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Abstract In this investigation, a hybrid optimization
approach is used for the estimation of minimal surface
integrity of surface created in electrical discharge machining
(EDM). A new combination, response surface methodol-
ogy coupled with the grey relational analysis method has
been proposed and used to optimize the machining param-
eters of EDM. The significant input parameters such as
pulse current (Ip), pulse duration (Ton), duty cycle (Tau)
and discharge voltage (V) are considered, and white layer
thickness, surface roughness, and surface crack density have
been considered as responses for this study. Thirty experi-
ments were conducted on American Iron and Steel Institute
(AISI) D2 steel work piece materials based on central com-
posite design. The optimum conditions of the machining
parameters were obtained from the grey relational grade.
Analysis of variance is used to find the percentage con-
tribution of the input parameters and found that Tau was
the most influencing parameter followed by Ton and Ip in
EDM of D2 steel. The R2 value for the grey relational
grade model was 0.918. These results provide useful infor-
mation about how to control the responses and ensure the
high-quality surfaces-quality surfaces. This method is sim-
ple with easy operability. The assessment outcome provides
a scientific reference to obtain the minimal condition of sur-
face integrity, and they were found to be a pulse current of
1 A, a pulse duration of 50 μs, a duty cycle of 80 %, and
discharge voltage 40 V.
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1 Introduction

There is an increasing tendency to use lightweight, slim,
and compact mechanical component in recent years; hence,
there has been an increased interest in the advance mate-
rials. These advanced materials having attractive properties
such as high strength, high bending stiffness, good damping
capacity, low thermal expansion, and better fatigue charac-
teristics, which make them possible material for the modern
day industrial application used in mold and die making
industries, aerospace component, medical appliance, and
automotive industries. The modern manufacturing indus-
tries are facing challenges from these advanced materials
viz. super alloys, ceramics, and composites, that are hard
and difficult to machine, requiring high precision and sur-
face quality, which increases machining cost [1]. To meet
these challenges, the development of appropriate machining
systems to support this growth is essential because the tra-
ditional processes are unable to cope with those challenges
and thus results in poor material removal rate, excessive tool
wear, and poor surface finish. Electrical discharge machin-
ing (EDM) is a thermal process, has firmly established its
use for more than 60 years, providing unique capability to
machine “difficult-to-machine” materials in the production
of forming tools, dies, and molds and effective machining
of advanced materials. The material removal in EDM is car-
ried out by a series of discrete electrical discharges in the
presence of a dielectric medium, generates extreme local-
ized heating in the vicinity of the discharge, high enough to
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melt and even vaporize the work piece material. Since, there
is no direct contact between the tool and the workpiece,
the material removal is not carried out by the mechanical
action of a cutting or abrasive tool. Therefore, machining
in EDM is not dependent on the mechanical properties of
the workpiece material, rather, it depends on the thermal
properties, and thus machining can be carried out no mat-
ter how high the hardness is. In consequence, EDM has
become very popular in the tool and die making industry, in
which complex geometries with tight tolerances can be pro-
duced on difficult-to-machine materials. However, EDM is
a very demanding process and the mechanism of the pro-
cess is complex and not entirely understood yet. Therefore,
it is difficult to establish an analytical model and its optimal
setting that can exactly predict the performance and optimal
response by correlating the process parameters.

The state and characteristics of any machined surface
that affect performance are designated by the term “surface
integrity.” If the surface integrity is worst, the operational
performance will be poor, and if it is good, the functional
performance will be better. The surface integrity produced
by EDMed surfaces is extremely significant. Normally,
surface integrity is characterized by the surface rough-
ness and the presence of a white layer, surface cracks,
and residual stress in it. The surface integrity of EDMed
surface is becoming more and more significant to satisfy
the increasing demands of sophisticated component perfor-
mance. The combination of stresses, and high temperatures
engendered during EDM lead to defects and/or alterations
of the microstructure, cause surface cracking, craters, folds,
inclusions, plastic deformation, and residual stresses in the
finished component. The extreme heat generated during
EDM and when allied with each discharge result in local
temperature gradients in the surface, and after subsequent
quenching the residual stresses develops, which is certainly
responsible for the formation of multiple fatigue cracks in
the EDMed surfaces [2] Therefore, it is critical for indus-
tries, like automobile, tool and mold making, aerospace,
etc., to know and understand the consequences of these
defects by fine-tuning the operating parameters. The layer,
produced due to the EDM spark called heat-affected layer,
is normally different in character from the parent material,
consists of microcracks, voids, impurities, stress and sev-
eral other defects and is responsible for the deterioration
the mechanical properties of the machined components [3].
The recast layer also called the white layer is produced by
the solidified molten material, during the electric discharge,
since it is very difficult to etch and as its appearance is
white when observed through an optical microscope. It con-
tains many pock marks, globules, cracks, and microcracks.
Its thickness and density depend on the process conditions
[4]. Surface crack is a vital defect, which certainly affects
the fatigue life of the components [5], and these are gen-

erally formed when the induced stress exceeds the ultimate
stress [6]. The surface roughness of the EDMed surface is
also associated to the distribution of the craters formed due
to the electric discharge.

To enhance the life of the EDMed product, the recast
layer is normally removed, as this layer plays a critical
role particularly for applications in which the part is sub-
jected to cyclical stress or fluctuating loads. The component
having a good surface improves the fatigue strength, wear
resistance, and corrosion resistance of the surface [7]. More-
over, the surface cracks in EDMed surfaces are limited up
to the white layers only; therefore, removing white layers
also eradicates the surface cracks on the surface [8]. Conse-
quently, white layer must be removed either by hand polish-
ing, etching, or by heat treatment to improve the properties
and make the component functional. The polishing must
be done appropriately to just remove the white layer which
causes damage to the component. Excessive polishing may
lead to remove excess material and lose the tolerance. More-
over, such processes are supplementary and may increase
cost of the component and time. Therefore, it is necessary
to get the appropriate optimal set of machining parameters,
which minimizes the white layer thickness WLT and also
determines/predicts it appropriately to minimize the cost
and time. Ultimately, by removing that exact thickness, the
required tolerance and dimension can be achieved, else the
component may be rejected as a defective item. Meanwhile,
there are several factors that affect the EDM process—
subsequently, the formation of surface integrity—and it is a
traditionally difficult topic to understand. Selection of opti-
mal set of process parameters is always a vital factor in any
machining process, since the process and materials are nor-
mally costly, and suboptimal production leads to increase
the end cost of the component. Numerous researches have
been carried out to investigate and improve the process
performance. Niwa and Furuya [9] proposed the optimiza-
tion of the rate of material removed at a certain stage to
the surface finish at the previous stage. Being a complex
and stochastic process, it is very difficult in EDM to deter-
mine optimal setting for best machining parameters, which
could minimize the WLT, surface roughness Ra, and sur-
face crack density SCD. These responses are the vital factors
which decide the quality of the end product and parameter
such as Ip that has two distinct effects on these responses,
i.e., decreasing Ip decreases WLT and increases the SCD.
Therefore, one cannot decrease Ip to any extent to mini-
mize the thickness of white layer as it certainly increases
the SCD. Furthermore, it is hard to locate a single opti-
mal combination of process parameters for the responses, as
the process parameters influence them differently as stated
earlier. Hence, there is a need for a multi-objective opti-
mization method to arrive at the solutions to this problem
[10]. Liao et al. [11] optimized the number of stages, the
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volume of material removed, and the electrode wear at each
stage, and proposed an explicit relationship to relate mate-
rial removal rate (MRR), Ra, and electrode wear. Pradhan
and Biswas [12] applied composite desirability function
method to optimize the parameters to obtain MRR and
Ra with a reduced number of experiments that needed to
provide sufficient information for statistically acceptable
results. Bhattacharyya et al. [13] found in their experimen-
tal study that Ip and Ton are the vital factors which influence
the crack, WLT, and Ra. Lin et al. [14] employed grey rela-
tional analysis for solving the complicated interrelationships
between process parameters and the multiple performance
measures of the EDM process. Pradhan et al. [15] applied
response surface methodology RSM to model and estimate
Ra and establish that Ip and Ton are the most influencing
parameters with their interactions, as later conformed by the
scanning electron microscopy (SEM) results. Lin and Lin
[16] studied the effect of current, polarity, voltage, and spark
on-time on the EDM process by using the Taguchi method.
Singh et al. [17] used grey relational analysis GRA for multi-
response optimization for optimizing, metal removal rate,
tool wear rate, taper, radial overcut, and surface roughness
on EDM of Al-10 %SiCp as cast metal matrix composites
using the orthogonal array. The optimal setting helps in con-
siderable improvement in the process since this technique
converts the multi-response variable to a single-response
grey relational grade and, therefore, simplifies the optimiza-
tion procedure. Improving the performance of machining
operation and setting the appropriate machining parameters
are solved by many traditional and non-traditional opti-
mization algorithms. Recent advancements in optimization
techniques introduced new prospects to accomplish better
solutions for the aforesaid problems. To solve these issues,
numerous novel optimization techniques and its hybridiza-
tion have been established and applied successfully on
manufacturing optimization problems [18–27]. And more
such attempts are still going on since, in optimization, no
one can be said to be the best solution technique that can
be the finest one to handle difficulties and to select the opti-
mal machining variables. Hence, there is a need to introduce
new approaches to overcome disadvantages, if any and to an
upsurge, the existing optimization techniques to manufac-
turing the products economically. Moreover, the complexity
of some optimization techniques necessitates paying great
attention on hybrid approaches of optimization.

Though several attempts have been made to study sur-
face integrity and many hybridization techniques have also
been successfully attempted, an attempt of integration of
RSM and GRA for finding out optimal setting to obtain
surface integrity on EDMed American Iron and Steel Insti-
tute (AISI) D2 tool steel are very rare. In addition, AISI
D2 tool steel has been abundant in growing ranges of appli-
cations in manufacturing tools in mold industries. More-

over, the advancement of an automatic processing system
that contains a technology repository will permit operators
to ascertain in a simple way optimum processing condi-
tions meeting different processing prerequisites. Therefore,
the multiple objective optimization problems have been of
increasing interest to the researchers to minimize this com-
plexity. A trouble-free and trustworthy technique based on
statistically designed experiments and RSM approach has
been adopted with a face-center cube experimental design,
as a special case of central composite designs CCD. Later,
it synergies with GRA for optimizing the machining param-
eters in order to minimize the surface integrity to produce
intricate precise components. Grey analysis delivers excep-
tional solution to uncertain, multi-input, and discrete data
problems. As the EDM process is of similar nature, thus, the
technique is extremely suitable in parameter optimization of
such experimental work.

2 RSM-based experimentation

Experiments were independently conducted to acknowledge
the significance of machining parameters, i.e., Ip, Ton, Tau,
and V on WLT, Ra, and SCD of the AISI D2 tool steel
work piece on die sinking electro discharge machine (make,
Electronica Elektra plus PS 50 ZNC). An electrolytic pure
copper with a diameter of 30 mm was used as a tool elec-
trode (positive polarity), and the workpiece material used
was steel square plates of dimensions 35 × 35 mm2 and of
a thickness of 4 mm. Commercial grade EDM oil (specific
gravity = 0.763, freezing point = 94 ◦C) was used as dielec-
tric fluid. Lateral flushing with a pressure of 0.4 kgf/cm2

was used. The arrangement to conduct the experiments use
a face-centered CCD with four variables, having a total of
30 runs in three blocks [28]. The different levels of a factor
considered for this study are depicted in Table 1. Machining
was carried out to remove nearly 1 mm from the top sur-
face, and the different responses are measured and tabulated
in Table 2.

Table 1 Input variables used in the experiment with their levels

Variable Unit Levels

1 2 3

Discharge current (Ip) A 1 5 9

Pulse on time (Ton) μs 50 75 100

Duty cycle (Tau) % 80 85 90

Discharge voltage (V) volt 40 50 60
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Table 2 CCD and
experimental results for four
variables in uncoded units

Run Blocks Ip Ton Tau V WLT Ra SCD

order A μs % volt μm μm μm/μm2

1 1 9 100 90 40 39.21 8.03 0.0176

2 1 9 50 90 60 31.23 6.24 0.0162

3 1 1 100 90 60 25.68 2.15 0.0612

4 1 1 100 80 40 16.81 1.65 0.0547

5 1 5 75 85 50 26.00 5.41 0.0210

6 1 9 100 80 60 37.02 7.64 0.0177

7 1 9 50 80 40 19.43 6.11 0.0146

8 1 5 75 85 50 25.51 5.22 0.0218

9 1 1 50 80 60 9.43 2.11 0.0516

10 1 1 50 90 40 19.50 2.39 0.0468

11 2 9 50 90 40 32.85 6.01 0.0152

12 2 9 100 80 40 31.59 7.43 0.0173

13 2 1 50 90 60 18.89 2.45 0.0550

14 2 1 100 90 40 23.18 2.09 0.0578

15 2 9 100 90 60 46.60 7.58 0.0182

16 2 5 75 85 50 31.59 5.29 0.0212

17 2 9 50 80 60 25.64 5.83 0.0152

18 2 1 100 80 60 17.18 1.74 0.0625

19 2 5 75 85 50 27.65 5.36 0.0210

20 2 1 50 80 40 6.19 2.15 0.0482

21 3 5 75 85 40 30.07 5.57 0.0219

22 3 5 50 85 50 21.04 4.77 0.0188

23 3 5 100 85 50 29.60 5.81 0.0234

24 3 9 75 85 50 40.59 6.48 0.0165

25 3 5 75 80 50 27.30 5.54 0.0202

26 3 5 75 85 50 32.87 5.60 0.0218

27 3 1 75 85 50 22.87 1.98 0.0547

28 3 5 75 90 50 31.66 5.77 0.0201

29 3 5 75 85 60 27.49 5.52 0.0214

30 3 5 75 85 50 25.74 5.53 0.0210

3 Measurement of responses

3.1 White layer thickness

In order to measure the thickness of the white layer after
EDM operations, the cross section of each specimen was
cut off and polished on silicon carbide paper with grit
sizes 120, 220, 320, 400, and 800, successively. Finally,
the specimen was polished with diamond paste of 1-μm
size. The surface was subsequently electropolished with
slurry of Trinity diamond compound and HIFIN Fluid-“OS”
type. This was necessary in order to expose the white layer
structure and the boundary line. The micrograph of white
layer was then seen under SEM (Model, Joel JSM-6480LV,
Japan) with a magnification of ×500 for the analysis, as
shown in Fig. 1. The area of white layer was measured on Fig. 1 SEM image of EDMed AISI D2 tool steel (transverse section)
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each micrograph, and the mean deposition of white layer
was obtained by dividing the measured area with the length
of the micrograph, i.e., 258 μm.

3.2 Surface roughness

Surface roughness is another very significant response of
interest when investigating EDM process since it influences
the fatigue strength of the machined component. Roughness
measurement was carried out using a portable Stylus-type
Profilometer, Talysurf (Taylor Hobson, Surtronic 3+). The
profilometer was set to a cutoff length of 0.8 mm, filter
2CR, traverse speed of 1 mm/s, and 4-mm evaluation length.
Roughness measurements, in the transverse direction, on the
workpieces were repeated four times, and the average of
four measurements of Ra parameter values was recorded.
The measured profile was digitized and processed through
the dedicated surface finish analysis software Talyprofile
and tabulated in Table 2. Surface roughness is a measure of
the technological quality of a product, which mostly influ-
ence the manufacturing cost of the product. It is defined as
the arithmetic value of the profile from the centerline along
the length. This can be express as follows:

Ra = 1

L

∫ L

0
|y(x)|dx (1)

where L is the sampling length, y is the profile curve,
and x is the profile direction. The average Ra is measured
within L = 0.8 mm. Center-line average Ra measurements
of electrodischarge machined surfaces were taken to provide
quantitative evaluation of the effect of EDM parameters on
surface finish.

3.3 Surface crack density

Surface crack is also one of the possible sources of failure
of machined component. Since, it is difficult to quantify the
cracks in terms of an approximation of the width, length,
or depth of the crack or even by the amount of cracks, a
term Surface Crack Density, is defined as the total length of
cracks (μm) in a unit area (μm2) to assess the severity of
cracking [3]. In this study, the EDMed surfaces were viewed
under the SEM at ×1,000 magnification (Fig. 2). The mea-
surement of surface cracks was carried out by measuring
the length of cracks on randomly selected six-sample micro-
graphs on each specimen and subsequently dividing this
total length of the cracks by the number of samples taken.
The average crack lengths are then divided by the average
area (12,400 μm2) of the sample micrographs to obtain the
SCD.

Fig. 2 SEM image of EDMed AISI D2 tool steel (top surface showing
the cracks)

4 Grey relational analysis

GRA is a decision-making technique based on grey system
theory originally developed by Deng [29]. In grey theory,
black represents a system with deficient information, while
a white system stands for complete information. However,
the grey relation is the relation with incomplete information
and is used to characterize the grade of association between
two sequences so that the distance of two factors can be
measured discretely. When experiments are unclear or if the
experimental method cannot be carried out accurately, grey
analysis assists to reimburse for the deficiency in statisti-
cal regression. Grey relation analysis is an effective means
of analyzing the relationship between sequences with less
data and can analyze many factors that can overcome the
disadvantages of statistical method [30].

4.1 Data preprocessing

When the range of sequences is large or the standard value
is large, the function of factors is neglected. However, if
the factor measured unit, goals, and directions are differ-
ent, the grey relational analysis might produce incorrect
results. Therefore, original experimental data must be pre-
processed to avoid such effects. The data pre-processing
is the process of transforming the original sequence to a
comparable sequence. For which, the experimental data are
normalized in the range of 0 and 1—the process is called
grey relational generating. There are three different kinds of
data normalizations that are generally carried out, rendering
whether the lower is better (LB), the higher is better (HB),
or the nominal the better (NB). If the target value of original
sequence is as small as possible, then it has a characteristic
of “the lower, the better.” The normalization is taken by the
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following equations. LB and the original sequence should
be normalized as follows:

X∗
i (k) = max Xi(k) − Xi(k)

max Xi(k) − min Xi(k)
. (2)

If the expectancy is the as-high-as-possible, then the
original sequence should be normalized by the following
equations for HB:

X∗
i (k) = Xi(k) − min Xi(k)

max Xi(k) − min Xi(k)
. (3)

Conversely, if there is a specific target value to be
achieved, then the original sequence will be normalized by
the following equation of NB:

X∗
i (k) = 1 − |Xi(k) − Xob(k)|

max Xi(k) − Xob(k)
(4)

where i = 1, . . . n; k = 1, 2, . . . , p; X∗
i (k) is normal-

ized value of the kth element in the ith sequence, Xob(k) is
desired value of the kth quality characteristic, max X∗

i (k)

is the largest value of Xi(k), and min X∗
i (k) is the smallest

value of Xi(k), n is the number of experiments, and p is the
number of quality characteristics.

4.2 Grey relational coefficient and grey relational grade

A grey relational coefficient is calculated to display the
relationship between the optimal and actual normalized
experimental results. The grey relational coefficient can be
expressed as

ζ ∗
i (k) = � min + ζ� max

�0,i (k) + ζ� max
(5)

where �0,i (k) = |X0(k) − Xi(k)| is the difference of the
absolute value X0(k) − Xi(k); and ζ is the distinguishing
coefficient or identification coefficient. In general, it is set
to 0.5. � min is the smallest value and � max is the largest
value of �0,i , respectively.

Finally, the grey relational grade 0 ≤ ζ ≤ 1 was
obtained by calculating the average values of all the grey
relational coefficients. The grey relational grade γi can be
compounded as

γi = 1

p

p∑
k=1

ζ ∗
i (k) (6)

where n is the number of process responses. The higher
value of GRG corresponds to the intense relational degree
between the reference sequence X0(k) and the given
sequence xi(k). The reference sequence X0(k) represents
the best process sequence; therefore, higher GRG means
that the corresponding parameter combination is closer to
the optimal. The mean response for the GRG with its grand
mean and the main effect plot of GRGs are very important
because optimal process condition can be evaluated from

this plot. With the values above, the influential degree of the
factors on the system could be identified.

4.3 Analysis and discussion of experimental results

In this work, the effect of different processing parameters on
surface integrity such as WLT, SCD, and Ra of the EDMed
component has been investigated. Table 2 lists experimen-
tal results obtained by the various parametric conditions.
Usually, a lower value of the surface integrity is desirable;
therefore, the data sequences have a the-lower-the-better
characteristic. In normalized experimental results for each
performance characteristic, the original sequence in the
experiment must be normalized in the range of 0–1 due to
different measurement units; this data preprocessing step is
termed as “grey relational generating.” For this purpose, the
WLT, SCD, and Ra “the-lower-the-better” characteristics

Table 3 Normalized values for WLT, Ra, and SCD

Run order WLT Ra SCD

1 0.183 0.000 0.937

2 0.380 0.281 0.967

3 0.518 0.925 0.027

4 0.737 1.003 0.163

5 0.510 0.412 0.866

6 0.237 0.061 0.935

7 0.672 0.302 1.000

8 0.522 0.442 0.850

9 0.920 0.931 0.228

10 0.671 0.887 0.328

11 0.340 0.318 0.987

12 0.371 0.094 0.944

13 0.686 0.877 0.157

14 0.580 0.934 0.098

15 0.000 0.071 0.925

16 0.371 0.431 0.862

17 0.519 0.346 0.987

18 0.728 0.989 0.000

19 0.469 0.420 0.866

20 1.000 0.925 0.299

21 0.409 0.387 0.848

22 0.633 0.513 0.912

23 0.421 0.349 0.816

24 0.149 0.244 0.960

25 0.478 0.392 0.883

26 0.340 0.382 0.850

27 0.587 0.951 0.163

28 0.370 0.355 0.885

29 0.473 0.395 0.858

30 0.516 0.393 0.866
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have been adopted. Table 3 lists normalized experimental
results for these responses using Eq. 4. Also, the deviation
sequences �0i in the range are calculated as follows:

�0,1(k) = |x0(1) − x1(1)| = |1.00 − 0.187| = 0.817

�0,2(k) = |x0(2) − x2(2)| = |1.00 − 0.000| = 1.000

�0,3(k) = |x0(3) − x3(3)| = |1.00 − 0.937| = 0.063

So �0,1 = (0.817 1.00 0.063) and the result of all �0i

are presented in Table 4. The deviation sequence �max and
�min are derived and given as follows:

�max = �15(1) = �1(2) = �18(3) = 1.00

�min = �20(1) = �4(2) = �7(3) = 0.00

The grey relational coefficients, given in Table 5, for each
response have been accumulated by using Eq. 6 to evaluate
GRG, which is the overall representative of all the features
of the surface integrity. The GRG is the mean of three grey

Table 4 Deviation sequences for WLT, Ra, and SCD

Run order WLT Ra SCD

1 0.817 1.000 0.063

2 0.620 0.719 0.033

3 0.482 0.078 0.973

4 0.263 0.000 0.837

5 0.490 0.589 0.134

6 0.763 0.939 0.065

7 0.328 0.699 0.000

8 0.478 0.560 0.150

9 0.080 0.072 0.772

10 0.329 0.116 0.672

11 0.660 0.683 0.013

12 0.629 0.906 0.056

13 0.314 0.125 0.843

14 0.420 0.069 0.902

15 1.000 0.929 0.075

16 0.629 0.571 0.138

17 0.481 0.655 0.013

18 0.272 0.014 1.000

19 0.531 0.582 0.134

20 0.000 0.078 0.701

21 0.591 0.614 0.152

22 0.367 0.489 0.088

23 0.579 0.652 0.184

24 0.851 0.757 0.040

25 0.522 0.610 0.117

26 0.660 0.619 0.150

27 0.413 0.052 0.837

28 0.630 0.646 0.115

29 0.527 0.607 0.142

30 0.484 0.608 0.134

Table 5 Grey relational coefficient, grey relational grade, and rank

Run Grey relational coefficient Grey Rank

order WLT Ra SCD
relational

grade

1 0.380 0.333 0.889 0.534 29

2 0.447 0.410 0.937 0.598 11

3 0.509 0.864 0.339 0.571 20

4 0.655 1.000 0.374 0.676 3

5 0.505 0.459 0.789 0.584 14

6 0.396 0.347 0.885 0.543 27

7 0.604 0.417 1.000 0.674 4

8 0.511 0.472 0.769 0.584 15

9 0.862 0.874 0.393 0.710 2

10 0.603 0.812 0.427 0.614 8

11 0.431 0.423 0.976 0.610 9

12 0.443 0.356 0.899 0.566 21

13 0.614 0.799 0.372 0.595 12

14 0.543 0.879 0.357 0.593 13

15 0.333 0.350 0.869 0.517 30

16 0.443 0.467 0.784 0.565 23

17 0.510 0.433 0.976 0.639 7

18 0.648 0.973 0.333 0.651 5

19 0.485 0.462 0.789 0.579 18

20 1.000 0.864 0.416 0.760 1

21 0.458 0.449 0.766 0.558 25

22 0.576 0.506 0.851 0.644 6

23 0.463 0.434 0.731 0.543 28

24 0.370 0.398 0.926 0.565 22

25 0.489 0.451 0.810 0.583 16

26 0.431 0.447 0.769 0.549 26

27 0.548 0.906 0.374 0.609 10

28 0.442 0.436 0.813 0.564 24

29 0.487 0.452 0.779 0.573 19

30 0.508 0.451 0.789 0.583 17
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Fig. 3 Response graph for grey relational grade
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Table 6 Estimated regression
coefficients for GRG (before
elimination)

Term Coef SE coef t p

Constant 0.574807 0.006428 89.428 0.000

Block1 0.003317 0.004781 0.694 0.500a

Block2 0.002093 0.004781 0.438 0.669a

Ip −0.029668 0.004014 −7.391 0.000

Ton −0.036069 0.004014 −8.985 0.000

Tau −0.033703 0.004014 −8.395 0.000

V −0.010387 0.004014 −2.587 0.023

Ip × Ip 0.016757 0.010690 1.568 0.141a

Ton × Ton 0.023267 0.010690 2.177 0.049

Tau × Tau 0.003401 0.010690 0.318 0.755a

V × V −0.005133 0.010690 −0.480 0.639a

Ip × Ton −0.010842 0.004258 −2.546 0.024

Ip × Tau 0.016374 0.004258 3.846 0.002

Ip × V 0.001930 0.004258 0.453 0.658a

Ton × Tau 0.009062 0.004258 2.128 0.053a

Ton × V 0.001802 0.004258 0.423 0.679a

Tau × V 0.004042 0.004258 0.949 0.360a

R2 = 95.6 % R2
(adj) = 90.2 %

T value was obtained from the
t-test, which indicates the
significance of the regression
coefficients
aNonsignificant

relational coefficients obtained using Eq. 6. Experiment
number 20 generated the highest GRG. Thus, the multi-
criteria optimization problem has been transformed into a
single equivalent objective function optimization problem
using the combination of RSM and GRA. Higher is the
value of GRG; the corresponding factor combination is said
to be close to the optimal. The GRGs were analyzed in the
main effect analysis, and then the optimization processing
parameters of multiple quality characteristics were obtained
from the response table and response graph for grey rela-
tional analysis, as shown in Table 5 and Fig. 3, respectively.
Therefore, the optimal combination of processing parame-
ters for surface integrity was obtained when they are at their
minimal setting.
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Fig. 4 Plot of standardized residuals vs. fitted grey relational grade
value

5 Results and discussion

Statistical analysis was carried out on the experimental data
obtained through face-centered central composite design
using statistical software MINITAB 14. This section, there-
fore, discusses the results of RSM analysis of experimental
analysis in detail.

5.1 Modeling of responses and statistical analysis

The responses obtained from the aforesaid experimental
conditions are given in Table 2, and the regression coeffi-
cient values, standard deviations, t-values, and probability
(p) values are given in Table 6. Regression analysis is per-
formed to find out the relationship between the input factors
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Fig. 5 Normal probability plot of standardized residuals
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Fig. 6 Influence of process
parameters on grey relational
grade
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and the responses. ANOVA is used to check the sufficiency
of the second-order model, which includes test for signifi-
cance to the regression model, model coefficients, and test
for lack of fit. To test the adequacy of the model, ANOVA
is used for testing the null hypothesis (H0) of the exper-
imental data at a confidence level of 95 %. The p value
for the F-statistic is expressing the probability of observing
a value of F at least as large, if H0 is true, then treat-
ments have no effect. If the p value ≤ 0.05, it is concluded
that Hα is true, and the treatments have a statistically sig-
nificant effect. Responses obtained from the experiments
are compared with the predicted value calculated from the
model.

Table 6 is the ANOVA summary that depicts the terms in
the model, corresponding coefficients (Coef.), t-statistic and
p value to decide whether to reject or fail to reject the null
hypothesis. The terms marked “a” in the table, are exceed-
ing the α value. Thus, these terms are eliminated for the
further analysis. The blocking does not have any significant
effect on the response, which reveals that the uncontrollable
factors of the experiment conducted were held constant.
The backward elimination process discards the insignifi-
cant terms (p value greater than 0.05) to adjust the fitted
quadratic model. The model, with the rest of the terms are
eliminated and presented in Eq. 7. After the ANOVA of the
model, it can be observed in this table that the p value of
the regression model is less than 0.05; hence, the responses’

fitting the regression model with the linear, square, and
interaction terms are significant at the level of 95 % after
elimination. It also displays that the test of lack of fit is
insignificant with the associated p value of 0.289, which
is greater than 0.05, as desired for the model adequacy.
This way, the simplified truncated model having the high-
est value of R2 is 0.918, indicating a high significance of
the model because of the value of F-statistic. The truncated
model has lower R2 than that of the full quadratic model
(96.6 %), and R2

adj value is 89.2 %, exhibiting significance
of relationship between the response and the variables and
the terms of the adequate model after the elimination are Ip,
Ton, Tau, V, Ton2, Ip×Ton, and Ip×Tau. Nevertheless, the p

value of the regression model is 0.000, therefore the model
is statistically significant at 95 % confidence and conse-
quently, the model adequately represents the experimental
data.

GRG = 1.9997 − 0.0689 Ip − 0.0102 Ton

− 0.0108 Tau − 0.0010 V + 0.0001 Ton2

− 0.0001 Ip × Ton + 0.0008 Ip × Tau (7)

In the Fig. 4, plotted between the standardized residuals,
and the fitted value a random distribution was observed for
the residual plots for the models, indicating that the residual

Table 7 ANOVA analysis
Source DF Seq SS Adj MS F p

Regression 7 0.078562 0.011223 35.31 0.000a

Residual error 22 0.006992 0.000318

Lack-of-Fit 17 0.005966 0.000351 1.71 0.289b

Total 29 0.085554

R2 = 0.918
aIndicates highly significant
bIndicates insignificant
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distribution of the regression equation follows normal and
independent patterns [31]. This suggests the high adequacy
of the quadratic models for evaluating the surface integrity.
The normal probability plot is presented in Fig. 5, it can be
seen that the points lie close to the straight line, indicating
that the data follow a normal distribution, except one out-
lier. Figure 6 depicts the plots of the main effects on surface
integrity and can be used to graphically assess the effects
of the factors on the response. It indicates that Ip, Ton, and
Tau have significant effect on surface integrity, which is
supported by the results in Table 7.

The GRG graph showing the different factors at different
level contributing to the mean grey relational grade is shown
in Fig. 3. The higher the value of the GRG, the better is the
multiple characteristics. It can be clearly seen that all the
parameters at their lower level produce higher GRG. With
GRG as the response, the surface plot of the quadratic model
with other two significant variables kept at their central lev-
els and the other two varying within the experimental ranges
are, respectively, shown in Figs. 7 and 8. Figure 7 repre-
sents response surface for GRG in relation to the machining
parameters of Ip and Ton, and Fig. 8 represents response
surface for GRG in relation to the machining parameters of
Ip and Tau, respectively. It can be seen that the highest GRG
and thereby low surface integrity can be achieved when the
parameters Ip, Ton, and Tau are kept at their minimum level.
The contour plots of the quadratic model with two variables
kept at their central levels and the other two varying within
the experimental ranges are, respectively, shown in Fig. 9.
Figure 9a represents the contour plot for surface integrity in
relation to the machining parameters of Ip and Ton. The sur-
face integrity decreases significantly with the decrease of Ip.
Ton also has similar impact on surface integrity. As a result,
therefore, the minimum surface integrity can be seen when
Ip and Ton at their low level. Similar counter plots were also
observed in Fig. 9b–f. The corresponding two-dimensional
contours show a considerable curvature, implying that these

Fig. 9 Two-dimensional
contour plots for grey relational
grade: effect of a Ip and Ton, b
Ip and Tau, c Ip and V, d Ton and
Tau, e Ton and V and f Tau and V
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Fig. 10 Percentage contributions of factors on the grey relational
grade

three factors were interdependent. In other words, there
were significant interactive effects on surface integrity.

ANOVA is used to get the percentage of contribution
of different input variables and their interactions that pro-
duces the optimal response. The percentage of contribution
is computed as the ratio of total sum of squared deviation
and the individual sum of square of each parameter and their
interactions that are significant [12, 32]. Percentage con-
tribution of each factor and their interactions on the grey
relational grade has been depicted in Fig. 10 with the EDM
parameter levels on the GRG. From the figure of the GRG
for various levels (Table 5), significance of each parameter
can be visually understood. The Ip contributes to 18.46 %,
Ton contributes to 27.46 %, and Tau contributes 23.87 %
of variation of GRG in the range of experiment conducted.
Further, discharge voltage contributes very little to the GRG
with 2.30 %, along with integration Ip × Ton and Ip × Tau
with 2.19 and 4.98, respectively. The squire terms contribute
to 12.57 %. Finally, the residual error contribution is 8.17 %
split into two divisions’ lack of fit and pure error with a
contribution of 6.98 and 1.2 %, respectively.

6 Conclusion

In this investigation using response surface methodol-
ogy coupled with grey relational analysis to optimize the
machining parameters having a significant effect upon the
surface integrity (WLT, SCD, and Ra) of EDMed surfaces
are recognized and mathematical model is developed. It was
found that the pulse duration was the most dominant factor
for surface integrity followed by duty factor, pulse current,
and discharge voltage. The optimal operational conditions
established by grey analysis approach are as follows: a pulse
current 1 A, pulse duration 50 μs, duty cycle = 80 % and
discharge voltage 40 V. By applying these process param-
eter values, minimum output responses such as white layer

thickness, surface roughness, and surface crack density have
been predicted. This may provide the experimenter and
practitioner an effectual guideline to pick optimum parame-
ter settings for attaining desired WLT, SCD, and Ra during
EDM die sinking of AISI D2 tool steel.

Acknowledgements The author is extremely thankful to his guide
Dr. C. K. Biswas and the anonymous reviewers for their valuable com-
ments and suggestions, which contributed significantly to improve the
quality of the paper.

References

1. Kozak J, Rajurkar K (2001) Hybrid machining processes, eval-
uation and development. In: Proceedings of 2nd international
conference on machining and measurement of sculptured surfaces,
vol 1, pp 501–536

2. Abu-Zeid O (1996) The role of voltage pulse off-time in the elec-
trodischarge machined AISI T1 high-speed steel. J Mater Process
Technol 61(3):287–291

3. Lee HT, Tai TY (2003) Relationship between EDM parameters
and surface crack formation. J Mater Process Technol 142:676–
683

4. Ramasawmy H, Blunt L, Rajurkar K (2005) Investigation of the
relationship between the white layer thickness and 3D surface
texture parameters in the die sinking EDM process. Precis Eng
29(4):479–490

5. Lee LC, Lim LC, Narayanan V, Venkatesh VC (1988) Quantifica-
tion of surface damage of tool steels after EDM. Int J Mach Tools
Manuf 28(44):359–372

6. Lee HT, Hsu FC, Tai TY (2004) Study of surface integrity using
the small area EDM process with a copper-tungsten electrode.
Mater Sci Eng 364:346–356

7. Tai T, Lu S (2009) Improving the fatigue life of electro-discharge-
machined SDK11 tool steel via the suppression of surface cracks.
Int J Fatigue 31(3):433–438

8. Pradhan MK (2010) Experimental investigation and modelling of
surface integrity, accuracy and productivity aspect in EDM of AISI
D2 steel. PhD thesis, National Institute of Technology, Rourkela

9. Niwa S, Furuya M (1995) A study on optimum machining condi-
tions in EDM process for making mould and dies. ISEM XI:325–
332

10. El-Taweel T (2008) Multi-response optimization of EDM with
Al–Cu–Si–TiC P/M composite electrode. Int J Adv Manuf
Technol 44(1–2):100–113

11. Liao Y, Chen Y (2001) A computer-aided process planning system
for the finishing operations of EDM. ISEM XIII:171–185

12. Pradhan MK, Biswas CK (2011) Multi-response optimisation of
EDM AISI D2 tool steel using response surface methodology.
IJMMM 9:66–85

13. Bhattacharyya B, Gangopadhyay S, Sarkar BR (2007) Modelling
and analysis of EDMed job surface integrity. J Mater Process
Technol 189:169–177

14. Lin C, Lin J, Ko T (2002) Optimisation of the EDM process
based on the orthogonal array with fuzzy logic and grey relational
analysis method. Int J Adv Manuf Technol 19(4):271–277

15. Pradhan MK, Biswas CK (2011) Investigation in to the effect of
process parameters on surface roughness in EDM of AISI D2 steel
by response surface methodology. Int J Precis Technol 2:64–80

16. Lin J, Lin C (2002) The use of the orthogonal array with grey
relational analysis to optimize the electrical discharge machin-
ing process with multiple performance characteristics. Int J Mach
Tools Manuf 42:237–244



2062 Int J Adv Manuf Technol (2013) 67:2051–2062

17. Singh S, Maheshwari S, Pandey P (2004) Some investigations into
the electric-discharge machining of hardened tool steel using dif-
ferent electrode materials. J Mater Process Technol 149(1–3):272–
277

18. Yildiz AR (2008) Optimal structural design of vehicle components
using topology design and optimization. Mater Test 50(4):224–228

19. Yildiz AR, Saitou K (2011) Topology synthesis of multicompo-
nent structural assemblies in continuum domains. J Mech Des
133(1):011008

20. Yildiz AR (2009) A novel hybrid immune algorithm for global
optimization in design and manufacturing. Robot Comput-Integr
Manuf 25(2):261–270

21. Yildiz AR (2009) A new design optimization framework based on
immune algorithm and Taguchi’s method. Comput Ind 60(8):613–
620

22. Yildiz AR (2009) A novel particle swarm optimization approach
for product design and manufacturing. Int J Adv Manuf Technol
40(5–6):617–628

23. Yildiz AR, Ozturk N, Kaya N, Ozturk F (2006) Integrated optimal
topology design and shape optimization using neural networks.
Struct Multidisc Optim 25(4):251–260

24. Yildiz AR (2009) An effective hybrid immune-hill climbing
optimization approach for solving design and manufacturing
optimization problems in industry. J Mater Process Technol
50(4):224–228

25. Yildiz AR (2009) Hybrid immune-simulated annealing algorithm
for optimal design and manufacturing. Int J Mater Prod Technol
34(3):217–226

26. Yildiz AR, Ozturk N, Kaya N, Ozturk F (2007) Hybrid multi-
objective shape design optimization using Taguchi’s method
and genetic algorithm. Struct Multidisc Optim 34(7):277–
365

27. Yildiz AR, Kaya N, Alankus O, Ozturk F (2004) Optimal design
of vehicle components using topology design and optimization.
Int J Veh Des 34(4):387–398

28. Minitab14 (2003) Minitab user manual release 14. State College,
PA, USA

29. Deng JL (1989) Introduction to grey system theory. J Grey Syst
1:1–24

30. Chang C, Tsai C, Chen L (2003) Applying grey relational analysis
to the decathlon evaluation model. Int J Comput Internet Manage
11(3):54–62

31. Hwang S, Lee Y, Yang K (2001) Maximization of acetic acid pro-
duction in partial acidogenesis of swine wastewater. Biotechnol
Bioeng 75(5):521–529

32. Krishnamoorthy A, Boopathy SR, Palanikumar K, Davim JP
(2012) Application of grey fuzzy logic for the optimization of
drilling parameters for CFRP composites with multiple perfor-
mance characteristics. Measurement 45(5):1286–1296


	Estimating the effect of process parameters on surface integrity of EDMed AISI D2 tool steel by response surface methodology coupled with grey relational analysis
	Abstract
	Introduction
	RSM-based experimentation
	Measurement of responses
	White layer thickness
	Surface roughness
	Surface crack density

	Grey relational analysis
	Data preprocessing
	Grey relational coefficient and grey relational grade
	Analysis and discussion of experimental results

	Results and discussion
	Modeling of responses and statistical analysis

	Conclusion
	Acknowledgements
	References


