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Abstract Accurate tooth surface and good surface quality
are critical to achieve the low-noise bevel gear drives. Face
milling, traditionally works as tooth roughing process, can
now possibly be used for finishing process because its high
speed can produce good tooth surface quality. But with the
previous simplified cutter geometric model in tooth model-
ing, the high accurate tooth surface cannot be obtained. In
this paper, a genuine face milling cutter geometric model
for spiral bevel and hypoid gears is proposed. This model
exactly matches with the cutter geometry in the industrial
application when not considering the fabrication tolerances
and tool wear . In the modeling, the blades of the genuine
cutter are parameterized with blade angle, rake angles, and
relief angles. The side and circular cutting edges of blades
are represented on the blade rake plane, rather than the nor-
mal plane as the simplified cutter geometry. The mathematic
model of the genuine tool profiles on the normal plane is
derived. It can be conveniently used by the existing tooth
modeling program and easily customized by specifying the
geometric parameters. In comparison with the genuine tool
profile with the simplified tool profile, the big geometric
errors of the simplified blade profile are founded, which
proves that the genuine cutter geometric model is correct
and essential.
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1 Introduction

Spiral bevel and hypoid gears are massively used in auto-
mobile industry for transmission of the rotation and torque.
The high quality bevel gears can work with smooth trans-
formation, low noise, and low transmission errors. In the
traditional spiral bevel and hypoid gears machining, the gear
teeth are face-milled roughly, and finished by grinding, thus
the finished tooth surfaces are mostly determined by the
grinder profile and the machine settings. In this scenario, the
face milling process has trivial effect on the accuracy of the
final finished tooth surface. With the high-speed technol-
ogy development in machining, the gear teeth can be ground
directly from billet or face-milled up to the finished by one
step. For high-speed face milling, the interrupted tool sur-
face revolving from blade cutting edges are very close to
the grinder continuous surface, thus the good tooth surface
quality can be obtained as grinding. But one problem may
emerge for one-step face milling. Previously, the tool sur-
face used in tooth modeling can be easily defined from the
grinder’s profile, while the interrupted face milling tool sur-
face is revolved from the cutting edges around the cutter
center axis, and the cutting edges in the air may produce
a more complicated tool surface, which makes its profile
different with the previous tool profile definition.

Due to the specific and patented machine tool, the liter-
ature related to spiral bevel and hypoid gear manufacturing
is sparse and intensively contributed by few researchers.
There are two main ways to machine these complex bevel
gears: face milling and face hobbing. Machining the bevel
gears on general CNC machine tool is possible and cheaper
for without investment on specific machine, but it is for
small productivity with low efficiency and not popular as
face milling and hobbing. For face milling on the bevel gear
machining, Litvin and his research group [1–9] contribute
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the theoretical foundation work for the modern computer-
ized bevel gear design and manufacturing. In their work,
first, the tool profile of member-gear cutter is defined, from
which member-gear teeth are modeled; Second, from the
curvatures at the mean point on member-gear tooth surface,
the curvatures at the mean point of pinion are derived using
the local synthesis; Finally, the tool profile of the pinion
cutter is derived from the pinion curvatures at mean point.
From this process, we can conclude that the tooth surface
is mainly determined by the tool geometry and the machine
settings. In their work, the cutter is defined as tool profile
on the normal plane, which is correct for grinder, but may
not be accurate for face milling cutter; the detail will be
given in the beginning of Section 2. Simon [10, 11] mod-
eled the cutter with an bicircular profile and an optimized
diameter to obtain improved load distribution, but the pro-
file is also defined on the cutter normal plane. Face hobbing
is a continuous gear tooth generating process, unlike single
indexing of the face milling process. For hobbing process,
besides tool geometry and the machine settings, the tooth
curvatures are also determined by the face hobbing index
motion. Face milling process has higher productivity, but
the grinding process cannot be applied to the tooth finish-
ing. Previously, the hobbing cutter has been modeled with
side rake angle and hook angle [12, 13], but it can be just
for hobbing process.

In this work, a genuine face milling cutter geometric
model for the spiral bevel and hypoid gears is proposed. The
model is build up with blade geometric parameters: blade
angle, rake angles, and relief angles. With this model, the
cutter used in industry can be accurately represented, and
also it can be easily customized. Finally, several applications
are rendered to demonstrate the modeling of the genuine
cutter, and compare to the previous cutter geometric model.

2 Cutter geometric model

A face milling cutter for spiral bevel and hypoid gears is
composed of a group of blades, which are mounted on the
cutter plates. When the blades rotate around the cutter cen-
ter axis, the cutting edges of blades will generate a revolving
surface, called tool surface. In the previous research, the
cross section of the tool surface on normal plane is called
tool profile. The normal plane could be any plane pass-
ing through the cutter center axis. For tooth grinding, the
tool profile is the same as the grinder profile. The previ-
ous tool profile is modeled as two straight lines, and later,
it is improved by considering the blade corners, which are
modeled as two arcs (see Fig. 1). The two straight lines cor-
responds to the side cutting edges (SCE), which generate
the gear flank; even now, the SCE is optimized as parabolic
to achieve better tooth contact. The arcs corresponds to the

Fig. 1 Simplified blade geometric models

circular cutting edges (CCE), which generate the gear root.
At the tip of the blade, the top cutting edges (TCE) generate
gear tooth bottom. The gear tooth bottom is not within tooth
contacting zone, thus TCE is not important as SCE and CCE
in terms of geometry, although TCE is important during the
material removing process. In this paper, we named the pre-
vious tool profile as simplified tool profile. The tool profile
is the same as the cutting edge for simplified cutter geo-
metric model, since both of them are defined on the normal
plane.

In the industrial application, the cutting edges of the face
milling blade are actually located on the blade rake face
(see Fig. 2). Different companies have their own blade prod-
uct. Gleason company provides several types of face milling
blades, such as RIDG-AC, WEDGE-AC, HELIXFORM,
RSR, SOLID, and HARDAC. These blades have their own
features suiting for different cutting scenarios. In this paper,
the parametric models of the blades were built up to repre-
sent the real cutting edges through analyzing the geometry
of these blades (see Fig. 3). This parametric model is called
as genuine blade model to differentiate from the simplified
tool geometry. It includes inner blade and outer blade, which
are used to generate the convex and concave gear tooth sur-
faces, respectively. The geometric parameters of the blades
include blade angle (φi

c,φo
c ), back rake angle (αi

o, αo
o), side

rake angle (αi
f , αo

f ), end relief angle (γ i
o , γ o

o ), and side

relief angle (γ i
f , γ o

f ). The superscripts i and o represent the
parameters of inner and outer blade, respectively. Since the
geometries and modeling processes of inner blade and outer
blade are similar to each other, the inner blade will be used
to illustrate the modeling process in the following section.

Fig. 2 Face milling blade in industrial application
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Fig. 3 Blade parametric models

2.1 Modeling the inner blade in blade coordinate system

The blade coordinate system Si
b is set up to define the inner

blade. The axis zi
b is perpendicular to the blade installation

plane, and the axis yi
b is parallel and opposite to the cutting

velocity. The axis xi
b is the cross product of yi

b and zi
b by

the right-hand rule (see Fig. 3). The normal plane, on which
the simplified tool profiles are defined, is the same as xi

bz
i
b

plane in Si
b. For the genuine blades, their cutting edges are

defined on the rake plane �2, which are determined by the
vectors A and D. The vector A is located on yi

bz
i
b plane,

and forms back rake angle αi
o with −zi

b. The vector B is on

the plane xi
bz

i
b and forms the blade angle φi

c with −zi
b. The

vector C is on the plane xi
bz

i
b and perpendicular to B. The

plane �1 is perpendicular to vector B and passes through
the origin Oi

b. The vector D is on the plane �1 and forms
the side rake angle αi

f with C. So far, A and D are deter-
mined, and both of them on the rake plane �2 do cross
product on vectors A and D. The normal vector E of �2 can
be derived as

E =
⎡
⎢⎣

cos αi
o sin αi

f − sin αi
o cos αi

f sin φi
c

− cos αi
o cos αi

f cos φi
c

− sin αi
o cos αi

f cos φi
c

⎤
⎥⎦ (1)

The next step is to define the cutting edges on �2. The vector
F is on the plane yi

bz
i
b and forms the end relief angle γ i

o with
yi
b. The vector G is also on yi

bz
i
b and perpendicular to F. The

vectors G and E determine the plane �3. The TCE is normal
to �3 and pass through Oi

b. The vector along the TCE can
be derived as

Ci
t =

⎡
⎢⎢⎢⎣

cos αi
f cos φi

c(cos αi
o cos γ i

o − sin αi
o sin γ i

o)

cos γ i
o(cos αi

o sin αi
f − sin αi

o cos αi
f sin φi

c)

sin γ i
o(sin αi

o cos αi
f sin φi

c − cos αi
o sin αi

f )

.

⎤
⎥⎥⎥⎦ (2)

The TCE is derived because it is used in the following
derivative. The unit vector along TCE can be represented as
Ui

ct . The vector H is on �1 and forms side relief angle γ i
f

with yi
b. The vector I is on �1 and perpendicular to H. The

plane �4 is determined by the vectors I and E. The SCE
is normal to �4 and pass through Oi

b. The vector along the
TCE can be derived as

Ci
s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos αi
f cos φi

c(sin αi
o sin γ i

f − cos αi
o sin φi

c cos γ i
f )

cos γ i
f (cos αi

f sin αi
o− cos αi

o sin αi
f sin φi

c)

cos αi
o sin αi

f sin γ i
f − sin αi

o cos αi
f sin φi

c sin γ i
f

− cos αi
o cos αi

f

(
cos φi

c

)2
cos γ i

f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

and its unit vector can be represented as Ui
cs . The point

width pw describes the width of the blade tip along xi
b, and

the depth of blade db represents the length of the side cutting
edge along zi

b (see Fig. 4). From Ui
ct and Ui

cs , the angle φi
a

between them can be calculated as φi
a = arccos(Ui

ct · Ui
cs).
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Fig. 4 Circular cutting edge of the inner blade

The TCE is the line with two ends Ji and Ki , which can be
represented in Si

b as

TCEi
b(u1) = (1 − u1)J

i
b + u1K

i
b where 0 ≤ u1 ≤ 1 (4)

and J i
b = r cot φi

a

2 Ui
ct , K

i
b = pw

2 Ui
ct . The SCE is in line with

two ends Li and Mi , which can be represented in Si
b as

SCEi
b(u2) = (1 − u2)L

i
b + u2M

i
b where 0 ≤ u2 ≤ 1 (5)

and Li
b = r cot φi

a

2 Ui
cs , Mi

b = db

Z
Ui

ct

Ui
cs .

So far, the TCE and SCE are determined; the next step
is to define the CCE (see Fig. 4). The CCE is an arc on the
rake plane �2. It is tangent to TCE and SCE with radius r ,
and can be obtained by transforming an arc with radius r

from xi
bz

i
b plane to �2 plane. Finally, it can be represented

in Si
b as

CCEi
b(φ

i)=

⎡
⎢⎢⎢⎣

r cos φi
b cos φi + XOi

br

r cos αi
o sin φi

b cos φi−r sin αi
o sin φi+YOi

br

r sin αi
o sin φi

b cos φi+r cos αi
o sin φi+ZOi

br

,

⎤
⎥⎥⎥⎦

(6)

where 0 ≤ φi ≤ π
2 − φi

a , and here [XOi
br

YOi
br

ZOi
br

]T
are the coordinates of the point Oi

r in Si
b. It can be calculated

from the equation

Oi
br = r cot

φi
a

2
Ui

ct + r(Ui
ct × UE), (7)

and φi
b = arcsin( XE√

(XE)2+(YE)2+(ZE)2
). Using the similar

procedure, the cutting edges of outer blade SCEo
b, CCEo

b,
and TCEo

b can also be derived.

Fig. 5 Blades in cutter coordinate system

2.2 Blades in the cutter coordinate system

The inner and outer blades are mounted on the cutter plates
alternating. Figure 5 shows their position in the cutter coor-
dinate system Sc. The average radius rc represents the
distance of the blades to the cutter center axis, and the pitch
angle φp describes the angle between two adjacent blades.
SCEi

c and SCEo
c are the side cutting edges of genuine inner

and outer blades. CCEi
c and CCEo

c are the circular cut-
ting edges of genuine inner and outer blades. SCEi

s , SCEo
s ,

CCEi
s , and CCEo

s are the side and circular cutting edges of
the simplified inner and outer blades.

The cutting edges of inner blade can be transformed from
Si

b to Sc by the equations [SCEi
c 1]T = Mi

cb · [SCEi
b 1]T

and [CCEi
c 1]T = Mi

cb · [CCEi
b 1]T , with the matrix

Mi
cb =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
√

(rc)2 − (YKi
b
)2 − XKi

b

0 1 0 0
0 0 1 0
0 0 0 1
.

⎤
⎥⎥⎥⎥⎥⎦

The coordinates of point Ki has been derived in the previous
section. With the similar process, the cutting edges of outer
blade can be transformed from outer blade coordinate sys-
tem to Sc by the equations [SCEo

c 1]T = Mo
cb · [SCEo

b 1]T
and [CCEo

c 1]T = Mo
cb · [CCEo

b 1]T , with the matrix

Mo
cb =

⎡
⎢⎢⎢⎣

cos φp − sin φp 0
√

(rc)2 − (YKo
b
)2 − XKo

b

sin φp cos φp 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ .

3 Genuine tool profile on normal plane

The equations of genuine cutting edge in Sc are derived
above. The tool surfaces can be obtained by rotating them
around the cutter center axis zc. After the cross section of
tool surfaces on normal plane is taken, the genuine tool pro-
file is acquired. Due to the similar derivative processes of
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inner and outer blades, here, the tool profile of inner blade
is derived as demonstrated.

3.1 Genuine tool profile corresponding to inner blade SCE

Figure 6 shows the SCE of genuine inner blade with two
ends Li and Mi on the rake plane. Their coordinates in
Sc can be calculated from equations [Li

c 1]T = Mi
cb ·

[Li
b 1]T and [Mi

c 1]T = Mi
cb · [Mi

b 1]T . When it
rotates around the axis zc , the generated tool surface can be
represented as

Ti
SCE(u2, θ

i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos θi[XLi
c
+ u2(XMi

c
− XLi

c
)]

− sin θi[YLi
c
+ u2(YMi

c
− YLi

c
)]

sin θi[XLi
c
+ u2(XMi

c
− XLi

c
)]

+ cos θi[YLi
c
+ u2(YMi

c
− YLi

c
)]

ZLi
c
+ u2(ZMi

c
− ZLi

c
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(8)

where 0 ≤ u1 ≤ 1, 0 ≤ θi ≤ 2π . The tool profile on
normal plane should satisfy the equation YT i

SCE
= 0. With

this equation, the tool profile ̂Li
pMi

p corresponding to SCE
of inner blade can be derived explicitly as

x2

a2
− (z − c)2

b2
= 1 (9)

with the parameters

a=
√√√√(XLi

c
)2+(YLi

c
)2−[XLi

c
(XMi

c
−XLi

c
)+YLi

c
(YMi

c
−YLi

c
)]2

(XMi
c
−XLi

c
)2+(YMi

c
−YLi

c
)2

b = (ZMi
c
− ZLi

c
)

√
(XLi

c
)2 + (YLi

c
)2

·
√

(XMi
c
−XLi

c
)(XMi

c
−2XLi

c
)+(YMi

c
−YLi

c
)(YMi

c
−2YLi

c
)

(XMi
c
− XLi

c
)2 + (YMi

c
− YLi

c
)2

c = ZLi
c
− (ZMi

c
−ZLi

c
)[XLi

c
(XMi

c
−XLi

c
)+YLi

c
(YMi

c
−YLi

c
)]

(XMi
c
− XLi

c
)2 + (YMi

c
− YLi

c
)2

.

Fig. 6 Genuine inner tool profile

This is a hyperbola curve. It is different with the simplified
profile corresponding to SCE, which is a straight line on the
normal plane.

3.2 Genuine tool profile corresponding to inner
blade CCE

Figure 6 shows the CCE of inner blade with two ends Li

and J i . When it rotates around the axis zc, the generated
tool surface can be represented as

Ti
CCE(φi, θ i) =

⎡
⎢⎢⎣

cos θiXCCEi
c
(φi) − sin θiYCCEi

c
(φi)

sin θiXCCEi
c
(φi) + cos θiYCCEi

c
(φi)

ZCCEi
c

,

⎤
⎥⎥⎦

(10)

where 0 ≤ φi ≤ π
2 − φi

a, 0 ≤ θi ≤ 2π . The tool profile on
normal plane should satisfy the equation YT i

CCE
= 0. With

this equation, the tool profile of CCE on the normal plane
can be found, which can be represented as

̂Li
pMi

p(φi)

=
⎡
⎢⎣

a2(r cos φb cos φi + XOi
cr
)

−a1(r cos αi
o sin φb cos φi −r sin αi

o sin φi + YOi
cr
)

r sin αi
o sin φb cos φi + r cos αi

o sin φi + ZOi
cr

⎤
⎥⎦ ,

(11)

where 0 ≤ φi ≤ π
2 − φi

a and [XOi
cr

YOi
cr

ZOi
cr
]T are the

coordinates of origin Oi
r in Sc, which can be calculated from

equations [Oi
cr 1]T = Mi

cb · [Oi
br 1]T . The parameters a1

and a2 are

a1 = −YCCEi
c√

(XCCEi
c
)2 + (YCCEi

c
)2

and

a2 = XCCEi
c√

(XCCEi
c
)2 + (YCCEi

c
)2

.

Fig. 7 Geometric errors of the simplified cutter
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Table 1 Geometric parameters of the cutter

Geometric parameters Inner blade Outer blade

Bake rake angle (deg) 20 20

End relief angle (deg) 12 12

Side rake angle (deg) 10 10

Side relief angle (deg) 4 4

Inner blade angle (deg) 20.5 20.5

Outer blade angle(deg) 22.5 22.5

Depth of blade (mm) 17.8 17.8

Corner radius (mm) 1 1

Point width (mm) 2.54 2.54

This results show the tool profile corresponding to CCE
is a complicated curve. It is different with the simplified
profile corresponding to CCE, which is an arc on normal
plane.

4 Geometric error of simplified cutter model

Since the genuine and simplified tool surfaces are both
revolving surfaces around the cutter center axis, the
geometric error of the tool surfaces of the simplified blade
can be evaluated by comparing its tool profile with the gen-

uine tool profile. In Fig. 7, the curves Li
sM

i
s , Lo

sM
o
s , ̂Li

sJ
i
s ,

and ̂Lo
s J

o
s are the inner and outer SCE, and inner and outer

CCE of simplified cutter, respectively. ̂Li
pMi

p and ̂Li
pJ i

p are
the genuine profiles corresponding to the SCE and CCE of
inner blade. ̂Lo

pMo
p and ̂Lo

pJ o
p are the genuine profiles cor-

responding to the SCE and CCE of outer blade. Assume one
point P1 is on the simplified profile, one nearest point P2 on
the genuine tool profile can be found. The geometric error
at point P1 can be represented as

error = |P2 − P1| (12)

5 Applications

To verify the models proposed above, several experiments
are conducted. First experiment is to test how big are
the geometric errors for one pair of blades. The geomet-
ric parameters of the blades used in test are presented in
Table 1. The average cutter radius is 152.8 mm. To show the
effect of the distance to cutter center of blades on the geo-
metric error, the same parameter values are used for inner
and outer blade. In this example, first, the cutting edges of
the inner and outer blade are modeled with parameters from
Table 1. Then the tool surfaces are determined by revolving
the cutting edges, and the genuine tool profiles are obtained
by taking the cross section on normal plane of the tool sur-
faces (see Fig. 8). To evaluate the geometric error of the
simplified cutter, the simplified tool profiles are also build
up without considering the rake and relief angles. Figure 8
shows that there are obvious distances between the profile
of simplified and genuine profile from both inner and outer
sides. The geometric errors of simplified inner blade and
outer blade along profile are calculated (see Fig. 9). Since
the surface generated by TCE will not affect the mating of
pair of gears, only the errors of the SCE and CCE are ana-
lyzed. From Fig. 9 it can be observed that the geometric
errors from blade tip to bottom are gradually increasing. At
the same height in zc direction the geometric errors of inner
blade are larger than the errors of outer blade because the
distance of outer blade to the cutter center is larger than
the distance of inner blade to the cutter center. At the depth
of blade given in the table, the maximum geometric error
of the simplified inner profile is about 0.53 mm, and the
maximum geometric error of the simplified outer profile is
about 0.32 mm. Since not all the cutting edge segments in
the machining process participate in the material removal,
we care more about the geometric error at the mean point.
The geometric error at the mean point of the inner simpli-
fied profile is about 0.21 mm, and the geometric error at the
mean point of the outer simplified profile is about 0.17 mm.

Fig. 8 Profiles of the blades:
a inner blade, b outer blade
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Fig. 9 Geometric errors of the simplified profiles: a inner blade, b outer blade

The second experiment is to test the different effects of
the geometric parameters on the errors (see Fig. 10). In the
following tests, all the geometric errors are calculated at the
mean point. In test (a) the same geometric parameters as
those in the first experiment are used except the back rake
angles varies from 0◦ to 20◦. Figure 10 shows that with the
back rake angle increasing, the geometric errors decrease at
the beginning and then gradually increase. The minimum

errors of inner and outer blade are both about 0.007 mm. The
maximum error for inner blade is about 0.21 mm, and for
out blade, it is about 0.17 mm. In test (b) the side rake angles
vary from 0◦ to 10◦. The result shows that with the side rake
angle changing, the geometric errors almost keep constant.
In test (c), the end relief angles vary from 0◦ to 10◦. The
result shows with the end relief angle increasing, the geo-
metric errors of inner blade keep on increasing from 0.02

Fig. 10 Geometric errors with
parameter varying: a back rake
angle, b side rake angle, c end
relief angle, and d side relief
angle
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to 0.50 mm, and the errors of outer blade increases from
0.01 to 0.45 mm. In test (d), the side relief angles vary from
0◦ to 15◦. It shows that with the side relief angle increas-
ing, the geometric errors of inner blade gradually decrease
from 0.28 to 0.20 mm, and the errors of outer blade decrease
from 0.21 to 0.16 mm. The tests shows that the geometric
errors of the simplified cutter is too big referred to the accu-
racy requirement, thus they cannot be neglected during the
tooth modeling. The tests also shows the different geometric
parameters have different effect on the accuracy of tool pro-
file, big geometric error will produce if the back rake angle
and end relief angle are omitted in the cutter modeling. The
genuine cutter geometric model can provide the exact same
cutting edges as cutter in industrial application; with this
model, it becomes possible for the following accurate gear
tooth modeling.

6 Conclusion

In this paper, a genuine cutter geometric model of face-
milled spiral bevel and hypoid gears is proposed. This
geometric model is build up as following the real cutter
geometry in industrial applications. During the modeling,
the geometric parameters including rake angles and relief
angles are taken into consideration. The cutting edges are
accurately represented on the rake plane, and the tool pro-
files on normal plane are mathematically derived. The cutter
can be easily customized by modifying the blade geomet-
ric parameters, and easily used for the following gear tooth
modeling. In the final applications, the results show that
the geometric errors of the simplified cutter are too big
referring to the accuracy requirement, thus it cannot be
neglected. The genuine cutter geometric model lays down a
ground for the high speed face milling used for gear tooth
finishing, which asks for high accuracy and good surface
quality.
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