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Abstract In this work, a methodology for the assessment of
the geometrical accuracy of a multiaxis machine, the type
usually called multitasking machine, was fully developed.
For this purpose, the well-known formulation by Denavit
and Hartenberg was applied. Multitasking machines are
derived from lathes in which turrets are substituted by
milling spindles, or they are also derived from milling
centres including a turning headstock on the machine bed.
In both cases, they are kinematically much more complex
than lathes or milling centres, where it is not easy to previ-
ously calculate the consequence of parallelism and square-
ness errors between elements and joints. In this paper, a
radical new ‘multitasking’ machine model was studied.
Literature shows a complete lack of values for this kind of
machine. In the methodology presented here, errors were
introduced as additional geometric parameters in each ele-
mental transformation matrices, resulting in the real trans-
formation matrix for a multitasking machine. Elemental
errors and the way to introduce them into the Denavit and
Hartenberg matrices are fully described. Some simulations
are tested, giving a useful outcome regarding the sensitivity
of the machine with respect to the feasible assembly errors
or errors produced by light misalignments caused by the
machine tool continuous use.

Keywords Multi-axis machining centres . Accuracy .

Precision . Geometrical errors

1 Introduction

To date, multitasking machines are increasing in use in a lot
of workshops since their appearance on industrial exhibition
fairs in the middle 1990s. In the last 15 years, new models
with radical new machine structure have been designed,
assembled and purchased by workshops, asking for a new
production point of view due to their superior capacities in
productivity and accuracy terms. Multitasking machines’
main structures can be divided into two main groups [1]:

– Structure of a lathe adding three aspects: the C control, a
Y-axis perpendicular to the X–Z plane, and living tools
in a turret or a milling spindle that is able to block its
angular position.

– Structure of a four-axis milling machine (three linear
and one rotary) where the bench is substituted by a
turning headstock with additional control of the C-axis.

The development of this kind of machine is impossible to
be referred without naming the trademarks and machine
models. Since 1982, when WFL© launched the WNC
500S Millturn, lot of companies have been working to create
new multitasking machines or to improve both structural
and functional parts. Thenceforth, the evolution of these
machines has been a continuous process. The most impor-
tant advances could be: the launching of the Super
Multitasking Machine ‘STW-40’ (Nakamura Tome©,
2000), the development of the NT series (Mori Seiki©,
2004) and the creation of the revolutionary concept of
vertical lathe+milling centre based on customer require-
ments, conducted by GMTK© in the 2007s.

Currently, milling is a high added value production pro-
cess where accuracy, short lead time and economical aspects
must be simultaneously considered. Precision needs
demanded by users are gradually increasing, including both

E. Díaz-Tena :U. Ugalde : L. N. López de Lacalle (*) :
A. de la Iglesia :A. Calleja : F. J. Campa
Department of Mechanical Engineering, University of the Basque
Country, ETSI, C/Alameda de Urquijo s/n,
48013 Bilbao, Spain
e-mail: implomal@bi.ehu.es

Int J Adv Manuf Technol (2013) 68:149–164
DOI 10.1007/s00170-012-4715-x



dimensional and geometrical requirements. Special activi-
ties are needed to obtain closed tolerances for precise ma-
chined components in minimum time (least rework). CNC
machine tools are inevitable parts of precision production
processes. Accurate machining by CNC machine tools is
affected by a number of error sources based on specific
parameters, including force and stress, geometrical devia-
tions of machine structure and thermal variations.

Since the late 1990s, multiaxis milling centres have been
widely used for the production of several-side parts in only
one setup, or to produce complex surfaces by simultaneous
interpolation of their 5 degrees of freedom, and in the 2000s,
the multiaxis and multitasking machines irrupted. However,
different errors inherent to the complexity of these machines
increase the error on the quality of the final parts. The main
error sources in machine tools [2, 3] are categorised as
follows:

– Geometric errors [3–26], due to mechanical imperfec-
tions, such as axes misalignments, slideways and joints
wear. These errors directly affect the relative position
between tool and workpiece [4], producing dimensional
errors. In three-axis machining centres error propaga-
tion is basically linear but not in machines with rotary
axes.

– Kinematics errors, which are consequence of the ma-
chine lack ability to reach the exact position specified
by the controller. Uncertainty in position of machine
slides, gears backlash, couplers, motors, etc., is includ-
ed in this error group [6].

– Thermal errors [2, 6, 26]—the main causes of thermal
distortions are the global variation of the workshop
temperature or local heating due to feed motors, chip
heaps or main spindle heating.

– Stiffness error [27, 28]—machine tool is not perfectly
rigid, so the weight of structural components causes
large errors, highly dependent on the machine tool
position.

– Errors related with bending deformation of cutting tools
and/or machine [29–33]—there are important errors
addressed to the deflection of cutting tools or distortion
of the entire machine. Errors derived from tool deflec-
tion in ball-end finishing processes can exceed 40 μm
or even more [32].

Error budget is a usual method for calculating the global
uncertainty of a machine tool, as proposed by Donaldson
[34], Slocum [4], Walter et al. [35] and Treib and Matthias
[36]. The error budget procedure detects the sources of
errors to be quantified, so that subsequent design and re-
search efforts could be directed at those problems with
mainly effect precision and accuracy. The budget must
include all the elements that affect the final accuracy of

the workpiece, i.e. the machine, the process, auxiliary equip-
ment and the interactions between them [36]. Here and in
Ref. [30], errors coming from the final assemble of machine
structures were the first ones to be analysed.

Many researchers investigated geometric errors for three-
axis machine tools from several points of view. Nawara et al.
[7], Soons et al. [8] and Suh et al. [9] formulated the error of
machine tools from 21 simple error components, and pro-
posed a prediction and compensation algorithm for the geo-
metric errors. Ferreira and Liu [10] investigated a modelling
method for compensating errors in three-axis machine tools.
Mou and Liu [11] developed a quadratic error model based on
rigid-body kinematics. Cho et al. [13] presented a volumetric
error model and applied it for precision machining of free-
form surfaces. Fan et al. [26] investigated the effect of tem-
perature on machine tools error and proposed methods for
their measurement and compensation. Lee et al. [37] devel-
oped a general volumetric error model to synthesise all geo-
metric error components of a three-axis miniaturised machine
tool and proposed a recursive compensation method.

Nowadays, no reference about errors in multitasking
machine has been found, but there were a few regarding
five-axis milling centres [38]. Machining accuracy of five-
axis machines is generally inferior to conventional ones,
because those with two rotary axes can suffer numerous
deviations in the assembly procedure of their mechanisms
[5, 13–15]. On the other hand, the usual work of this kind of
machine allows the production of very complex parts im-
possible to be manufactured in a three-axis machine. There
are some measurement methods for identifying the geomet-
ric deviations of multi-axis machines, most of them using
the Ball-bar method. Thus, in Lei et al. [15] the error values
of a five-axis machine are calculated along the movements
in X, Y, and Z, reaching volumetric errors diagrams for a real
machine. Tsutsumi and Akinori [5] used the ball-bar meth-
ods for five-axis centres, and recently Zargasbashi and
Mayer [39] study the trunnion-type A-axis. Ball-bar can also
be used to estimate the geometric errors of a rotary table, as
Lee et al. did [40]. The accuracy of five-axis milling
machines has been studied by means of Denavit and
Hartenberg formulation by Suh and Lee [9], by Mahbubur
et al. [19] and by López de Lacalle et al. in Ref. [41], in the
latter two in a similar way to the present work. Jha and
Kumar [14] studied the influence of straightness errors on
the profiling of a CAM but did not take into account other
geometric deviations, as it is done in the present work,
where straightness is not considered so it is the complemen-
tary view. Other possibility to Denavit and Hartenberg is the
use of the mechanisms screw theory, used by Sang-Ku
Moon et al. [21].

International standards [42–44] include tests and admis-
sible tolerances for checking linear axes and some tests to
check rotary axes, mainly for bi-rotary heads in machines
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with horizontal or vertical Z-axis. However, there are no
tests to check five-axis or multiaxis machines with tilting
tables. The second group includes procedures for position-
ing and interpolation control studying, based on laser inter-
ferometers, Ball-bar or static measurements using position
sensors. The last group includes test parts to check the
behaviour of milling centres during the machining process,
but to date these tests are focused on three-axis milling
centres only. The most known is the NAS workpiece (ISO
10791-7:1998 ‘Test conditions for machining centres —part
7: accuracy of a finished test piece’) and the NC-
Gesellschaft testpart [32]. However, none of them is includ-
ed in the ISO standard normative.

With all this, and as there is an upward forecast in the use
of multitasking machines, it is doubtless that a priori eval-
uation of the errors would be useful for a better design,
construction, assembly and maintenance of multitasking
machines. Furthermore, knowing the kind and the value of
the errors during the manufacturing process, it gives the
opportunity to compensate them, obtaining the final quality
desired in the workpiece at a reduced cost.

The aim of this work is to study how an error in the
structure of a multitasking machine could be propagated
causing lack of precision in the workpiece. For that purpose,
firstly Denavit and Hartenberg method is explained and
secondly a multitasking machine is simplified to its kine-
matic configuration. In Section 3, comparing the theoretical
and the real position, the consequences of introducing a
squareness error, a clamping error and a misalignment error
are calculated. Finally, how these errors change with ma-
chine position and the error effect in continuous machining
is analysed.

2 Theoretical global transformation matrices in the
machine under study

2.1 Homogeneous matrix method

Denavit and Hartenberg notation (proposed in 1955) relates
the consecutive position of local reference systems associ-
ated to each element of a spatial manipulator, in our case a
five-axis machine tool, to find the position of the tool
grasped by the spatial manipulator. Other possibilities to
calculate the final position of tool being used in three-axis
are difficult to be applied in five-axis [23, 24].

The complex multi-axis machine structure is represented
by a ‘bar and nodes’ kinematics scheme. Thus, by means of
the product of the transformations between successive coor-
dinate systems associated to the mechanisms elements, from
the absolute (X1 Y1 Z1) reference system to the ‘tool centre
point’ system (Xtcp Ytcp Ztcp), the global transformation
matrix T4×4 is obtained. This matrix is function of the

geometrical parameters of structure and the position of the
degrees of freedom (machine axes), and gives the final
position of the tool. Each kinematics and each machine
presents its own transformation matrix T4×4.

In Denavit and Hartenberg method, the elements that take
part on the machine structure are listed from the fixed
element to the last element. Each element is connected to
another one by means of kinematic joints, such as rotary and
prismatic ones, having rotational axes or sliding axes re-
spectively. A XiYiZi reference system is given to each i
element, being the origin of the coordinate system located
on the joint with the element i+1 (see Fig. 1). To completely
define the kinematic configuration of each element, the next
parameters are required:

– Element length ai, distance between Zi–1- and Zi-axes
measured along the Xi axis.

– Element torsion αi, angle between Zi−1- and Zi-axes,
from Zi−1-to Zi in counterclockwise and from the pos-
itive direction of Xi.

– Distance between elements di, distance between Xi−1

and Xi axes measured along the Zi−1-axis.
– Joint angle θi, angle between Xi−1- and Xi-axes, from Xi

−1 to Xi in counterclockwise and from the positive
direction of Zi−1.

Element length and element torsion define the element
itself, while the other parameters define the relative position
between two adjacent elements.

The conversion from the i−1 system to the i system is
performed through four simple transformations:

1. A rotation θi about the Zi−1 axis to bring Xi−1 parallel
with Xi.

Tθi;Zi�1 ¼
cos θi � sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð1Þ

Axis i-1 

Axis i 
Axis i+1 

ai

zi-1

xi-1

yi-1
di

zi

xi
yi

i

i

Fig. 1 Denavit and Hartenberg parameters [45]
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2. A translation di along the Zi−1 axis to make the X-axes
collinear.

Tdi;Zi�1 ¼
1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

2
664

3
775 ð2Þ

3. A translation ai along the Xi-axis to make the Z-axes
coincide.

Tai;Xi ¼
1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð3Þ

4. And, a rotation αi about the Xi-axis to bring Zi parallel
and coincident with Zi+1.

Tai;Xi ¼
1 0 0 0
0 cos ai � sin ai 0
0 sin ai cos ai 0
0 0 0 1

2
664

3
775 ð4Þ

From these simple transformations, the elemental trans-
formation matrix i�1

iT is obtained:

i�1
iT ¼ Tθi;Zi�1 � Tdi;Zi�1 � Tai;Xi � Tai;Xi

¼
cos θi � sin θi cos ai sin θi sinai ai cos θi
sin θi cos θi cos ai cos θi sin ai ai sin θi
0 sin ai cos ai di
0 0 0 1

2
664

3
775

ð5Þ
The multiplication of the elemental transformation

matrices results in the global transformation matrix of
the system T4×4, in this case it is going to be noted as
the theoretical Tth because it does not include the
geometric errors:

1
nTth ¼ T12 � T23 � . . . � Tn�1 n ¼

ux vx wx dx
uy vy wy dy
uz vz wz dz
0 0 0 1

2
664

3
775 ð6Þ

Dividing this matrix in the habitual sub-matrixes it
results:

1
nTth ¼

1
nRth

1
ndth

0 1

� �
ð7Þ

Where:

1
nRth ¼

ux vx wx

uy vy wy

uz vz wz

2
4

3
5 ð8Þ

Represents the orientation of the tool centre point respect
of the original (X1 Y1 Z1) coordinate system in the theoretical
case, and

1
ndth

T ¼ dx dy dz½ � ð9Þ

Represents the theoretical tool tip centre point position
respect of the same system.

The multiplication between the global transformation
matrix and the vector of the homogeneous coordinates
referenced to the mobile coordinate system (tcp system)
result is the coordinates of that vector related to the
absolute coordinate system. In milling, the final ele-
ment caught by the spatial manipulator is a cylinder,
which represents the end mill tool. If the tcp is placed
at the tool tip, its position in the absolute reference
results from the transformation of the origin of the tcp
coordinate system using its homogeneous coordinates
(0,0,0,1).

X ¼ Tth � Xloc ð10Þ

2.2 Structure and theoretical matrices for the multitasking
machine under study

In Fig. 2, the multitasking machine model studied in
this work is shown. As it can be seen, it is a multiaxis
machine in which the three main Cartesian axes are
solved by a box-in-box structure typical of horizontal
milling centres, with a swivel rotation degree of free-
dom ram. On the bed is placed a horizontal headstock
with the chuck plate and a counter chuck place on a
sliding additional linear axis. Behind both plates is the
turret with capacity for living tools and built-in
motors. At the view of the picture, the absolutely and
radical new design adding usual structures for milling
centres and lathes in the same machine bed is easily
deduced.

For the present work, the machine was simplified to a
kinematical draft showing the degrees of freedom (axes),
and including the usual elements used on theory of mecha-
nism as it can be seen in Fig. 3.

The axis nomenclature used in Figs. 2 and 3 does not
follow the ISO standard exactly. This is due to the presence
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of several machine axes on the same direction along with
several main spindles (headstock and counter-headstock
spindles for turning and one for milling mount in the hori-
zontal ram). Even the CN equipment interpolates each set of
axes separately, usually so-calling each of the sets as ‘chan-
nels’. However, the power of current numerical controls
allows them working simultaneously in a collaborative
way. Thus, in ISO 841: 2001 ‘Industrial automation systems
and integration—numerical control of machines—coor-
dinate system and motion nomenclature’ there are par-
allel axes, but in machines with only one main spindle,
therefore different to multitasking machines in which
there are two or three spindles, as the case of Fig. 2.
As it has been said, this case includes two lathe spin-
dles, one high speed milling spindles mounted at the
end of the octagonal ram, and a turning turret located
under the lathe axis in which a built-in motor for living
tools is also possible.

If the machine is considered ideal, without any struc-
tural defect, and Denavit and Hartenberg method is
applied to the diagram, the coordinate systems shown

in Fig. 4 is obtained. Here, axes remarked with circles
correspond with those named by the machine manufac-
turer, whereas the italic marked ones are those derived
from the systematic application of the Denavit and
Hartenberg approach. In this figure two cylindrical parts
are drown on both lathe main spindle (spindle 2) and
counterspindle (spindle 1) only for illustrative purpose.
The first and original reference point (of X1, Y1 and Z1)
is located in the workpiece reference, reaching the tool
tip after several local transformations.

Once those axes are defined, all the transformation ma-
trixes have to be developed. Firstly, the basic parameters
required for the formation of the matrixes have to be calcu-
lated, as gathered in Table 1.

With these all, Denavit and Hartenberg general transfor-
mation matrix is applied to each element. Multiplying all of
them the general transformation matrix is obtained. The
transformation changes the movement from the C1-axis
(reference system X1, Y1 and Z1) to the point of the tool
(reference system Xtcp, Ytcp and Ztcp). All the matrixes can be
found in Table 1.

Fig. 4 General coordinate systems, for the ‘channel’ or set of axes 1Fig. 3 Kinematic configuration of the machine

Fig. 2 The multitasking
machine studied in this work
and machine degrees of
freedom also so-called axes
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At the view of Table 1 in which the element matri-
ces are described, the final postmultiplication following

the method in Eq. 6, is the resulting one shown in
Eq. 11:

tcpChannelthtcp 656453423121_
1 TTTTTTT

1111111111

1111111111

cos( )sin ( ) sin ( ) cos( )cos( ) 1400cos( ) cos( ) cos( )cos( ) 700sin ( ) sin ( )

sin ( )sin ( ) cos( ) cos( )sin ( ) 700cos( ) cos( ) 1400sin ( ) sin ( ) cos( )sin ( )

cos( ) 0 sin

h

tool

C B C B C C X C L B C C Y C

B C C B C C Y C C X C L B C

B 1 )(nis048)(

1000
tool BLZB

ð11Þ

Until now, the analysis have only been done for what
is called ‘Channel 1’ which is defined starting from the
spindle 1 to the tool tip. This channel is used only
when milling tools are machining and simultaneously
the workpiece is not clamped from its opposite side.
However, it is known that in these types of machines
depending on the function of the part and machining
strategies other channels appear and they have to be
analysed too.

Channel shown in Fig. 5 could be another example of
what has been mentioned before. From now on that channel

Table 1 Geometrical parameters of the Denavit and Hartenberg model, Channel 1

Transaction from element i-1 

to element  i 
a ai i di Transformation matrix 

12 1400 0 -1140 C1+180 

1000

1140100

Csin14000CcosCsin

Ccos14000CsinCcos

T 111

111

12

23 700 270 Z1 270 

1000

Z010

700001

0100

T
1

23

34 0 90 X1 0

1000

X010

0100

0001

T
1

34

45 0 90 300 270 

1000

300010

0001

0100

T45

56 0 90 Y1 B+90 

1000

Y010

0Bsin0Bcos

0Bcos0Bsin

T
1

56

6Tcp 0 0 Ltool 0

1000

100

0010

0001

6
tool

tcp L
T

i 

Fig. 5 General coordinate systems for the Channel 2
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will be considered ‘Channel 2’ and the part will be clamped
by the spindle 2.

As it was done for Channel 1, once the reference systems are
defined for each kinematic couple following the Denavit and
Hartenberg’s method, the elemental transformation matrixes

could be defined too. Both the parameters’ values to define
each matrix and the matrixes themselves are shown in Table 2.

The global transformation matrix for this channel is
obtained multiplying the elemental matrixes as it has been
done in Eq. 6:

3423122_
1 TTTT Channelthtcp

1000

2280100

)sin()cos(1400)cos()sin(1400)sin(14000)sin()sin()cos()cos()sin()cos()cos()sin(

)sin()sin(1400)cos()cos(1400)cos(14000)sin()cos()cos()sin()sin()sin()cos()cos(

2121121212121

2121121212121

A

CCCCCCCCCCCCC

CCCCCCCCCCCCC
ð12Þ

3 Error propagation

For testing of the developed model, some error cases were
analysed involving Channel 1 and Channel 2.

The importance of different type of errors is appreciated
in Fig. 6, for a general machine tool and for multitasking
machines. In the former, workpiece setup that must be
performed between different machines and operations is
the big error source. In the latter, uncertainty of alignment
of the workpiece after clamping is eliminated radically,
because multitasking machines always work using the same
workpiece clamping and the same CNC program reference.
Thus, in this kind of machine the main contribution is due to
assembly errors in machine structure. On the other hand, the
lack of precision between tool and collect would also be
important in this distribution. That’s why for checking the
model those two important errors were considered, (1) po-
sitioning error and (2) imperfect tool holding (clamping) on
the spindle nose error.

Once the theoretical transformation matrix was obtained
for each case, the following step was to obtain the actual

global matrix affected by construction errors. For this purpose,
the joints between machine mobile parts were considered as
non-perfect. Including the errors between the mobile elements
and applying the same procedure for the definition of the
theoretical matrix (Tth) and the actual global transformation
matrix (Tr) was obtained. It depends on the errors introduced
in each elemental transformation, and, as in the case of the
theoretical matrix, on the dimensions of the machine and the
variable axes position (value of the degrees of freedom).

As the aim of the present work is to obtain the contri-
bution of the errors previously studied with the ideal case,
a particular machine position was taken and compared in
real and ideal case in Channel 1 and Channel 2. The
positions were the following ones:

C1 ¼ 0� B ¼ 45� X1 ¼ 350mm Y1 ¼ 175mm Z1 ¼ 150mm

Ltool ¼ 50mm Channel 1ð Þ C1 ¼ 0� A ¼ 1; 050mm C2 ¼ 0� Channel 2ð Þ

The influence of the error from the analysed case on the
position and the orientation of the new system respect to the
theoretical case can be quantified introducing those values

Table 2 Geometrical parameters of the Denavit and Hartenberg model, Channel 2

Transaction from element i-1 

to element  i 
a αi i di Transformation matrix 

12 1400 0 -1140 C1+180 

1000

1140100

sin14000cossin

cos14000sincos

111

111

12

CCC

CCC

T

23 0 0 A 0 

1000

100

0010

0001

23 A
T

34 1400 0 -1140 C2+180 

1000

1140100

sin14000cossin

cos14000sincos

222

222

34

CCC

CCC

T

i 
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in the real and theoretical matrixes. The first one is easily
obtained subtracting the vectors related to the Channel 1
system from the Tth matrix and the matrix with error Tr.

Nevertheless, to calculate the error in the orientation
regarding to the ideal case, attention has to be paid to the
rotation matrix R. For that purpose, it has to be taken into
account that the columns of the matrix are the new reference
system’s (tcp system) director cosines, which coincide with
the components of the unitary vectors itcp, jtcp and ktcp from
the original reference system (X1, Y1 and Z1) expressed by
{u}, {v} and {w}.

The angles between the axes of the theoretical position
and the axes after introducing an error can be obtained
simply applying the definition of the vector scalar multipli-
cation (Eq. 13) and in that way observe the deviation pro-
duced from that error.

Usually, only the error regarding to Ztcp is studied be-
cause it is the axis related to milling tool axis.

wth � wr ¼ wthj j � wrj j � cosð8 Þ ) cosð8 Þ

¼ wth � wr

wthj j � wrj j ð13Þ

From now on, a resolution of a tenth of a micro-
metre for estimated errors is going to be considered for
distances, even though real errors are difficult to be
measured in microns (hundredth is the common resolu-
tion in a common workshop). However, this resolution
is useful to compare estimated values for errors, for
being able to distinguish between theoretical an error
positions.

3.1 Case 1

To analyse the error in the position of the machine a partic-
ular case was chosen. Amongst all of them, a squareness
error was considered, i.e. an angle between two axes was not
90° (see Fig. 7). For example, the X-axis of the machine
would not be necessarily perpendicular to the YZ plane, and

therefore an angular error (with two components) was intro-
duced. In order to check the matrix formulation, an error of
value 0.001° (3.6 arcsec) was taken.

In comparison with the ideal case, in Table 1 only αi

geometrical parameter was changed between the elements 2
and 3.

The theoretical matrix after including this error is shown
in Appendix A.

– Matrix without error—it was obtained simply substitut-
ing the position chosen into the general matrix (Eq. 11).

1000

6447.65470711.0070711.0

525010

6447.171470711.0070711.0

1_
1

ChannelthtcpT

ð14Þ
– Matrix with squareness error:

1000

6412.65470710.0070712.0

525010

6410.171470712.0070710.0

_
1

squarenessrtcpT

ð15Þ

Fig. 7 Introduction of a squareness error in Channel 1

Fig. 6 Distribution of most common errors. Left, machine tools. Right, multitasking machines [28]
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Therefore the difference position vector resulted as:

ΔdT
squareness

¼ �0:0037 0 �0:0035½ � ð16Þ

The error obtained between the theoretical and real posi-
tion for this case 1 was:

Δdsquareness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y þ d2z

q
¼ 0:0051mm ð17Þ

3.2 Case 2

Another case was to consider an assembly error between the
tool holder and tool due to the collet eccentricity, in this case
an angular deviation, as shown in Fig. 8. The matrix
changed introducing an angular deviation of 0.001° in the
tool clamping interface. Matrix is shown in Appendix B.
Now, in Table 1, the geometrical parameter to change was αi

in the transaction from elements 5 to element 6.
Error between the tool and the collect:

1000

6447.65470711.01066842.970711.0

0007.5251036732.110

6447.171470711.01066842.970711.0

6

5

6

_
1

clampingrtcpT

ð18Þ
If this case was compared with the ideal one using a

difference position vector.

ΔdTclamping ¼ 0 �0:0007 0½ � ð19Þ

The error in position obtained was:

Δdclamping ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y þ d2z

q
¼ 0:0007mm ð20Þ

This value is very low to be cause for concern.

3.3 Case 3

In the last case both previous cases of errors were taken into
account simultaneously, as it is shown in Fig. 9. The matrix
is shown in Appendix C.

Where the actual transformation matrix and the differ-
ence position vector were:

1000

6412.65470710.01066831.970712.0

0007.5251036732.110

6410.171470712.01066852.970710.0

6

5

6

__
1

clamsquartcpT

ð21Þ

ΔdT
squa clam

¼ �0:0037 �0:0007 �0:0035½ � ð22Þ

And the error was:

Δdsqua clam ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y þ d2z

q
¼ 0:0051 mm ð23Þ

At the view of these outcomes, the final result is a linear
combination of previous ones. The resultant models provide
the real position of the tool as a function of the position of the
degrees of freedom. Position is given by the tool tip Cartesian
coordinates and the tool orientation is provided by the tool
axis (axis Ztcp). So, it can be obtained the real path followed by
the tool tip and its orientation for a set of different positions of
the degrees of freedom, being compared with the theoretical
ones. In this way, the error map for the complete spatial
machine movements in the whole work volume of the five-
axis machine can be obtained, as it is made in Refs. [16, 22].

Each elemental matrix includes the geometrical simple
errors. Then, the actual global transformation matrix is
obtained by the multiplication of the elemental matrices.
For the above example, the final real matrix Tr results in:

tcp
1Tr Channel 1 ¼ T12 � T23 � T34 error � T45 � T56 error � T6tcp ð24Þ
After the error estimation at the tool tip, one possibility is

trying to compensate it changing the machine position to
achieve an exact spatial position, as it is explained in [22]
solving the inverse kinematics problem. Other possibility is
to include the real transformation matrix for a particular
milling machine in the internal CNC kinematics model to be
used by the interpolation functions. In this way, an improved

Fig. 9 Two simultaneous errors in Channel 1

Fig. 8 Introduction of a tool clamping error in Channel 1
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accuracy would be achieved without machine user
intervention.

3.4 Case 4

Although it has been mentioned in Fig. 6 that multitasking
machines do not present errors related to the alignment of
the part, as the operations are done in the same part clamp-
ing, in this case a misalignment between the two main
spindles was considered (see Fig. 10). This machine type
can change part between left chuck and right chunk, so this
error could affect part precision.

This case has a particular interest because it is known that
a particular company, because of a collision during machin-
ing, had both spindles damaged causing a severe misalign-
ment with an estimated maximum value of 0.003° out of
squareness. As a consequence, spindle 1 held the part per-
fectly, while the part in spindle 2 had a certain inclination
due to the misalignment induced by the previous collision.

The matrix obtained using Denavit and Hartenberg is
shown in Appendix D.

The theoretical matrix obtained after introducing the
machine’s position in Eq. 12 was the following:

1000

1230100

0010

0001

2_
1
4 ChannelthT ð25Þ

Once the error was introduced, from the postmultiplica-
tion of the elementary matrixes the global transformation
matrix Tr was obtained:

1
4Tr Channel 2 ¼ T12 � T23 error � T34 ð26Þ

1000

1230100

07336.0011024.5

001024.51
5

5

_
1
4 ntmisalignmerT ð27Þ

From the difference between the two vectors the error
vector of position could be obtained:

ΔdT
misalignment

¼ 0 0:07336 0½ � ð28Þ

And the error:

Δdmisalignment ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y þ d2z

q
¼ 0:07336 mm ð29Þ

This value is in the order of hundredths of millimetre, and
to be considered for reduction.

3.5 Case 5

As what appears in Fig. 11, now, the three cases of
error analysed before were introduced simultaneously:
squareness, clamping and misalignment errors. This case
would be only considered if the workpiece was trans-
ferred from left headstock (spindle 1) to the right one
(spindle 2) for being machined in both ends, which is
not the general case.

Using results from cases 3 and 4, theoretical and real
positions of the tool centre point with respect to the original
coordinate system X1 Y1 Z1 and of the spindle 2 with respect
to the same system were:

1
tcpd

T
th ¼ �1; 714:6447 525 �654:6447½ � ð30Þ

1
tcpd

T
r ¼ �1; 714:6410 525:0007 �654:6412½ � ð31Þ

1
4d

T
th ¼ 0 0 �1; 230½ � ð32Þ

1
4d

T
r ¼ 0 �0:07336 �1; 230½ � ð33Þ

Applying the above equations, theoretical and real
distance vector between tool centre point and spindle 2

Fig. 10 Introduction of a misalignment error in Channel 2 Fig. 11 Introduction of all previous cases of errors simultaneously
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(considering a workpiece clamped into it with a null
length) were:

4
tcpd

T
th ¼ �1; 714:6447 525 575:3553½ � ð34Þ

4
tcpd

T
r ¼ �1; 714:6410 525:0741 575:3588½ � ð35Þ

Being the difference between them the error vector:

4
tcpΔdTsqua clamp misa ¼ �0:0004 �0:0741 �0:0004½ � ð36Þ

So the value of the error in this case was,

Δdsqua clamp misa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y þ d2z

q
¼ 0:0741 mm ð37Þ

4 Results of some errors for different machine positions

Firstly, the work was done in Channel 1. Like was done
beforehand, by Denavit and Hartenberg method some errors
at the tool tip (δX, δY and δZ) were estimated for two simulta-
neous errors and three different values of them in. The values of
the degree of freedom, as same as in case 3, were the next ones:

C1 ¼ 0� B ¼ 45� X1 ¼ 350 mm Y1 ¼ 175 mm
Z1 ¼ 150mm Ltool ¼ 50 mm

The solutions are recorded in Table 3.

At the view of the results a rapid conclusion is
extracted: when the squareness error gets higher both
the total error and its components x and z get higher
while y maintains its value. The last one only changes
when the fixation error changes. It is clear that the
influence of increasing the value of clamping error is
not appreciated directly in the total error.

Continuing with the study, it was analysed what influence
each degree of freedom had in the tool tip position. For that
purpose, different machine positions were chosen and case 3
was solved. In each one, only 1 degree of freedom was
changed: the translational degrees of freedom are reduced
in 30 % and the rotational ones at −45°. Position number
one corresponds to the initial position previously analysed
in Sections 3.1, 3.2 and 3.3.

PositionNo: 1 : C1 ¼ 0� B ¼ 45� X1 ¼ 350mm Y1 ¼ 175mm Z1 ¼ 150mm Ltool ¼ 50mm

PositionNo: 2 : C1 ¼ �45� B ¼ 45� X1 ¼ 350mm Y1 ¼ 175mm Z1 ¼ 150mm Ltool ¼ 50mm

PositionNo: 3 : C1 ¼ 0� B ¼ 0� X1 ¼ 350mm Y1 ¼ 175mm Z1 ¼ 150mm Ltool ¼ 50mm

PositionNo: 4 : C1 ¼ 0� B ¼ 45� X 1 ¼ 245mm Y1 ¼ 175mm Z1 ¼ 150mm Ltool ¼ 50mm

PositionNo: 5 : C1 ¼ 0� B ¼ 45� X1 ¼ 350mm Y 1 ¼ 123mm Z1 ¼ 150mm Ltool ¼ 50mm

PositionNo: 6 : C1 ¼ 0� B ¼ 45� X1 ¼ 350mm Y1 ¼ 175mm Z 1 ¼ 105mm Ltool ¼ 50mm

Obtaining the Denavit and Hartenbeng actual transforma-
tion matrix Tr3 (Eq. 14) for each position, and comparing
with the theoretical matrix Tth_Channel 1 before substituting
the new position, the errors shown in Table 4 appeared.

Analysing the effect of the translational and rotational
degrees of freedom separately, it can be observed how
the positions No. 1, 2, 5, and 6 are the ones which
contribute more to the error. These positions coincide
with the variation of the rotation C1 and B and the
translation of Y1 and Z1 respectively, being those the
degrees of freedom with most influence in the error
propagation.

Having known which degrees of freedom are the most
influential it could be interesting to study its variation

throughout the trajectory. Main characteristics of the studied
model were based on a medium size machine typical for
automotive components manufacturing. The stroke of Y1-

Table 3 Example of some errors

Squareness
error

Fixation error δx (mm) δy (mm) δz (mm) Δδ (mm)

0.001° 0.001° −0.0037 −0.0007 −0.0035 0.001

0.002° 0.001° −0.0104 −0.0007 −0.0098 0.0144

0.004° 0.001° −0.0238 −0.0007 −0.0224 0.0327

0.001° 0.002° −0.0037 −0.0017 −0.0035 0.0053

0.002° 0.002° −0.0104 −0.0017 −0.0098 0.0144

0.004° 0.002° −0.0124 −0.0017 −0.0116 0.0171

Table 4 Value of error for different positions of machine

Machine position δx (mm) δy (mm) δz (mm) Δδ (mm)

No. 1 −0.0037 −0.0007 −0.0035 0.0051

No. 2 −0.0031 0.0021 −0.0035 0.0051

No. 3 −0.0033 −0.0007 −0.0033 0.0047

No. 4 −0.0037 −0.0007 −0.0023 0.0044

No. 5 −0.0037 −0.0007 −0.0035 0.0051

No. 6 −0.0037 −0.0007 −0.0035 0.0051
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axis and Z1-axis is ±210 mm for the first one and 1,120 mm
for the second one; in rotational axes, the trajectory is ±120°
for B-axis and 0º−360º for C1-axis.

Once all the previous cases have been analysed, an
error higher than a micron has only been appreciated in
the rotational B-axis as it can be seen in Fig. 12.

As it can be seen in the graph, positioning error
decreases when B-axis is between −120° and 0°, reach-
ing a minimum value of 0.0046 mm. However, when
the axis works in positive angles the error arises to
0.0056 mm. With this, it can be concluded that the
positioning error can reach ±0.00100÷360°mm in com-
parison to the ideal case.

As well as in Channel 1, in Channel 2 the influence of the
degrees of freedom C1, C2 and A have been analysed re-
garding to the misalignment error. In this case, the variation
of the degrees of freedom has no significant error.

5 Consequences of errors on continuous machining

In order to visually distinguish how these errors affect
the final pieces and their consequences on them, the full
simulation of a machining process was carried out. In
this way, the systematic effect of error in final parts can
be considered. The example case shown below, is relat-
ed to the manufacturing of a tool holder under standard
ISO 26623-1: 2008 ‘Polygonal taper interface with
flange contact surface—part 1: dimensions and designa-
tion of shanks’, whose tapered shape errors could be
dramatically affected by cases 1 and 2 errors (see
Sections 3.1 and 3.2). As this piece is always performed
with raw part clamped on the spindle 1, there is no
effect of error in Channel 2. Channel 2 error would

only appear if machined part is re-clamped into the
right spindle for further operations, not the case here.

The virtual verification module of the CAM software
ESPRIT® to generate CAM operations was chosen.
Only for magnification purposes it was necessary to
introduce a higher error for cases 1 and 2, considering
6° instead of 0.001°, to have a better appreciation of the
error. Although this consideration was too higher to be
a real case, it helps to show the difference between real
and theoretical parts.

The operation studied was performed by the main spindle
(swivelling the B-axis at the end of the octagonal ram). This
operation is very important because the tool holder trigonal
surface is defined in the ISO standard to accomplish.

Figure 13 compares the differences between real and
theoretical cases, once the errors mentioned in
Sections 3.1 and 3.2 of squareness and clamping were
introduced. Hence, row 1 shows the effect of squareness
error in the reference position of the machine tool, just
previous to run the CNC program. Row 2 shows for the
same position the introduction of the tool holder clamp-
ing error, introducing the equivalent angular error on
headstock. In the last row, how the milling operation
is clearly affected by both simultaneous errors is
reflected; as shown on the right hand column, there is
distortion of the trigonal surface.

Once the machining process was simulated, it was
time to compare volumes of perfect and wrongly ma-
chined trigonal surface. As Fig. 14 shows, the introduc-
tion of squareness and clamping errors result in a part
out of tolerance required by the standard. The blue one
(dark-coloured volume) is the theoretical part whereas
the yellow one (light-coloured volume) is the part
obtained considering there is 6° of squareness and

Fig. 12 Error variation along
B-axis rotation
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clamping error. Figure 14 shows values of maximum
deviations for real expected errors but also for exagger-
ated values, the latter for a most visual representation of
consecuences.

For this application, the maximum error of 3 μm could be
accepted since after milling a grinding process of the trigo-
nal surface is always performed; the error is eliminated by
grinding absolutely.

Fig. 14 CAD volumes comparison and error values (scaled for a better view). Left, isometric and lateral view of the trigonal-shaped shank (error
introduced, 6°). Right, values of maximum thickness deviation due to three cases of error introduced

THEORETICAL CASE REAL CASE

Distortion of the 
trigonal shank

Fig. 13 Simulation of the
process
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6 Conclusions

In this work, a useful methodology to estimate global
precision of complex multitasking machines is pre-
sented, based on the use of Denavit and Hartenberg’s
formulation. In this kind of machine, an elemental error
in one joint affects both the position and orientation of
the tool, causing that final part to be out of tolerances
and with form deviation.

Elemental errors have been defined for a multitasking
machine. The way to introduce them in the T matrices has
been fully described. With the theoretical matrix formula-
tion, the real effect of each of the assembly errors is

estimated. Therefore, those with more weight on tool tip
error would be the first objective to be reduced at the
assembly stage of the machine tool.

In assembled machines placed in workshops, the use of
the proposed methodology can be useful to define machine
positions where some errors are the minimums. Machine
tools manufacturers can in this way help their customers to
improve the accuracy of the final parts produced.
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Appendix A. Transformation matrix of the squareness
error

tcp
1Tr squareness ¼ tcp

1R tcp
1d

0 1

� �

tcp
1R ¼

1:10196 � 10�5 cosðBÞ cos C1ð Þ � cos C1ð Þ sinðBÞ sinðC1Þ cosðBÞ cos C1ð Þ þ 1:10196 � 10�5 cos C1ð Þ sinðBÞ
1:10196 � 10�5 cosðBÞ sin C1ð Þ � sinðBÞ sin C1ð Þ � cosðC1Þ 1:10196 � 10�5 sinðBÞ sin C1ð Þ þ cosðBÞ sin C1ð Þ

cosðBÞ þ 1:10196 � 10�5 sinðBÞ 0 �1:10196 � 10�5 cosðBÞ þ sinðBÞ

2
4

3
5

tcp
1d ¼

�X1 cos C1ð Þ þ 1:10196 � 10�5 � 300 cos C1ð Þ � 1; 400 cos C1ð Þ þ Ltool cosðBÞ cos C1ð Þ þ 1:10196 � 10�5 cos C1ð Þ sinðBÞ½ � � 700 sin C1ð Þ þ Y1 sin C1ð Þ
700 cos C1ð Þ � Y1 cos C1ð Þ þ Ltool 1:10196 � 10�5 sinðBÞ sin C1ð Þ þ cosðBÞ sin C1ð Þ½ � � X1 sinðC1Þ þ 1:10196 � 10�5 � 300 sinðC1Þ � 1; 400 sinðC1Þ

�840þ 1:10196 � 10�5X1 þ Z1 þ Ltool �1:10196 � 10�5 cosðBÞ þ sinðBÞ½ �

2
4

3
5

Appendix B. Transformation matrix of the tool clamping
error

tcp
1Tr clamping ¼ tcp

1R tcp
1d

0 1

� �

tcp
1R ¼

� cos C1ð Þ sinðBÞ 1:36732 � 10�5 cosðBÞ cos C1ð Þ þ sin C1ð Þ cosðBÞ cos C1ð Þ � 1:36732 � 10�5 sin C1ð Þ
� sinðBÞ sin C1ð Þ � cos C1ð Þ þ 1:36732 � 10�5 cosðBÞ sin C1ð Þ 1:36732 � 10�5 cos C1ð Þ þ cosðBÞ sin C1ð Þ

cosðBÞ 1:36732 � 10�5 sinðBÞ sinðBÞ

2
4

3
5

tcp
1d ¼

�1; 400 cos C1ð Þ � X1 cos C1ð Þ þ Ltool cosðBÞ cos C1ð Þ � 1:36732 � 10�5 sin C1ð Þ½ � � 700 sin C1ð Þ þ Y1 sin C1ð Þ
700 cos C1ð Þ � Y1 cos C1ð Þ � 1; 400 sin C1ð Þ � X1 sin C1ð Þ þ Ltool cosðBÞ sin C1ð Þ þ 1:36732 � 10�5½ �

�840þ Z1 þ Ltool sinðBÞ

2
4

3
5
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Appendix C. Transformation matrix of the combined
squareness and clamping error

tcp
1Tr squa clam ¼ tcp

1R tcp
1d

0 1

� �

tcp
1R ¼ tcp

1R1
tcp
1R2

tcp
1R3

� �

tcp
1R1 ¼

1:10196 � 10�5 cosðBÞ cos C1ð Þ � cos C1ð Þ sinðBÞ
1:10196 � 10�5 cosðBÞ sin C1ð Þ � sinðBÞ sin C1ð Þ

cosðBÞ þ 1:10196 � 10�5 sinðBÞ
0

2
664

3
775

tcp
1R2 ¼

1:36732 � 10�5 cosðBÞ cos C1ð Þ þ 1:50673 � 10�10 cos C1ð Þ sinðBÞ þ sin C1ð Þ
� cos C1ð Þ þ 1:50673 � 10�10 sinðBÞ sin C1ð Þ þ 1:36732 � 10�5 cosðBÞ sin C1ð Þ

�1:50673 � 10�10 cosðBÞ þ 1:36732 � 10�5 sinðBÞ
0

2
664

3
775

tcp
1R3 ¼

cosðBÞ cos C1ð Þ þ 1:10196 � 10�5 cos C1ð Þ sinðBÞ � 1:36732 � 10�5 sin C1ð Þ
1:36732 � 10�5 cos C1ð Þ þ 1:10196 � 10�5 sinðBÞ sin C1ð Þ þ cosðBÞ sin C1ð Þ

�1:10196 � 10�5 cosðBÞ sinðBÞ
0

2
664

3
775

tcp
1dT ¼

�X1 cos C1ð Þ þ 3:30588 � 10�3 cos C1ð Þ � 1; 400 cos C1ð Þ þ Ltool cosðBÞ cos C1ð Þ þ 1:10196 � 10�5 cos C1ð Þ sinðBÞ � 1:36732 � 10�5 sin C1ð �½ Þ � 700 sin C1ð Þ þ Y1 sin C1ð Þ
700 cos C1ð Þ � Y1 cos C1ð Þ þ Ltool 1:36732 � 10�5 cos C1ð Þ þ 1:10196 � 10�5 sinðBÞ sin C1ð Þ þ cosðBÞ sin C1ð Þ½ � � X1 sin C1ð Þ þ 3:30588 � 10�3 sin C1ð Þ � 1; 400 sin C1ð Þ

�840þ 1:10196 � 10�5X1 þ Z1 þ Ltool �1:10196 � 10�5 cosðBÞ þ sinðBÞ½ �

2
4

3
5

Appendix D. Transformation matrix of misalignment
between both spindles

1
4Tr desalignment ¼

1
4R

1
4d

0 1

� �

1
4R ¼

cos C2ð Þ 5:24 � 10�4 sin C1ð Þ þ cos C1ð Þ½ � � sin C2ð Þ �5:24 � 10�4 cosðC1Þ þ sinðC1Þ½ � � cosðC2Þ½�5:24 � 10�4 cosðC1Þ þ sinðC1Þ� � sinðC2Þ½cosðC1Þ þ 5:24 � 10�4 sinðC1Þ� 0
� cos C2ð Þ 5:24 � 10�4 cos C1ð Þ � sin C1ð Þ½ � þ sin C2ð Þ cos C1ð Þ þ 5:24 � 10�4 sin C1ð Þ½ � cosðC2Þ½cosðC1Þ þ 5:24 � 10�4 sinðC1Þ� þ sinðC2Þ½5:24 � 10�4 cosðC1Þ þ sinðC1Þ� 0

0 0 1

2
4

3
5

1
4d ¼

�1; 400 cos C1ð Þ þ 1; 400 cos C2ð Þ cos C1ð Þ þ 5:24 � 10�4 sin C1ð Þ½ � � 1; 400 sin C2ð Þ �5:24 � 10�4 cos C1ð Þ þ sin C1ð Þ½ �
�1; 400 cos C2ð Þ 5:24 � 10�4 cos C1ð Þ � sin C1ð Þ½ � � 1; 400 sin C1ð Þ þ 1; 400 sin C2ð Þ cos C1ð Þ þ 5:24 � 10�4 sin C1ð Þ½ �

A� 2; 280

2
4

3
5
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