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Abstract This present study focused on the effect of machining
parameters such as helix angle of cutter, spindle speed, feed rate,
axial and radial depth of cut on temperature rise in end milling. A
prediction model of the temperature rise was developed using
response surface methodology. The experiments were conducted
on Al 6063 by high-speed steel end mill cutter based on central
composite rotatable designs consisting of 32 experiments. The
temperature rise was measured using K-type thermocouple. The
adequacy of the model was verified using analysis of variance.
The given model is utilized to analyze direct and interaction
effect of the machining parameters with temperature rise. The
optimization of machining process parameters to obtain mini-
mum temperature rise was done using genetic algorithms. A
source code using C language was developed to do the optimi-
zation. The obtained optimal machining parameters gave a value
of 0.173 °C for minimum temperature rise.

Keywords Response surface - Analysis of variance - Cutting
temperature - Mathematical model - Genetic algorithm

1 Introduction

In end milling operation, heat energy is generated at the tool chip

interface in deforming chip and overcoming friction between the
tool and work piece. The power utilized during end milling is
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mostly converted into heat energy near the cutting edge of the
tool. The heat energy produces high temperature in the defor-
mation zones and surrounding regions of the chip, tool and work
piece. This temperature rise propagates tool wear, degrades the
work piece quality and increases the tooling cost. The tempera-
ture rise affects the work material properties, as moderate tem-
perature rise induces residual stress in the machined surface,
while high temperature rise may leave a hardened layer on the
machined surface [1]. The cutting tool which possesses high
hardness at room temperature cannot retain the hardness at high
temperature during milling. Hence, temperature rise on the rake
face of the tool have a strong influence on tool life [2]. As
temperature in this area increases, the tool softens and wears
more rapidly, the tool material diffuses into chip and leads to tool
failure and the work piece material adhere to the tools, which
causes rapid wear. The softening of the tool due to high temper-
ature rise propagates wear rapidly. Therefore, determining the
critical value of the temperature becomes important for the
reduction of tool wear. Temperature rise on the relief face of
the tool affect the surface finish and metallurgical state of the
machined surface. Cutting temperature is an important factor
that influences tool wear and surface finish in the machining
performance. The temperature at the tool cutting edge is affected
by properties of work piece material, cutting condition of the
machine tool, tool geometry and many other variables.

The measurement of cutting temperatures is more diffi-
cult because the temperature is a scalar field which varies
throughout the system and cannot be uniquely described by
values at a point. The most widely used method to measure
cutting temperatures is tool-work thermocouple, which
measures average interfacial temperature at tool work piece
interface [3]. The thermocouple can be embedded in the tool
or work piece to measure the temperature accurately with
less effort. Smart and Trent [4] measured the cutting tem-
perature by inserting thermocouple in the hole drilled in the
work piece. Thermocouples are conductive, operate over a
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wide temperature range, rugged and inexpensive [5]. This
measurement by thermocouple is very useful to study the
effects of the cutting parameters on the temperature. An un-
derstanding of cutting temperatures at tool work piece inter-
face provides insight into the effects of cutting parameters on
the temperature. A cost-effective application is required for
end milling operation to understand the relationship between
temperature rise and performance measures (tool wear and
surface finish). Hence, an effective model is essential to pre-
dict the cutting temperature becomes necessary.

The current study takes into account the temperature rise
for analysis to understand its effect on performance meas-
ures, to determine its predictive model from machining
parameters and to optimize temperature rise by using re-
sponse surface methodology and genetic algorithm. The
literature survey pertaining to the work of other researchers
is given below. Zakaria and ElGomayel [6] examined the
reliability of monitoring tool wear by measuring the cutting
temperature. They measured the on-line cutting temperature
using the tool-work piece thermocouple technique. They
concluded that the thermal voltage signal is very sensitive
to the cutting conditions and increases with the increase in
tool wear. Mathew [7] presented a method to describe the
relationship between the log of the tool wear rates and the
reciprocal of the absolute temperatures achieved at the tool/
chip interface. Cutting temperatures was predicted by con-
sidering the dynamic flow stress and temperature properties
of the work material when machining plain carbon steels.
Mackawa et al. [8] developed a method to study the effect of
cutting temperature and tool wear on high-speed turning
operation of Inconel 718 and milling operation of Ti—6Al-
6V-2Sn alloy. They investigated the temperature and wear
of cutting tools by means of cutting experiments and nu-
merical analysis by varying the cutting speed. A numerical
model had been proposed to validate the temperature mea-
surement. Lazoglu and Altintas [2] proposed a numerical
model based on the finite difference method to predict tool
and chip temperature fields in continuous machining and
time varying milling processes. They found that the model
results are in satisfactory agreement with experimental tem-
perature measurements. Choudhury and Bartarya [9] pro-
posed an empirical relation between the cutting zone
temperature and input variables such as cutting speed, feed
and depth of cut in turning process by employing design of
experiments and artificial neural networks. They compared
the predicted values with the experimental values and de-
termined their closeness with the experimental values.

Dessoly et al. [10] developed a model based on the moving
heat source theory of conduction. They analyzed the heat
transfer and temperature distribution in rotary tool turning of
hardened 52100 steel (58 HRC). This model was experimen-
tally verified for different cutting conditions. Palanisamy et al.
[1] estimated tool—chip interface temperatures for different
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machining conditions by using Oxley’s energy partition func-
tion and also analyzed the thermal effect on the cutting force
using Rapier’s equation. They concluded that the maximum
temperature in the tool increases with the increase in the
cutting speed. Haci et al. [11] presented the modeling of the
tool/chip interface temperature distribution during orthogonal
metal cutting and found that the proposed model data have
better agreement with the experimental results. Weinert et al.
[12] described the influences of the material properties and the
process conditions on the cutting temperatures while drilling
polymer materials. They concluded that high tool temper-
atures lead to melting and thermal damage of the material in
the peripheral zone of the drilled hole. Geerdes and Alvardo
[13] presented a finite element technique combined with arti-
ficial neural network to predict the temperature in a hot strip
mill. This hybrid computing technique helps in predicting
cutting tool temperature with more accuracy and has less
dependency on experimental data. Zhang and Liu [14] pre-
sented a one-dimensional transient temperature distribution in
monolayer coated tools. They provided data for selecting
appropriate coating of materials to reduce temperature within
coated tools.

Kadirgama et al. [15] proposed a first-order temperature
model using the response surface methodology to determine
the temperature distribution on cutting tool when machining
hastelloy C-22HS with carbide coated cutting tool. The first-
order model indicates that the cutting conditions such as
feed rate, axial depth of cut and cutting speed plays an
important role in determining temperature at the cutting
zone. They verified the experimental results by applying
finite element analysis. Suhail et al. [16] employed the
Taguchi technique to optimize the cutting parameters using
work surface temperature and surface roughness as perfor-
mance measure. They concluded that work piece surface
temperature can be sensed and used effectively as an in-
process signal for optimizing cutting parameters. Liu et al.
[17] applied the particle swarm optimization technique to
develop nonlinear curve for determining cutting tempera-
ture. Liu and Wang [18] used the modified genetic algorithm
for the optimization of milling parameters. They concluded
that the simulation and experimental results showed an
improvement in performance. Reddy and Rao [19] applied
genetic algorithm to optimize the machining parameters
such as radial rake angle, nose radius, cutting speed and
feed rate to obtain minimum surface roughness in end mill-
ing operation. Palanisamy et al. [20] employed the genetic
algorithm technique to minimize the machining time and
cutting force, to increase productivity and tool life and
obtain better surface finish. The result of the work shows
how a complex optimization problem can be handled by
genetic algorithm and the result converges very quickly.
Venkatesan et al. [21] proposed a genetic algorithm based
artificial neural network model for developing a model
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between the process parameters and tool performance in the
turning process. They concluded that genetic algorithm-based
ANN model can provide accurate results in less time. Bharathi
Raja and Baskar [22] applied genetic algorithm for the math-
ematical models of different machining operation and con-
cluded that the genetic algorithm is effective in converging
equation to give optimum solution.

The literature indicated above reveals that not much work
has been reported on prediction and optimization of tempera-
ture rise in metal cutting. The tool geometry helix angle of the
cutting tool has been included in the machining parameters
during the prediction which has not been concentrated by other
researchers. In this work, the main objective is to develop a
model based on response surface methodology to the cutting
temperature rise in terms of machining parameters such as helix
angle of cutting tool, spindle speed, feed rate, axial and radial
depth of cut. Furthermore, the statistical model developed was
utilized to optimize the machining parameters to obtain mini-
mum temperature rise using genetic algorithm. During milling,
the maximum cutting temperature rise is measured using K-
type thermocouple. The mathematical model helped us to study
the direct and interaction effect of each parameter.

2 Experimental design

Response surface methodology is the most effective method
to analyze the results obtained from factorial experiments. It is
an effective tool for modeling and analyzing the engineering
problems. It provides more information with less number of
experimentation. It is an experimental strategy for exploring
the limits of the input parameters and developing empirical
statistical model for the measured response, by approximating
the relationship existing between the response and input pro-
cess parameters. The limit of the process parameters has to be
defined in response surface methodology and the initial ex-
perimentation was done to identify the machining parameters
that affect the temperature rise and to explore the range of the
selected machining parameters. In the present work, helix
angle of cutting tool, spindle speed, feed rate, axial and radial
depth of cut have been considered as the machining parame-
ters. The response temperature rise 7 can be expressed as a
function of process parameters helix angle («), spindle speed
(N), feed rate (Z), axial (X) and radial depth of cut (Y).

Temperature rise, T = ¢ (0tiy, Niw, Ziv, X, Yi) + €u
(1)

where ¢ is the response surface, e, is the residual, u is the
number of observations in the factorial experiment and iu
represents level of the ith factor in the uth observation.
‘When the mathematical form of ¢ is unknown, this function
can be approximated satisfactorily within the experimental

region by polynomials in terms of the process parameter vari-
able. Box and Hunter [23] proposed the central composite
rotatable design for fitting a second-order response surface
based on the criterion of rotatability. The selected design plan
chosen consists of 32 experiments. It has five factors—five
levels central composite rotatable design consisting of 32 sets
of coded conditions (Table 1). The design for the above said
experiment comprises of a ¥ replication of 2° (=16) factorial
design plus six center points and ten star points. These corre-
spond to first 16 rows, the last six rows and rows from 17 to 26,
respectively, in the design plan as shown in Table 2.

For % replicate, the extra point included to form a central
composite design, o, becomes 2 =2 The upper limit of
the parameter is coded as 2, lower limit as —2 and the coded
values for intermediate values were calculated from the
following relationship [24]:

2(2X — Xmax )(min
= 20X = G + o) o)
(Xmax - AXmin)
where
X; required coded value of a variable X
X any value of the variable from X, i, to X;ax
Xuin  lower limit of the variable
Xmax  upper limit of the variable

The intermediate values coded as —1, 0 and 1.

3 Experimental details

The experiments were conducted on a HAAS vertical machin-
ing center: model tool room mill with high-speed steel end mill
cutter under dry condition. The work piece material was
Aluminium alloy (Al 6063) commonly available machinable
metal which finds application in automobile and valve indus-
tries. The dimension of the work piece specimen was 32 x
32 mm in cross section and 40 mm in length. The temperature
was measured by using K-type thermocouple and the observa-
tions are tabulated to obtain the mathematical model (Table 2).
A 1-mm hole was drilled in the work piece specimen at 4 mm
below the machining surface. A K-type thermocouple was
inserted into the hole and the initial temperature was noted
using the digital thermometer. During machining, the maxi-
mum temperature was measured, the difference between the
maximum and initial temperature gave the temperature rise.

4 Development of mathematical model
The general form of a quadratic polynomial which gives the

relation between response surface y and the process variable
x under investigation is given by
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Table 1 Parameters and levels
in milling

k k
y=bo+ Y bxi+ Y b +
i=1 i=1

Table 2 Experimental design—
central composite design matrix

@ Springer

Parameter Units Factor levels

-2 -1 0 1 2
Helix angle () ° 30 35 40 45 50
Spindle speed (N) rpm 2,000 2,500 3,000 3,500 4,000
Feed rate (2) mm/rev 0.02 0.03 0.04 0.05 0.06
Axial depth of cut (X) mm 1.5 2 2.5 3 35
Radial depth of cut (¥) mm 1.5 2 2.5 3 35

Z b,jx,j

i<j

Where b, is a constant, b; is the linear term coefficient, b;;
is the quadratic term coefficient and b;; is the interaction
(3) 4 i

term coefficient.

S. no. Control factors Temperature rise (°)
@ N V4 X Y Observed value Predicted value % Error

01 -1 -1 -1 -1 1 30.5 29.90 1.96
02 1 -1 -1 -1 -1 20.2 20.06 0.65
03 -1 1 -1 -1 -1 37.9 37.10 2.08
04 1 1 -1 -1 1 17.1 17.22 -0.73
05 -1 -1 1 -1 -1 36.9 35.81 2.95
06 1 -1 1 -1 1 27.5 27.57 -0.27
07 -1 1 1 -1 1 43.1 4222 1.92
08 1 1 1 -1 -1 31.2 31.08 0.36
09 -1 -1 -1 1 -1 44.8 44.66 0.31
10 1 -1 -1 1 1 26.1 26.57 -1.83
11 -1 1 -1 1 1 40.3 39.87 1.06
12 1 1 -1 1 -1 28.5 28.23 0.92
13 -1 -1 1 1 1 34.7 34.76 —-0.19
14 1 -1 1 1 -1 18.3 18.28 0.07
15 -1 1 1 1 -1 374 36.73 1.79
16 1 1 1 1 1 34.1 33.79 0.90
17 -2 0 0 0 0 59.3 60.96 —2.80
18 2 0 0 0 0 36.9 36.39 1.36
19 0 -2 0 0 0 239 23.99 -0.41
20 0 2 0 0 0 30.1 31.16 —3.54
21 0 0 -2 0 0 17.9 18.36 —2.58
22 0 0 2 0 0 21.5 22.53 -4.79
23 0 0 0 -2 0 17.1 17.71 -3.57
24 0 0 0 2 0 23.6 23.18 1.77
25 0 0 0 0 -2 28.1 29.28 —4.20
26 0 0 0 0 2 29.3 29.28 0.06
27 0 0 0 0 0 21.2 20.44 3.55
28 0 0 0 0 0 20.6 20.44 0.74
29 0 0 0 0 0 20.4 20.44 -0.22
30 0 0 0 0 0 20.3 20.44 -0.71
31 0 0 0 0 0 20.1 20.44 -1.72
32 0 0 0 0 0 20.6 20.44 0.74
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The values of the coefficients of the polynomials were
calculated by multiple regression method. A statistical soft-
ware QA Six Sigma DOE PC IV was used to calculate the
values of these coefficients. The second-order mathematical
model was developed by neglecting the insignificant coef-
ficients of the temperature rise (7).

Temperature rise(T) = 20.446 — 6.142¢ + 1.792N + 1.042Z
+ 1.367X + 7.0590% + 1.784N?
—2.209Y? 4 0.437aN + 1.287aZ
+0.937aY + 1.638NZ — 3.013ZX

+2.062ZY + 0.887XY (4)
where
a  helix angle (°)
N cutting speed (rpm)
Z deed rate (mm/rev)
X axial depth of cut (mm)
Y radial depth of cut (mm)

The adequacy of the model was tested using the analysis
of variance (ANOVA) technique (Table 3). The calculated
ratio of the model does not exceed the standard value, and
the calculated R ratio of the model exceeds the standard
value for a desired 95 % level of confidence. Table 3 shows
that the model is adequate, and that the error between the
experimental and predicted values is less than 5 %.

5 Genetic algorithm

Genetic algorithm is a computerized search and optimization
algorithm based on the mechanics of natural genetics and
natural selection. According to the concept of survival of the
fittest, the fittest individuals of any population have the high-
est probability to reproduce and survive to the next generation,
thus improving successive generations. However, inferior
individuals also have meager chances to survive and repro-
duce. Genetic algorithm is a population-based search tech-
nique used to solve both linear and nonlinear problems by
exploring all regions of the stated space and range [25, 26].
The data processed by genetic algorithm includes a set of

Table 3 Adequacy of the model

strings or chromosomes with an infinite length in which each
bit is called an allele (or a gene). A selected number of strings
are called population and the population at a given time is
known as generation. Generations of the initial population of
strings are randomly based since the binary alphabet offers the
maximum number of schemata per bit of information of any
coding. A binary encoding scheme is traditionally used to
represent the chromosomes using either zeros or ones.
Thereafter, the fitness value (objective function value) of
each member is computed. The population is then operat-
ed by the three main operators namely, reproduction,
crossover and mutation to create a new population. The
new population is further evaluated and tested for deter-
mination. The completion of an iteration of these operators
is known as generation in the parlance of genetic algo-
rithm. The current population is checked for acceptability
or solution. The iteration is stopped after the completion
of maximum number of generations or on the attainment
of the best results.

The steps involved in the genetic algorithm are described
below:

Step 1 Choose a coding to represent problem parameters, a
selection operator, a crossover operator, and a muta-
tion operator. Choose a population size n, a crossover
probability p., and mutation probability p,,. Initialize
a random population of strings of size /. Choose a
maximum allowable generation number .. Set #=0.
Evaluate each string in the population.

If + _fmax or other termination criteria is satisfied,
terminate.

Perform reproduction on the population.

Perform crossover on pair of strings with probability p..
Perform mutation on strings with probability p,,,.
Evaluate strings in the new population. Set=¢+1
and go to step 3

Step 2
Step 3

Step 4
Step 5
Step 6
Step 7

5.1 Objective function

The objective in this study is to minimize average temper-
ature rise. The mathematical model developed in the chapter
can be utilized to obtain optimum combination of machining
parameters such as helix angle («), spindle speed (N), feed
rate (Z), axial depth of cut (X) and radial depth of cut (Y) to
minimize machining performance.

Response Factors df  Lack of fitdf*  Pure error F ratio R ratio Whether model is adequate
model standard model Standard
Temperature rise 17 11 6 4.006 5.07 89.13 4.1 Adequate

@ Springer



2318

Int J Adv Manuf Technol (2013) 67:2313-2323

The objective is to minimize the following functions such as:

Minimize, Temperature rise, T = 20.446 — 6.142¢ + 1.792N
+ 1.042Z + 1.367X + 7.05907
+ 1.784N? — 2.209Y> + 0.437aN
+ 1.2870Z + 0.937aY + 1.638NZ
—3.013ZX 4 2.062ZY + 0.887XY

(5)

Subject to 2<«, N, Z, X, Y<2

5.2 Coding

In order to use genetic algorithm to solve the above prob-
lem, machining parameters (a, N, Z, X and Y) are first coded
in some string structures. Binary-coded strings having 1’s
and 0’s are primarily used. The length of the string is usually
determined according to the desired solution accuracy. In
this study 8 bits are chosen for the machining parameters (c,
N, Z, X and Y). The strings (00000000) and (11111111)
would represent the point’s lower and upper limits of the
process variables and thereby making a total string length of
40. With the coding, the solution accuracy obtained in the
given interval for «, N, Z, X and Y are 0.078430°,
7.84314 rpm, 1.5686x10 *mm/rev, 0.00784 mm and
0.00784 mm, respectively, as shown in Table 4.

5.3 Fitness function

Genetic algorithm mimics the “survival of the fittest” prin-
ciple. So, naturally they are suitable to solve maximization
problems [25, 26]. Maximization problems are usually
transformed to minimization problems by some suitable
transformation. A fitness function, F(x), is derived from
the given objective function, f{x), and is used in successive
genetic operations. For maximization problems, fitness
function can be considered the same as the objective func-
tion. The minimization problem is an equivalent maximiza-
tion problem such that the optimum point remains
unchanged. A number of such transformations are possible.

The transformation does not alter the location of the mini-
mum, but converts a minimization problem to an equivalent
maximization problem. The fitness function value of the
string is known as the string’s fitness. The operation of
genetic algorithms begins with a population of random
strings representing design or decision variables.
Thereafter, each string is then operated by three main oper-
ators—reproduction, crossover and mutation—to create a
new population of points. The new population is further
evaluated and tested for termination. If the termination cri-
terion is not met, the population is iteratively operated by
the above three operators and evaluated. This procedure is
continued until the termination criterion is met. One cycle of
these generation and the subsequent evaluation procedure is
known as a generations in genetic algorithms.

5.4 Reproduction

Reproduction is the first operator applied on a population. In
this process, individual strings are copied into a separate
string called the ‘mating pool’ according to their fitness
values, i.e., the strings with a higher value have a higher
probability of contributing one or more offspring in the next
generation. Reproduction operator is also known as selec-
tion operator. A reproduction operator can be implemented
in algorithmic form in a number of ways. The easiest way is
to create a biased roulette wheel where each current string in
the population has a roulette wheel-slot-size in proportion to
its fitness. In this way, more highly fit strings have higher
numbers of offspring in the succeeding generation. Once the
string has been selected for reproduction, an extra replica of
the string is made. The string is then entered into the mating
pool; a tentative new population is created for further ge-
netic operator action. In reproduction, good strings in a
population are probabilistically assigned a large number of
copies and a mating pool is formed which ensures that there
is no new strings formed in the reproduction phase [25, 26].

5.5 Crossover

After reproduction, the population is enriched with good
strings from the previous generation but does not have any

Table 4 Solution accuracy for

the machining parameters Machining parameters  Limits Code Decode  Range  Accuracy

Helix angle (a) 30-50° 00000000 0 20 20/255=0.07843
1 255

Spindle speed (N) 2,000-4,000 rpm 00000000 0 2,000  2,000/255=7.84314
11111111 255

Feed rate (2) 0.02-0.06 mm/rev 00000000 0 0.04 0.04/255=1.5686x10"*
11111111 255

Axial depth of cut (Y)  1.5-3.5 mm 00000000 0 2 2/255=0.00784

11111111 255

@ Springer



Int J Adv Manuf Technol (2013) 67:2313-2323

2319

0.8
0.7

S 01
S 0.5

Temperature Rise
e vl
S N W A

s o
N -

1 20 40 60 80 100
No of Generations

Fig. 1 Variation of fitness value with no of generations for temperature
rise

new string. A crossover operator is applied to the population
to hopefully create better strings. The total number of par-
ticipative strings in crossover is controlled by the crossover
probability, which is the ratio of total strings selected for
mating and the population size. The crossover operator is
mainly responsible for the search aspects of genetic algo-
rithm. In most crossover operators, two strings are picked
from the mating pool at random and some portions of the
strings are exchanged between the strings [25, 26]. In cross-
over a random number is generated between 1 and 8. If the
random number is 5, the bits after the fifth position are
exchanged as given in the following example.

Example : String 1 — 11001111
String 2 — 01010100
Crossover probability - 09
New string(offspring 1) — 11000111
New string(offspring 2) — 01011100

The two strings participating in the crossover operation
are known as the parent strings, and the resulting strings are
known as children strings.

5.6 Mutation

Mutation, as in the case of simple genetic algorithm, is the
occasional random alteration of the value of a string

70
L2y N = 3000 rpm
o Z=0.04 mm/rev
o 4]
o 50 X=25mm
g 404 Y=2.5mm
~
™~
$ 30
£
& 204
10 I T T s
30%-2)  35(1)  40%0) a5°1)  §0°(2)

Helix angle, a (°)

Fig. 2 Direct effect of helix angle

a=40"
. Z =0.04 mm/rev
o 39 X=25mm
= Y=25mm
@
5
g
-
-9
£
@
[
15— T T T
2000(-2) 2500(-1) 3000(0) 3500(1)  4000(2)

Spindle speed, N (rpm)

Fig. 3 Direct effect of spindle speed

position. This means changing 0 to 1 or vice versa on a
bit-by-bit basis and with a small mutation probability of 0 to
0.1. The need for mutation is to maintain diversity in the
population [25, 26].

Example : String 1 — 11000111
String 2 — 01011100
Mutation probability — 0.01
New string(offspring 1) — 01000111
New string(offspring 2) — 01011100

After applying the genetic algorithm operators, a new set
of population is created. Then, they are decoded and objec-
tive function values are calculated. This completes one
generation of genetic algorithm. Such iterations are contin-
ued till the termination criterion is achieved. The above
process is simulated by a computer program developed by
using C language with a population size of 100, iterated for
100 generations and crossover and mutation probability are
selected to be 0.9 and 0.01, respectively.

5.7 Results of genetic algorithm

Figure 2 shows the results obtained by running the C pro-
gram for minimizing temperature rise. The initial variation
in the curve is due to the search for optimum solution. In
Fig. 1, it is evident that the minimum temperature rise
occurs at the 40th generation and the value is 0.173 °C.

25
a =-i|}{j
Qo N =3000 rpm
S X =25mm
v Y=25mm
£ 20-
T
[-%
]
o
i—.
16- ' | 1
0.02(-2)  0.03(-1) 0.04(0)  0.05(1) 0.06(2)

Feed rate, Z (mm/rev)

Fig. 4 Direct effect of feed rate
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25
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[&] N = 3000 rpm
e Z=0.04 mm/rev
g Y=25mm
w 204
@
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Axial depth of cut, X (mm)

Fig. 5 Direct effect of axial depth of cut

The optimum values of the machining parameters are given
as

Helix angle — 42

Spindle speed — 2,870 rpm
Feed rate — 0.03 mm/rev
Axial depth of cut — 1.7 mm

Radial depth of cut 3.4 mm

6 Results and discussion

In the present investigation, 32 experiments were conducted
with varying machining conditions such as helix angle,
spindle speed, feed rate, axial depth of cut and radial depth
of cut. A mathematical model was developed to predict the
temperature rise during end milling. The direct and interac-
tion effect of these machining parameters on temperature
rise were calculated and presented in a graphical form for
further investigation. Insignificant variables such as radial
depth of cut (¥) and insignificant interaction factors such as
aX, NX and NY have been neglected since their contribution
is minimal in the temperature rise. The trends plotted in the
direct and interaction effects helps us to analyze the cause

65
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~ 554 Y=15 :: Spmc.lle speed,
S N (rpm)
¢ 45 —— 2000(-2)
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5 —— 3500(1)
& —+— 4000(2)
25+
30 s 5 3 :
30°¢2) 35(1) 400) 45°(1) 50°2)
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Fig. 6 Interaction effect of helix angle and spindle speed
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Fig. 7 Interaction effect of helix angle and feed rate

and effect of the machining parameters on temperature rise
during end milling.

6.1 Direct effect of variables

In this work, the effects of helix angle, spindle speed, feed
rate, axial depth of cut and radial depth of cut on tempera-
ture rise were experimentally investigated and plotted.
Figures 2, 3, 4 and 5 show that the helix angle, spindle
speed, feed rate and axial depth of cut have a significant
effect on temperature rise.

Figure 2 depicts the direct effect of helix angle on tem-
perature rise. This figure illustrates that the increase in helix
angle resulted in a decrease in temperature rise, and it is
minimal at the helix angle range of 40—45°. Decreasing the
helix angle increases the rake or relief angle of the cutting
tool. This reduction in relief angle increases the peak cutting
temperature by reducing the area through which heat can
diffuse from the cutting tool [27].

Figure 3 presents the direct effect of spindle speed on
temperature rise. In this figure, it is evident that the increase
in spindle speed increases the temperature rise and it is
minimal at the speed range of 2,500-3,000 rpm. Increasing

65
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Fig. 8 Interaction effect of helix angle and radial depth of cut
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Fig. 9 Interaction effect of spindle speed and feed rate

the spindle speed increases the rate at which energy dissi-
pated through plastic deformation and friction. Thus, the
rate of heat generation in the cutting zone increases resulted
in a high cutting temperature [28]. An increasing cutting
speed results in increasing the cutting temperature rise to a
point where atomic diffusion between the tool and work
piece material takes place, which in turn propagates the tool
wear. The temperature rise slightly increases with decreas-
ing spindle speed from 2,500 to 2,000 rpm; this may be due
to the adhesion of work material on the tool, which results in
more friction.

Figure 4 shows the direct effect of feed rate on tempera-
ture rise. This figure indicates that the increase in feed rate
increases the temperature rise. Increasing the feed rate also
increases the rate of heat generation in the cutting zone. Tool
chip interface increases with the square root of the cutting
speed and the third root of the feed rate [5]. Chip melting is
observed when machining aluminum Al 6063 at higher feed
rate.

Figure 5 represents the direct effect of axial depth of cut
on temperature rise. The figure makes it clear that the
increase in axial depth of cut increases the temperature rise.
Increase in depth of cut causes larger amount of work piece
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304
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Fig. 10 Interaction effect of feed rate and axial depth of cut
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Fig. 11 Interaction effect of feed rate and radial depth of cut

materials to be removed, which increases the cutting tem-
perature. At lower depths of cut, less amounts of work piece
material adhere on the flank of the tool than at lager depths
of cut. This adhesion of work piece material on the tool
flank causes an increase in temperature rise.

6.2 Interaction effect of variables

A strong interaction was observed between various process
parameters for temperature rise. The graph between these
most significant process parameter interactions was plotted.
The following conclusion can be made from these interac-
tion plots.

The interaction effect of helix angle and spindle speed,
helix angle and feed rate and helix angle and radial depth of
cut on temperature rise is shown in Figs. 6, 7 and 8. These
figures show that the increase in helix angle resulted in a
decrease of temperature rise from 30 °C to 40 °C and in
between 45 °C and 50 °C, there is a slight increase in
temperature rise. The threshold value lies between helix
angle of 40° and 45°, which gave a minimum temperature
rise. The increase in helix angle reduces the rake angle,
which in turn reduces friction between the area of contact

25
1
9 , Radialdepth
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Fig. 12 Interaction effect of axial and radial depth of cut
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of tool and work piece. The trend for helix angle is same for
all the levels of spindle speed, feed rate and radial depth of cut.
The increase in feed rate resulted in the decrease of tempera-
ture for the level of 30° of helix angle, whereas the trend gets
completely reversed for the other levels of helix angle (35—
50°) as shown in Fig. 7. The interaction effect of spindle speed
and feed rate on temperature rise is depicted in Fig. 9, which
shows that the increases in spindle speed resulted in a decrease
in temperature rise from 2,000 to 3,000 rpm, increase in
temperature from 3,500 to 4,000 rpm, and optimal in between
3,000 and 3,500 rpm for the change of levels of feed rate from
0.02 to 0.04 mm/rev. The interaction effect of feed rate and
axial depth of cut, and the radial depth of cut on temperature
rise are shown in Figs. 10 and 11, respectively. Figure 10
indicates that temperature rise increases with increase in feed
rate for the levels of axial depth of cut between 1.5 and
2.5 mm. The trend gets reversed for the levels of axial depth
of cut between 2.5 and 3.5 mm, where the temperature rise
decreases with the increase in feed rate. In Fig. 11, it is clear
that temperature rise increases with increase in feed rate for the
levels of radial depth of cut between 3.5 and 2.5 mm. The
trend gets reversed for radial depth of cut between 2 and
1.5 mm, where temperature rise decreases with increase in
feed rate. The interaction effect of axial and radial depth of cut
on temperature rise is shown in Fig. 12, which reveals that as
the axial depth of cut increases, the temperature rise increases
for all levels of radial depth of cut.

7 Conclusion

The following conclusions derived from the prediction of
tool wear from the various machining parameters:

* The helix angle is the most significant parameter which
reduces peak temperature rise. The temperature rise is
minimal between 40° and 45° helix angles.

» The increase in spindle speed, feed rate and axial depth
of cut increases cutting temperature.

* The radial depth of cut does not have a significant effect
on temperature rise.

* The interactions between the process parameters on
temperature were analyzed, and a significant interaction
were observed between feed rate and axial depth of cut.

o It is realized from the study that the error percentage of
the developed model is less than 5 %.

* The genetic algorithm has been employed to optimize
the machining parameters to obtain the minimum tem-
perature rise. The optimal combination of machining
parameters for minimum temperature of 0.173 °C was
found to be 42°, 2,870 rpm, 0.03 mm/rev, 1.7 mm and
3.4 mm for helix angle, spindle speed, feed rate, axial
and radial depth of cut, respectively.

@ Springer
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