
ORIGINAL ARTICLE

A protocol for processing interfered data in facility sensor
networks

Wootae Jeong & Hoo Sang Ko & Heejong Lim &

Shimon Y. Nof

Received: 11 May 2012 /Accepted: 21 November 2012 /Published online: 7 December 2012
# Springer-Verlag London 2012

Abstract Wireless sensor networks (WSNs) have recently
extended application areas to numerous sectors such as
industrial automation, military applications, transportation
systems, building management, and environment surveil-
lance. In particular, WSNs provide flexible, reliable, cost-
effective solutions to monitor the real-time status of auto-
mated manufacturing facilities. A facility-specific WSN for
reliable monitoring and efficient management of industrial
facilities is called the facility sensor network (FSN). In
general, industrial facilities run various electromagnetic
devices causing electromagnetic interference (EMI), which
disturbs wireless data communication. To obtain accurate
and reliable data in such environments, the FSN needs to
deal with the EMI by proper deployment of sensor nodes
and their validation and fusion. This paper proposes a data
processing protocol, called Interfered Sensor Data Process-
ing Protocol (ISDPP) to handle the EMI affecting wireless
communication. ISDPP is developed with a data fusion
algorithm and an exponentially weighted moving average/
fuzzy logic-based error detection method to obtain reliable
information from the FSN. To evaluate the performance,
experiments in various settings are performed in a test-bed

manufacturing facility. The experimental results indicate the
interfered data, and outliers can be filtered out even if
unexpected interferences occur in the facility. The FSN with
the ISDPP can provide efficient real-time monitoring solu-
tions for various industrial applications.
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1 Introduction

The facility sensor network (FSN) is an automation facility-
specific wireless sensor network (WSN) developed as a reliable
WSN solution for monitoring industrial facilities [1]. This
emerging application of distributed WSN has been developed
to enable reliable monitoring and efficient management in
various automation applications. Manufacturing facility man-
agement, inventory management, and process control are just a
few examples of FSN applications [2]. As it has been recog-
nized inmany research studies,WSNs using distributed sensors
and actuators help reduce maintenance cost, increase the reli-
ability, and provide flexibility and reconfigurability in manu-
facturing systems [3, 4]. Even though WSN applications are
diverse and the characteristics of WSNs are application-
specific, previous studies on WSNs have been primarily
concerned with such issues as maximizing the lifetime of the
network by minimizing energy consumption [5–7] and deploy-
ing sensor nodes so as to optimize network cost and quality of
service [8–11]. The FSN research, however, primarily focuses
on reliable monitoring functionality specifically to be useful for
industrial facilities such as manufacturing systems, power
plants, and hospitals. In these FSN applications, there exist
site-specific interferences which disturb wireless data transmis-
sion. In real automation facility settings, there are many elec-
trical and electromagnetic devices in use, which become
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electromagnetic emission sources and cause electromagnetic
interference (EMI). For example, electrostatic discharge
(ESD) events, parasitic emission from manufacturing equip-
ment, and intentional emission from equipment using electro-
magnetic fields as a part of the process in manufacturing
facilities can cause EMI which leads to sensor misreading
[12]. This EMI interferes with the wireless communication
among sensor nodes and the base station that collects the signal
from the sensor nodes. As noticed in [1], the EMI from external
emission sources existing inmanufacturing facilities is themain
cause of data distortion and performance degradation in wire-
less communications. In addition to EMI, the data transmission
problem can be due to other reasons, e.g., signal attenuation,
being out of the line of sight of visual sensors, and sensors
being too proximate to one another. Even though this problem
is supposed to be handled by the software and protocols pro-
vided by WSN manufacturers, it has been observed that incor-
rect readings still occur in the FSN due to the EMI [1].
Therefore, this article tackles the following research problem:

& In automation facilities, wireless data transmission is
severely interfered with by electromagnetic emission
sources or other types of disturbances that lead to incor-
rect data readings. How can the FSN provide reliable
data for monitoring activities in such facilities?

To construct an effective facility monitoring system that
is robust to EMI or other types of disturbances, this article
presents a new data processing protocol. The protocol uti-
lizes readings from redundant wireless sensor nodes
deployed in a facility and functions at a higher layer than
the routing protocols so as to concentrate on providing
reliable data readings. This paper is organized as follows.
Section 2 introduces the FSN research briefly and related
research on interference in WSNs. The new data processing
protocol, called Interfered Sensor Data Processing Protocol

(ISDPP), is presented in Section 3. Section 4 describes the
evaluation of the ISDPP in an FSN test-bed facility. Finally,
Section 5 concludes this paper.

2 Facility sensor network

2.1 Facility sensor network description

The main goal of the FSN research is to effectively and
efficiently deploy wireless sensor nodes for monitoring auto-
mation facilities with many electromagnetic emission sources,
as illustrated in Fig. 1. Two specific objectives have been
considered: (a) overcoming the effect of interference, which
is the focus of this article, and (b) improving the efficiency of
power consumption among distributed wireless sensor nodes
[13]. The FSN has been developed and tested in the Manu-
facturing Center Model Factory, an automated manufacturing
facility at Purdue University. The model factory is an integrat-
ed system of automated machine tools, robots, process control
systems, and related equipment. There are six drop lines that
can operate independently, or as a part of a larger integrated
work cell, as depicted in Fig. 2. More detailed descriptions on
the FSN test-bed facility can be found in [1].

Many studies on WSNs have shown wireless sensor
nodes to function as intended for ideal or simulated environ-
ments. However, deploying wireless sensor nodes in real
facilities raises various issues, including EMI, which result
in reduced accuracy and reliability, and performance deteri-
oration for the networked system. Applicability to such field
environments must be studied before wireless sensor nodes
are deployed at the targeted facilities.

There are a variety of potential FSN applications such as
hazardous facilities monitoring, electricity or water infrastruc-
tural management systems, and remote manufacturing

Fig. 1 FSN for monitoring
automation systems
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equipment certification. These applications require collecting
and analyzing spatially and temporally dense data withminimal
human intervention and thus real-time network processing
capabilities. Besides, they also require network robustness,
network reliability, and network configuration flexibility.
Among these challenges, this study particularly focuses on
obtaining accurate and reliable data from wireless sensor nodes
deployed in the FSNs, which are affected by EMI in the noisy
environments. This research tackles the EMI problem in the
FSNs by means of an appropriate data processing protocol.

2.2 Backgrounds

The key issue in FSNs is to minimize the influence of EMI
that distorts wireless communication. In general, it is as-
sumed that the data at the transmitter are not exactly the
same as those at the receiver due to EMI, which makes the
received data inappropriate for monitoring purposes, i.e.,

Doriginal 6¼ Dreceived ð1Þ
where D is a set of data. Consequently, it is required to devise
approaches to reducing the negative effect of interference.

The interference produced by electronic devices has long
been studied. The impetus for the present research was the
recognition of interference among wireless communication
nodes. The basic principles of electrical noise and interfer-
ence are well studied by [14]. Magnetic devices and local
power transformers are the most complex and common
source of interference. Materials connecting a site to the

utility power supply can produce various interferences. For
instance, the primary leads can act like transmission lines for
high-frequency energy. Pulse-type noise can get in from
ESD from various sources such as lightning or atmospherics,
power-factor correction capacitors, or load switching. These
pulses can get into the circuit over any conductor entering or
leaving the circuit. In addition, radiated energy from radio
frequency (RF) transmitters, television broadcasts, and radar
sets can cause interference. Those signals may be detected or
rectified during in-band communication [14]. Automation
facilities consist of various machines and devices that radiate
undesirable electromagnetic fields or conducted voltages and
currents. In particular, there exist incidental radio frequency
emitters with broadband interference in the automation facil-
ity. These include electric power transmission lines, electric
motors, thermostats, bug zappers, etc. The effect and obser-
vation of noise and RF interference in manufacturing facilities
are well addressed in detail by [15].

In an unreliable environment with many sources of EMI,
use of redundant sensors can be a tentative solution to
minimize uncertainties from biased data. The deployment
of redundant sensors can bolster the fault tolerance of a
system to sensor failure. Moreover, the system can deliver
more accurate information to the user or to other systems by
integrating multiple sensor readings. Current research on the
signal-to-noise ratio and the signal-to-noise-plus-interfer-
ence ratio has approached the issue of securing a clear signal
under the environment where significant interferences are
mixed. There are, however, some approaches that apply a
combination of redundant sensors and data fusion schemes
to process the multiple sensor readings. Data fusion techni-
ques involve signal processing, statistics, numerical meth-
ods, pattern recognition, artificial intelligence, information
theory, fuzzy logic, and neural networking [16].

The sensor validation and fusion approach applied in this
research has been used in various fields. Sensor validation
has been applied to guide automated vehicles in tracking
and avoiding objects [17]. In order to preserve safety and
reliability, a comprehensive methodology using AI and sta-
tistics has been developed. The method is effective for
validating sensor readings, estimating the actual values de-
spite faulty measurements, and detecting incipient sensor fail-
ures. It includes four logistic steps: redundancy creation, state
prediction, sensor measurement validation and fusion, and
fault detection through residue change detection. The advan-
tage of this methodology is detecting multiple sensor failures,
both abrupt and incipient. It can also detect subtle sensor
failures like drifts in calibration and degradation of sensors.

A sophisticated theory and a model for information and
sensor validation have also been developed by [18]. The
model represents relationships among variables using
Bayesian networks and makes use of probabilistic propaga-
tion to estimate the expected value of variables. Approaches

Fig. 2 An FSN test-bed facility

Int J Adv Manuf Technol (2013) 67:2377–2385 2379



for the detection of incorrect sensor representations were
categorized as follows:

1. Hardware redundancy and majority voting: hardware is
duplicated and votes to exclude outliers.

2. Analytical redundancy: mathematical and analytical
models are required.

3. Temporal redundancy: statistical interpretation through
repeated measurements.

Due to the natural imprecision of information decision
making, fuzzy logic is used to integrate human expertise to
estimate the confidence in sensor readings by using a mem-
bership function and fuzzy inference. Sensor value validation
based on sensor redundancy has been developed for systems
based on fault diagnosis knowledge by [19]. Systematic ex-
ploration of sensor redundancies has been proposed and used
for quick validation for sensor values. This technique is based
on causal relations and their interrelations within sensor re-
dundancy graphs (SRGs). Any sensors in an SRG can poten-
tially take advantage of any other sensors involved in the same
SRG for validation. A validity level is defined and used to
indicate the validation level of sensor values. The validation
results provide information on system faults to the system’s
fault diagnosis knowledge-based system. A data fusion algo-
rithm has been developed to provide a mechanism that
extracts information frommassively sensed data and identifies
incipient sensor failures for a monitoring application [20].

In order to develop the methodology of sensor validation
and fusion algorithms for the automation facility, this research
has applied fuzzy logic-based approaches, called mote-fuzzy
validation and fusion [20] and fuzzy sensor validation and
fusion (FUSVAF) [21]. These approaches can determine the
correlation among sensor data, assign a confidence value to
each of them, and generate a fused weighted value. As a result,
the ISDPP has been proposed in this paper.

3 ISDPP

For monitoring the automation facility where various inter-
fering signals from electric and electromagnetic fields exist,
a redundant sensor deployment strategy for the FSN has been
proposed in our previous study [1]. Even with redundant
sensors, however, radiated and conducted interferences can
affect quality of data collected in the FSN. Therefore, it is
essential to deal with the interference to assure accurate sensor

data by a designated data processing protocol. The ISDPP
proposed in this paper includes sensor data validation and
fusion procedure to improve the reliability of signal data
collected from multiple redundant sensors. The proposed
ISDPP is also based on fuzzy logic to determine interference
level or detecting errors in data sets. The novelty of this
research is that it encompasses from sensor deployment, val-
idation and fusion to error or interference detection to deal
with the EMI caused by external sources in the FSN applica-
tions bymeans of the proposed ISDPP. The sequential steps of
ISDPP are presented in Fig. 3. First, multiple sensors are
redundantly deployed in the environment based on the strat-
egy as explained in Section 3.1. Through ISDPP, the data from
redundant sensors are collected at the base station, and the
confidence level for each sensor reading is evaluated. Then,
data fusion is applied to obtain representative values based on
the confidence level of each sensor. Finally, the value at the
next time step is predicted and compared to the actual value
for error or interference detection. Each step is described in
more detail in the subsequent sections.

3.1 Redundancy creation

First, the area of interest is divided into a number of square
grid segments, in each of which sensor nodes are redundant-
ly deployed. The number of sensors in each segment is
determined by following the optimal deployment strategy
to provide a higher level of redundancy to those areas highly
affected by interference [1]:

min
PK

k¼1

PI
i¼1

PJ
j¼1 a

nij nij
xi�xkð Þ2þ yi�ykð Þ2

s:t:
PI

i¼1

PJ
j¼1 nij � n

nij � 2

ð2Þ

where (i, j) is the grid index on the 2-D space (i01, 2,…,
I; j01, 2,…, J), k is the index of noise source (k01, 2,…, K),
α is the noise reduction parameter (0<α<1), nij is the
number of sensor nodes in segment (i, j), n is the total
number of nodes, (xi, yi) is the center of segment (i, j), and
(xk, yk) is the location of noise source k.

Even though the locations of sensor nodes are determined
to reduce the influence of interference, data transmission is
still disturbed by interference. This problem can be relieved
by collecting data from redundant nodes. Fusing and vali-
dating data from redundant nodes reduce the possibility of
faulty and biased readings [22]. To conduct experiments
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Fig. 3 Steps in the ISDPP
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with multiple sensor readings, three wireless sensor nodes
with identical thermal sensors have been redundantly
deployed at the same location. Each sensor measures tem-
perature of the same target device simultaneously. Redun-
dantly measured values are reported to the base station for
validation and fusion.

3.2 Sensor validation

Assuming that each sensor delivers an independent sensor
reading, the sensor validation procedure evaluates the con-
fidence level of measured values. The ISDPP estimates the
correlation among various sensor readings. The correlation
among incoming readings is used to generate a Gaussian
curve for sensor validation. The correlation value denoted
by ex can be specified by using a median value approach that
reveals a reasonable estimation of the majority of sensor
readings. Once the correlation among sensor readings is
calculated, the confidence value for each sensor reading is
determined by a dynamic validation curve, which is based
on the Gaussian curve generated from the specific sensor
characteristics, the predicted value, and the correlation
among incoming readings [20]. The confidence value from
a particular sensor reading is defined as follows:

σðzÞ ¼

0 z < vlef t

e
� ~x�z

alef tð Þ2�e
�

~x�vlef t
alef t

� �2
1�e

�
~x�vlef t
alef t

� �2 vlef t � z < ~x

e
� ~x�z

aright

� �2

�e
�

~x�vright
aright

� �2

1�e
�

~x�vright
aright

� �2
~x � z � vright

0 vright < z

8>>>>>>>>>><>>>>>>>>>>:
ð3Þ

where σ(z) is the confidence value corresponding to a partic-
ular sensor reading z; ~x is correlation among sensor readings;
vleft and vright are the left and right validation gate borders,
respectively; and aleft and aright are the tuning parameters for
the left and right validation curves, which have been set to the
same value as vleft and vright, respectively, in the experiments.

If a sensor reading changes beyond the validation gate,
the readings from the sensor are considered as outlier data
affected by EMI or by sensor faults. In this research, vleft and
vright are determined statistically by a six-sigma approach.
Mean and standard deviation are calculated from each sen-
sor reading. Based on the evaluated values, six-sigma inter-
vals, which cover 99.99966 % for each sensor, are
constructed. Since all sensors have their own measurement
deviation, each output interval cannot cover 99.99966 % of
other sensor intervals. That is, an interval of the first sensor
cannot be guaranteed to cover the same range of the sensor
reading of the second sensor. Therefore, each sensor con-
structs its own output interval.

In the ISDPP, vright is chosen as a maximum value among
the upper limits of three intervals, and vleft is chosen as a
minimum value among the lower limits. Assuming the
effect of noise interference follows a normal distribution,
the upper and lower limits for each sensor are determined by
the six-sigma interval as follows:

Li ¼ μi � 3σi

Ui ¼ μi þ 3σi
ð4Þ

where i is the index of each sensor; Li and Ui are the lower
and the upper limit of the ith sensor’s data, respectively; and
μi and σi are the mean and the standard deviation of the ith
sensor’s data, respectively. Since these intervals cover most
of the sensor data, the generated intervals can be used to
determine the validation gate as follows:

vleft ¼ min Li
vright ¼ maxUi

ð5Þ

By using the estimates, the coverage rate of the sensor
readings from multiple sensors can be calculated as follows:

Yn
i¼1

P
vlef t � μi

σi
ffiffiffiffi
ni

p� < Zi <
vright � μi

σi
ffiffiffiffi
ni

p� !
ð6Þ

where n is the number of sensors, ni is the number of the ith
sensor’s data, and Zi represents the normalized ith sensor’s
data. Equation (6) assures the meaningful number of sensor
readings included in the limit of Eq. (5). The data out of the
range are considered as faulty data.

3.3 Sensor fusion and prediction

After the confidence value is calculated with the vali-
dation gate borders, the fused value can be obtained

Fig. 4 Three thermal sensors (top) and the base station (bottom)
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based on the FUSVAF algorithm [21]. The fused value is
given by

bxf ¼ Pn
i¼1 ziσ zið ÞPn
i¼1 σ zið Þ ð7Þ

where bxf is the fused value, zi is a measurement from the ith
sensor, and σ(zi) is the confidence value of zi.

Based on the fused valuebxf , a value for the next time step
can be predicted. An exponentially weighted moving aver-
age (EWMA) predictor is used to construct an adaptive time
series data set. The EWMA assumes that the “good” histor-
ical data are representative of the in-control process. Since
the ISDPP uses past data as a basis to decide how severely
the current data have been interfered with, the ISDPP can
satisfy the assumption of the EWMA. The EWMA also
offers the best trade-off between responsiveness, smooth-
ness, and stability. In the ISDPP, the EWMA is applied as
follows:

bx k þ 1ð Þ ¼ abxðkÞ þ 1� að Þbxf ðkÞ ð8Þ
wherebxðkÞ is the predicted value at time k,bxf ðkÞ is the fused
value at time k, and a is the parameter to adapt the
prediction.

The predicted value decides whether interference is se-
vere or any critical error is detected in the next time step.
Once the predicted is determined, it is compared with the
new fused value generated at the next time step. Based on
the comparison, the level of EMI can be determined or
errors in the data set (i.e., significant deviations from the
predicted values) can be detected. In the EWMA prediction

procedure, α is the adaptive parameter carried by noise. If
the system is transient, α is set to a small value so as to
reduce the lag induced by the history. On the other hand, if
the system is steady, α is set to a value large enough to
weigh the history more, as the variation in measurements is
very likely caused by interference at the instant. Ideally, α
must be adaptive to the system status; however, it is not
feasible to build an exact model of α since it may require too
much computing power to run the protocol in real time.
Therefore, a fuzzy logic is adopted in the ISDPP to imple-
ment the rules to set the value of α. To adjust the value of α
dynamically according to the system state, a max–min
Mamdani fuzzy inference method is developed with trian-
gular membership functions and the following rule set:

1. If change of readings is small, then setα large, e.g.,α00.8.
2. If change of readings is medium, then set α medium,

e.g., α00.5.
3. If change of readings is large, then setα small, e.g., α00.2.

4 Performance evaluation of the ISDPP

As described in Section 1, there exist various electric and
inducted interferences in automation facilities. To evaluate
its performance, the ISDPP has been implemented and ap-
plied to the data set collected from the FSN test-bed facility
with many sources of EMI. Three redundant thermal sensor
nodes report the temperature change of an induction motor
in the facility. Each sensor is wired to a wireless sensor node
(MDA320 data acquisition board attached to MICAz mote,

Fig. 5 Raw data collected
inside the facility

Fig. 6 Data inside the facility
processed by ISDPP
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manufactured by Crossbow) as shown in Fig. 4. The three
wireless sensor nodes transmit collected data to the base
station (MIB600).

The ISDPP evaluates the measurements from the redun-
dant nodes by scoring their confidence levels. After the
evaluation, the ISDPP estimates the actual measurement
by fusing the three sensor data according to their
corresponding validation scores. The fused value is recorded
as the current temperature and also used to forecast the
expected value for the next period. The overall procedure
is repeated in real time.

Figure 5 shows the sensor data streams from the three
temperature sensor nodes attached at the motor housing.
Each sensor is calibrated and measures temperature of the
motor running at a constant speed. The mean and variance
of the motor temperature are independently recorded from
the three nodes. Since the temperature is measured from the
same motor that has run at a constant speed for a sufficient
period of time, the readings must be almost constant.
Figure 5, however, shows unexpected peaks and fluctua-
tions caused by noise and EMI. Figure 6 shows the data
fused by the ISDPP along with the average values. The high
peaks and severe fluctuations and biases are significantly
reduced by ISDPP, while the average values still show high
variability since all three nodes are affected by EMI. These
results imply that the negative influence of interference can
be alleviated, and reliable values can be achieved by the
ISDPP.

The implication can be also confirmed by variance anal-
ysis. Variance of received data can be used as an indicator of
interference based on the following noise model [1]:

y ¼ xþ e ð9Þ

where y is the data received by BS; x is the actual data
measured by a sensor; and e is the error caused by interfer-
ence. Then,

VarðyÞ ¼ VarðeÞ ð10Þ

P r o o f VarðyÞ ¼ Var xþ eð Þ ¼ VarðxÞ þ VarðeÞ þ Cov
x; eð Þ ¼ VarðeÞ assuming Cov(x, e)≈0, and Var(x)00 when
the temperature is constant.

The variance analysis results shown in Table 1 indi-
cate that the data processed by ISDPP yield a signifi-
cantly lower variance than the individual sensor data set,
which means the influence of interference has been signifi-
cantly reduced.

In addition, the performance of the ISDPP protocol has
been tested in a less noisy setting. Instead of a complex
automation facility where many noise and EMI sources
exist, the wireless sensor nodes are installed and tested at a
separate hallway of the facility without any equipment. The
fluctuation has significantly lessened due to the reduced
noise sources; however, readings from the three sensor
nodes still indicate some influence of interference, as shown
in Fig. 7. Figure 8 shows the result after the ISDPP is
applied compared to the average values. The peaks and
fluctuation are significantly reduced by ISDPP. The aver-
ages in this case work better than the ones in the previous
experiment, but still result in higher variability.

The variance analysis is also conducted with the data set
collected from the hallway setting. The ISDPP yields sig-
nificant improvements as shown in the F test results in
Table 2. As recognized in both settings, the proposed ISDPP
provides more reliable information for end users to make
decisions about the status of the automation facility. This
protocol has been tested in the test-bed facility but can be
extended to other applications, where redundant sensor
nodes are required to deal with EMI by validating and
consolidating measured data streams.

The experimental data sampled in Fig. 5 show the analog
signals from sensor nodes affected by not only EMI but also
noise; however, the high peaks and large variability in Fig. 5
are mainly caused by interference, as noticed in our previous

Table 1 Comparison of variances of data sets collected in the test-bed
facility

Source Sensor 1 Sensor 2 Sensor 3 ISDPP

Variance 0.0318 0.0366 0.0468 0.0058

p value from F test
with processed data

<0.001 <0.001 <0.001 –

Fig. 7 Raw data collected
outside the facility
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work [1]. The main purpose of the ISDPP is the robustness
of collected data without traditional noise filters even in the
interfered environment. The processed data depicted in
Fig. 6 are obtained only by using the ISDPP without tradi-
tional noise- or interference-removing filters. In addition,
the experimental results depicted in Figs. 7 and 8 indicate
the ISDPP works well in the less noisy yet still interfered
environment.

5 Conclusion

This article proposed an approach to reliable real-time
facility monitoring by WSNs. By applying the proposed
ISDPP to the FSN, combined with the sensor deploy-
ment strategy, wireless data transmission can be robust
against noise and EMI. Although the EMI from electro-
magnetic devices is the main source of interference in
this research, the protocol can also deal with any inevi-
table disturbances existing in the facility. Depending on
applications, some traditional noise reduction techniques
such as low- or high-pass filters may work better than
the ISDPP. However, those filters require a system noise
identification procedure including noise frequency do-
main. The great advantage of the proposed ISDPP is
that it can simplify the application procedure. Even
without knowing noise or interference frequency do-
main, the protocol can yield good data processing per-
formance and provide reliable information in severely
interfered environments. In addition, the ISDPP can
supplement the data correction feature in the routing
protocol provided by WSN manufacturers. The routing pro-
tocols are supposed to provide the correction feature, but it

turns out this feature is not reliable enough. On top of the
routing protocols, the ISDPP functions at a higher layer to
make wireless communication even more reliable. Besides,
the fuzzy logic applied to the protocol makes the parameters
adjustable to the level of interference in the facilities.

The deployment strategy and the proposed ISDPP would
facilitate the use of WSNs to monitor facilities that contain
various electromagnetic devices or other types of interfer-
ence sources. For example, the FSN can be applied to
monitor healthcare facilities where spatially and temporally
massive data sets should be continuously collected and
monitored in an extremely reliable way. Moreover, a deci-
sion support system for critical error detection and resolu-
tion can be built upon a real-time architecture based on the
FSN with the ISDPP. Since the ISDPP has been developed to
work in real time, the protocol can be directly embedded into
the gateway at the hardware level or in the wireless node
management system at the software level.

The FSN with the ISDPP can be applied and extended to
various real-time automation problems. Currently, a study is
being conducted on FSN-based certification of remote man-
ufacturing equipment. Manufacturing equipment must be
validated and certified on a regular basis to meet certain
process specifications. The validation process includes col-
lecting and monitoring physical properties at critical loca-
tions on the equipment. The current test procedure is
cumbersome and time consuming since (1) it is a labor-
intensive job; (2) it is usually performed with wired sensors,
which may collide with physical constraints in the facility;
and (3) the location is often hazardous and unreachable. The
FSN can be deployed to decrease setup time, eliminate the
need to route wires into the equipment, and avoid any
dangerous situations, while providing wireless monitoring
capability using the ISDPP.

In the future, optimization rules to determine efficient
redundancy level will be further investigated. Besides, only
three sampling nodes have been used in the test-bed experi-
ments, but more sensor nodes should be deployed to facil-
ities in greater scale. In addition, a proper procedure to
adjust the parameters, used in the sensor validation and
prediction, will be studied before the protocol can be

Fig. 8 Data outside the facility
processed by ISDPP

Table 2 Comparison of variances of data sets collected outside the
test-bed facility

Source Sensor 1 Sensor 2 Sensor 3 ISDPP

Variance 0.0087 0.0145 0.0120 0.0025

p value from F test
with processed data

<0.001 <0.001 <0.001 –

2384 Int J Adv Manuf Technol (2013) 67:2377–2385



brought online. Ultimately, the FSN will integrate applica-
tion/facility-specific event detection and resolution capabil-
ity by mining the data collected through ISDPP.
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