system by the stochastic branch and bound method.
Cybern Syst Anal 44(3):418–428

19. Valdebenito MA, Schuëller GI (2010) A survey on approaches for
reliability-based optimization. Struct Multidiscip Optim 42:645–
663

20. Dengiz B, Altiparmak F, Smith AE (1997) Local search genetic
algorithm for optimal design of reliable networks. IEEE Trans
Evol Comput 1(3):179–188

21. Tavakkoli-Moghaddama R, Safari J, Sassani F (2008) Reliability
optimization of series–parallel systems with a choice of re-
dundancy strategies using a genetic algorithm. Reliab Eng
Syst Saf 93:550–556

22. Ye Z, Li Z, Min X (2010) Some improvements on adaptive genetic
algorithms for reliability-related applications. Reliab Eng Syst Saf
95:120–126

Int J Adv Manuf Technol (2013) 68:317–338 337

23. Hsieh YC, Chen TC, Bricker DL (1998) Genetic algorithms for
reliability design problems. Microelectron Reliab 38:1599–1605

24. Kuo W, Prasad VR, Tillman FA, Hwang CL (2001) Optimal
reliability design: fundamentals and applications. Cambridge
University Press, Cambridge

25. Kim HG, Bae C (2006) Reliability-redundancy optimization using
simulated annealing algorithms. J Qual Maint Eng 12(4):354–363

26. Yokota T, Gen M, Li YX (1996) Genetic algorithm for non-linear
mixed-integer programming and its applications. Comput Ind Eng
30(4):905–917

27. Coelho LDS (2009) An efficient particle swarm approach for
mixed-integer programming in reliability–redundancy optimiza-
tion applications. Reliab Eng Syst Saf 94:830–837

28. Angeline PJ (1998) Evolutionary optimization versus particle
swarm optimization: Philosophy and performance differences. In
V. William Porto and et al., editors, Evolutionary Programming,
vol. 1447 of Lecture Notes in Computer Science, pp. 601–610.
Springer, 1998

29. Eberhart RC, Shi Y (1998) Comparison between genetic algo-
rithms and particle swarm optimization. In et. al. V. William Porto,
editor, Evolutionary Programming, vol. 1447 of Lecture Notes in
Computer Science, pp. 611–616. Springer, 1998

30. Settles M, Soule T (2005) Breeding swarms: a GA/PSO hybrid.
Proceedings of the 2005 conference on Genetic and evolutionary
computation, pp. 161–168

31. Xu Z, Kuo W, Lin HH (1990) Optimization limits in improving
system reliability. IEEE Trans Reliab 39(1):51–60

32. Holland J (1975) Adaptation in natural and artificial systems.
University of Michigan Press

33. Levitin G (2005) The universal generating function in reliability
analysis and optimization. Springer, London

34. Eberhart RC, Kennedy JF (1995) A new optimizer using particle
swarm theory. Proceeding of the 6th international symposium on
micro machine and human science, pp. 39–43

35. Kennedy JF, Eberhart RC (1995) Particle swarm optimization.
Proc IEEE Int Conf Neural Netw 4:1942–1948

338 Int J Adv Manuf Technol (2013) 68:317–338

	A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem
	Abstract
	Introduction
	Problem definition
	Methodology: hybrid GA–PSO approach
	Genetic algorithm
	Particle swarm optimization

	Numerical results
	Conclusion
	Appendix I
	Appendix II
	Appendix III
	References

