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Abstract In this paper, we study a single machine schedul-
ing problem with deteriorating processing time of jobs and
multiple preventive maintenances which reset deteriorated
processing time to the original processing time. In this
situation, we consider three kinds of problems whose per-
formance measures are makespan, total completion time,
and total weighted completion time. First, we formulate
integer programming formulations, and using the formula-
tions, one can find optimal solutions for small problems.
Since these problems are known to be NP-hard and the size
of real problem is very large, we propose a number of
heuristics and design genetic algorithms for the problems.
Finally, we conduct some computational experiments to
evaluate the performance of the proposed algorithms.
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1 Introduction

In several decades, a number of researchers have considered
problems with task processing time being known parameters
in deterministic scheduling problems. However, the task
processing time may change due to various activities (i.e.,
human or machine’ fatigue, learning effects, etc.) in real
manufacturing area. In this case, the processing times of
tasks are variable depending on starting time of the task or

position of the task. Several scheduling studies with non-
constant processing time have received increasing attention
in recent years. In the nonconstant processing time, Gupta
and Gupta [10] and Brown and Yechiali [2] first introduced
scheduling problem with task deterioration. In this study, the
actual processing time of tasks is modeled as an increasing
function of its starting time due to deterioration effects. In
order to make the analysis possible, most research models
the actual processing time of a task as a linear or piecewise
linear increasing function of its starting time. Gupta and
Gupta [10] introduced a scheduling model with variable
processing time of a job which is a polynomial function of
its initial processing time. Browne and Yechiali [2] dis-
cussed deteriorating jobs and their processing times increase
while they await service. They assumed that the actual
processing time is pi+ait, where pi is the original processing
time, ai is the growth rate of the processing time, and t is the
start time of job i, and the processing time of the job
increases linearly with its starting time t. This problem is
called scheduling with time-dependent deterioration. It
reflects a variety of real-life situations such as steel produc-
tion, resource allocation, firefighting, maintenance or clean-
ing, etc. (see Kunnathur and Gupta, [13, 19]) in which any
delay in processing a job may result in an increasing effort
to accomplish the job. Kubiak and Vende [12] investigated
the computational complexity of makespan under deteriora-
tion. They developed a heuristic and branch-and-bound
algorithm for the problem. Kovalyov and Kubiak [11] pre-
sented a fully polynomial approximation scheme for a single
machine scheduling problem to minimize makespan of de-
teriorating jobs. They showed that sequencing the jobs in an
increasing order of pi/ai minimizes the makespan on single
machine scheduling problem. Mosheiov [18] considered the
problem of minimizing total flow time of jobs with the
actual processing time pi+ait. He found that the optimal
sequence of this problem is V-shaped. The V-shaped sched-
uling indicates that jobs are arranged in descending order of
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growth rate if they are placed before the minimal growth
rate job and in ascending order if placed after it. Cheng and
Ding [4] studied a single machine to minimize makespan
with deadlines and increasing rates of processing times.
They found that both problems are solvable by a dynamic
programming algorithm. Bachman et al. [1] proved that total
weighted completion time is non-deterministic polynomial-
time (NP)-hard for single machine scheduling in which the
job processing times are decreasing linear functions depen-
dent on their start times.

Scheduling problems have less attention to include the
possibility of inserting preventive maintenance activity into
the job sequence. Lee and Leon [16] introduced the concept
of rate-modifying activity to the scheduling literature. A
rate-modifying activity (RMA) is any activity that alters
the speed in which a resource performs tasks. Therefore,
the preventive maintenance activity is a good example of
RMAs. They assume that one rate-modifying activity which
changes the production rate of equipment is included during
the planning horizon. Given a set of jobs to be performed by
a resource and an RMA of fixed length that will recover the
processing rate of the resource, they determine (a) the se-
quence in which the jobs should be performed and (b) when
to schedule the fixed-length RMA so that the objective of
the scheduling is optimized. In this study, they do not
include the possibility of machine breakdown. They devel-
oped polynomial algorithms for solving minimizing both
makespan and total completion time. Lee and Lin [15]
considered single machine scheduling problems involving
repair and maintenance activities. They derived optimal
policies for scheduling fixed-length RMAs and job sequenc-
ing in an environment by machine breakdowns. In particu-
lar, the machine breakdown is modeled by the stochastic
process. They focused on two types of processing cases,
resumable and nonresumable. If the RMA is scheduled
before a breakdown, then job processing times are reduced.
If breakdown occurs, a repair activity whose duration is a
random variable is immediately applied, and the resource’s
normal processing time is resumed for the remainder of the
planning horizon. The objective functions were minimizing
the expected makespan, total expected completion time,
maximum expected lateness, and expected maximum late-
ness, respectively. Grave and Lee [9] presented a single
machine scheduling problem where the objective was to
minimize the total weighted completion time of jobs. How-
ever, this study is limited in that only one maintenance
activity can be performed during the planning horizon. Lee
and Chen [14] extended to parallel machines, but they are
still limited on single maintenance activity allowed. Qi et al.
[22] considered a single machine problem with the possibil-
ity for multiple maintenance activities, but during schedul-
ing period, they ignore the deterioration of processing time
for jobs. Cassady and Kutanoglu [3] developed an

integrated stochastic model for a single machine problem
with total weighted expected completion time as the objec-
tive function. Their model allows multiple maintenance
activities and explicitly captures the risk of not performing
maintenance. Sortrakul et al. [23] developed a genetic algo-
rithm for the integrated stochastic optimization model for
production scheduling and multiple preventive maintenance
activities by Cassady and Kutanoglu [3].

Despite the trade-offs between the two activities such as
deterioration of processing time for jobs and preventive
maintenance, most studies are typically planned indepen-
dently or neglected in real production scheduling even if
productivity can be improved by optimizing both produc-
tion scheduling and preventive maintenance decisions si-
multaneously. Lodree and Geiger [17] integrated time-
dependent processing times and a maintenance activity by
inserting a rate-modifying activity into the job sequence.
They presented that a single maintenance must be inserted
in the middle of the optimal job sequence to minimize
makespan.

This paper deals with a deterministic scheduling problem
which is proposed by Ozturkoglu and Bulfin [20]. They
integrated multiple preventive maintenance activities and
position-based deterioration of jobs, where position-based
deterioration of jobs determines the actual processing time
of a job depending on the position of the job sequenced. We
propose several heuristics including hybrid genetic algo-
rithm to solve the problem of Ozturkoglu and Bulfin [20]
in three objective functions: makespan, total completion
time, and total weighted completion time.

The following section contains an integer programming
formulation of the problem and a simple example problem.
In Section 4, heuristic algorithms for the problems are
considered, including genetic algorithm. In Section 5, we
report the results of computational experiments to compare
the performance of algorithms proposed. Finally, we con-
clude the paper with a summary and some directions for
future research in Section 6.

2 Integer programming formulation

In this paper, we model single machine problem with mul-
tiple preventive maintenance activities and position-based
deteriorations. First, we formulate the problem minimizing
makespan or minimizing total weighted completion time as
an integer linear programming. Before we introduce the
formulation, the assumptions we make about this system
are as follows:

1. There is only one worker in single machine.
2. The deterioration of a job depends on its job sequence.
3. Preemptive jobs are not permitted.

1128 Int J Adv Manuf Technol (2013) 67:1127–1137



4. After a preventive maintenance, the worker recovers
completely, which means the processing time of jobs returns
to an original processing time.
5. Deterioration process is the same after a preventive main-
tenance is completed.

The definition of index and notation for the formulation
are as follows:

N Number of jobs
i Index for ith position from the previous maintenance
j Index for job
k Index for position for the most recent preventive

maintenance
α Deterioration rate for jobs, where 0<α≤1 when

delayed by one position

t Preventive maintenance period
A The set of jobs after job i and j
B The set of jobs before job i and j
pj Initial processing time of job j
pij Deteriorated processing time for job j assigned in ith

position if a maintenance is executed in just before
initial position, where, k≤ i

wj Weight of job j
Ci Completion time of the job assigned in ith position

pij ¼ 1þ að Þi�1pj

and the integer programming uses the following variables

xijk ¼
1; if job j is assigned to ith position under the most recent maintenance is executed in

kth position; where k � i

0; otherwise

8>><
>>:

yi ¼ 1; if a preventive maintenance is performed before ith position;
0; otherwise

�

Using the above parameters and variables, we can repre-
sent our problem of minimizing makespan or minimizing
total completion time to an integer linear programming
formulation as follows:

Min Cn or
XN
i¼1

Ci; ð1Þ

subject to

PN
i¼1

Pi
k¼1

xijk ¼ 1 j ¼ 1; 2; . . . ;N ð2Þ

XN
j¼1

Xi

k¼1

xijk ¼ 1 i ¼ 1; 2; . . . ;N ð3Þ

xijk � yk j; k ¼ 1; 2; . . . ;N i ¼ k; . . . ;N ; ð4Þ

C1 ¼
XN
j¼1

p1jx1j1 ð5Þ

Ci ¼ Ci�1 þ
Xi

k¼1

XN
j¼1

p i�kþ1ð Þjxijk þ tyi;

i ¼ 2; . . . ;N ;

ð6Þ

xijk ; yi 2 0; 1f g i; j ¼ 1; 2; . . . ;N k ¼ 1; 2; . . . ; i ð7Þ

Equation (1) means that this problem is to minimize
makespan or minimize total weighted completion time.
Equation (2) assures that each job is assigned to exactly
one position. Equation (3) guarantees that each position is
scheduled for only one job. Equation (4) assures that if any
job j is assigned to any kth position under the most recent
maintenance is executed in ith position, a preventive main-
tenance must be performed in ith position. By Eqs. (5) and
(6), the completion time for all the positions can be calcu-
lated. Equation (7) shows that the variables are 0–1 binary
integers. Cheng and Ding [4] proved that single machine
scheduling problem with step-deteriorating processing time
and identical deterioration date by reductions from partition,
which is known as strongly NP-hard [5]. According to
Graham [8], the problem they studied can be represented
by 1 pi ¼ ai= or pi ¼ ai þ bi, di ¼ d g= , where ai, bi, and di
are normal processing time, deterioration penalty, and the
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deteriorating due date of job i, respectively, and the objec-
tive function γ is Cmax,

P
Ci or

P
wiCi. We assume that

a[i], b[i], and d[i] are normal processing time, deterioration
penalty, and the deteriorating due date of ith job. If d00 and
p[i]0a[i] if s[i]≤d or p[i]0a[i−1]+b[i], otherwise, where
b[i]0αa[i−1], the problem is equivalent to our problem in
this paper except considering a number of preventive main-
tenances. Thus, the problems are even more difficult due to
the existence of the multiple numbers of preventive main-
tenances during planning horizon. Therefore, our problem is
NP-hard, too.

3 Heuristics

In this section, we propose several heuristics for single
machine problem with multiple preventive maintenance ac-
tivity and position-based deteriorations. Three performance
measures are used for our system which consists of make-
span, total completion time, and total weighted completion
time. According to Graham [8], the problem studied in this

paper can be represented by 1 pij ¼ 1þ að Þi�1pj
�� ; pmjg

which the symbol α represents positive deteriorating rate,
pij means a deteriorated processing time for job j assigned
in ith position if the maintenance is executed just before
initial position, pm describes preventive maintenances, and
γ represents an objective function among Cmax,

P
Ci , orP

wiCi.

3.1 Makespan problem

In this section, we consider minimizing makespan on single
machine problem with multiple preventive maintenance and
exponential job deterioration. Since this problem is NP-hard
[4], an efficient optimal solution procedure unlikely exists
and one needs to search for effective heuristic procedures. In
this section, we propose several heuristics for minimizing

makespan, i.e., 1 pij ¼ 1þ að Þi�1pj
.

, pm Cmax= . If there is no

maintenance, i.e., 1 pij ¼ 1þ að Þi�1pj
.

Cmax= , the following

theorem can be introduced.
Proposition 3.1: Longest processing time (LPT) se-

quencing minimizes the makespan on single machine prob-
lem with exponential job deterioration.

Proof: Since pnj ¼ 1þ að Þn�1pj and suppose schedule S
minimizes makespan and is not in LPT order, there must be
a pair of jobs in S, say job i and job j, and job i is
immediately after job j they are in position n−1 and position
n, and pi<pj, where i≠j, 0<i≤N, 0<j≤N, and 0<n≤N. Let TC
(B) be the total completion time of the jobs before job i and j
and TC(A) be the total completion time of the jobs after job i

and j. Now, consider the schedule S′, where S′ is the same as
schedule S except job i and j have been interchanged and the
sets of jobs A and B are in the same position in both schedules.
The total completion time for S is

TCðSÞ ¼ TCðBÞ þ p n�1ð Þi þ pnj þ TCðAÞ
¼ TCðBÞ þ 1þ að Þn�2pi þ 1þ að Þn�1pj þ TCðAÞ;

and the total completion time for S′ is

TC S
0� � ¼ TCðBÞ þ p n�1ð Þj þ pni þ TCðAÞ
¼ TCðBÞ þ 1þ að Þn�2pj þ 1þ að Þn�1pi þ TCðAÞ:

Subtracting, we get

TCðSÞ � TC S
0

� �
¼ a 1þ að Þn�2 pj � pi

� �
> 0:

This implies that the makespan of S′ is smaller than S, which
contradicts the assumption that S was optimal. Therefore, an
optimal solution must be in LPT.

Since LPT sequencing minimizes the makespan on
single machine problem with exponentially growing
position-based job deterioration, we propose two local
search heuristics using LPT sequencing. We called the
first heuristic as largest processing time and preventive
maintenance ratio (LPTRT) and we called the second
heuristic as largest processing time and bucket assign-
ment (LPTBK). First, we propose a basic heuristic
which generates random schedule with random preven-
tive maintenance (RSRM) to compare the performance
of the heuristics and genetic algorithm.

Algorithm RSRM

Step 1: Sort the jobs in a random order.
Step 2: If there are no remaining jobs in the sorted list to
be placed in the current position, stop.
Step 3: Place the first job of the sorted list to the
position.
Step 4: Generate a binary random number from [0, 1]
for the existence of a preventive maintenance is in the
current position.
Step 5: If the number is 1, set pij0pj, or set pij ¼
1þ að Þi�1pj , otherwise. Calculate the completion time
of the job j using pij. Update i01, if the number is 1, or
update i0 i+1, otherwise.
Step 6: Remove the job from the sorted list and go to
step 2.

RSRM is based as a benchmark for comparison with the
heuristics developed in this paper. Based on the RSRM, we
propose the second heuristic, LPTRT heuristic. In this heuris-
tic, the decision to perform a preventive maintenance to
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current position is determined by deterioration ratio r ¼ p tm= ,
where π is the cumulative deterioration and t is the mainte-
nance period. The cumulative deterioration means the sum of
deterioration periods of the succeeding jobs assigned between
the position of the previous maintenance and current position.
If the deterioration ratio (r) is more than 1, a preventive
maintenance needs to be in front of the current job because
it is more time efficient to include a preventive maintenance
and recover original processing time of jobs when r is more
than 1. The detail heuristic procedure is as follows:

Algorithm LPTRT

Step 1: Sort the jobs in LPT order and set π00.
Step 2: If there are no remaining jobs in the sorted list to
be placed in the current position, stop.
Step 3: Place the first job from the sorted list.
Step 4: If r>1, include a preventive maintenance in

front of the current position and pij0pj or set pij ¼
1þ að Þi�1pj , otherwise. Calculate the completion time
of the job j using pij.
Step 5: Calculate dj ¼ pij � pj and update π by using
equation p ¼ p þ dij.
Step 6: Remove the assigned job from the sorted list
and go to step 2.

LPTRT constructively determines the positions of the pre-
ventive maintenance by comparing the cumulative deteriora-
tion to the preventive maintenance period. In this case, it is
difficult to place more jobs with large processing time to the
front location in the preventive maintenance positions. To
assign jobs with larger processing time to front location in
each maintenance position, we propose LPTBK. In this heu-
ristic, we first find the required number of preventive main-
tenances, N using the deterioration ratio r in LPTRT. We
generate N buckets to contain a number of positions to place
jobs in each bucket. A preventive maintenance is executed in
front of the first position in each bucket. The number of
positions for the jobs is evenly divided in each bucket. Then,
we select the first N jobs in the list of LPT order and place the
first position in each N bucket. Then, we select next N jobs in
LPTorder and place the second position in eachN bucket until
all the jobs in the list are assigned to appropriate slots in N
buckets. The detail heuristic procedure is as follows:

Algorithm LPTBK

Step 1: Sort the jobs in LPT order.
Step 2: Find bucket size N by calculating r in LPTRT,
where N is increased by 1, whenever r>1.
Step 3: Select the first N jobs in the sorted list and place
the first available position in each bucket.
Step 4: If there are no remaining jobs in the sorted list to
be placed in the current position, stop.

Step 5: Remove the first N jobs from the sorted list and
go to step 3.
Step 6: Calculate the completion time of jobs assigned
in N bucket.

3.2 Total completion time and total weighted completion
time problem

The total completion time is a special case of the total
weighted completion time, e.g., if we set all weights in the
total weighted completion time case to one, it reduces to the
total completion time problem. Therefore, we study these
two problems in the current section together. Since these
problems with no maintenance were proved to be NP-hard
[4], the current problem is NP-hard too. Hence, it is needed
to search for effective heuristic procedure.

In contrast to the makespan problem, it is known that
shortest processing time (SPT) and weighted SPT rules
work better than LPT in the total completion time prob-
lem and the total weighted completion time problem,
respectively. In single machine problem with multiple
preventive maintenances and exponential position-based
deterioration, however, we have to consider not only the
actual processing time of jobs considering position-based
job deterioration but also the positions of preventive
maintenances. Using this basic concept, we propose a simple
greedy heuristic.

Algorithm GRD

Step 1: Sort the jobs in pj wj

�
order and set π00.

Step 2: Use steps 2, 3, 4, 5, and 6 of LPTRT.

Mosheiov [18] considers the problem of minimizing total
completion time in single machine that the actual processing
time of each job grows linearly with its starting time. In this
case, a different rate of growth is associated with each job.
He shows that an optimal sequence to minimize total com-
pletion time is V-shaped: jobs are arranged in descending
order of growth rate if they are placed before the minimal
growth rate job and in ascending order if placed after it.
Since the growth rate exponentially depends on the process-
ing time of each job in this paper, we follow the general
heuristic procedure using the processing time and the weight
instead of the growth rate proposed by Mosheiov [18].

Algorithm VGRD

Step 1: Use step 1 of greedy heuristic (GRD).
Step 2: Use step 2 of LPTBK.
Step 3: Assign n N=b c number of slots in each bucket
and if k ¼ n� N � n N=b c exists, assign an additional
slot from the first to kth bucket.
Step 4: Open an available bucket. Place first job in the
sorted list into the first slot in the bucket, place next job
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in the sorted list into the last slot in the bucket, place
next job in the sorted list into the second slot in the
bucket, and place next job in the sorted list into the next
to the last slot in the bucket. Repeat this procedure until
jobs are assigned in the every slot in the bucket.
Step 6: If there are buckets to be scheduled, go to step 4,
otherwise stop.

Although these procedures are made for total weighted
completion time, it can easily be applied to total completion
time by setting all weights to one, i.e., wj01.

4 Genetic algorithms

The genetic algorithms, which have been widely used var-
iously for three decades, are stochastic search algorithms
based on the mechanism of natural selection and natural
reproduction process of genetics. Being different from the
conventional search techniques, they start with an initial set
of (random) solutions called a population. Each individual
in the population is called a chromosome, representing a
solution to the problem at hand. The chromosomes evolve
through successive iterations, called generations. During
each generation, the chromosomes are evaluated using some
measures of fitness. Generally speaking, the genetic algo-
rithm is applied to spaces that are too large to be exhaus-
tively searched [7].

4.1 Representation and initialization

The proper representation of a solution plays a critical role
in the development of a genetic algorithm. Sortrakul et al.
[23] generate two separate chromosomes: one for the job
sequence and the other for the existence of preventive main-
tenance. Following Sortrakul et al. [23], we also use the two
separate chromosome representation. However, we use the
random key generation representation to generate the job
sequence chromosome, in which K random numbers from
[0, 1] are used as keys to represent a sequence of K integers
in the range of (1, K) [24]. Since the random key represen-
tation eliminates the infeasibility of the offspring chromo-
some as well as representing solutions in a soft manner, this
representation is applicable to a wide variety of sequencing
optimization problems (i.e., machine scheduling, resource
allocation, travel salesman problem, quadratic assignment,
vehicle routing, etc.) [6]. For the initial preventive mainte-
nance, we first generate total number of the preventive
maintenances (N) using the ratio of total deterioration period
to preventive maintenance period in LPTBK in Section 3.1.
Then, we randomly select the N positions in the range of [1,
K], where 0≤N≤K. Thus, our initial solution set can be
obtained by simple random number generation from [0, 1]

for the job sequence and 0–1 binary number generation for
preventive maintenance existence by adding 1 into N posi-
tion between first position and Kth position. In our example,
stated in earlier sections, there are ten jobs. The sets of
processing times of each job are (5.01, 7.82, 5.97, 9.04,
7.93, 7.4, 6.75, 9.48, 9.11, and 8.73) from [0, 10]. Preven-
tive maintenance period and deterioration rate for jobs are
t06.0 and α00.2. Under this condition, suppose that we
have a chromosome generated from ten random key numb-
ers from [0, 1], it can be a chromosome representing for the
job sequence, e.g., (0.174, 0.859, 0.711, 0.514, 0.304,
0.015, 0.0914, 0.364, 0.147, and 0.166). From this chromo-
some, we sort the random key numbers in ascending order.
Based on the sequence of the sorted genes, we can generate
job index in each position, which results in (5, 10, 9, 8, 6, 1,
2, 7, 3, and 4). Based on the job index using random key
generation, we can find the processing time of each job, e.g.,
the processing time of job 5 is 5.01, the processing time of
job 10 is 7.82, and the processing time of job 4 is 8.73. For
chromosome initial representation for preventive mainte-
nance, we first sort processing time of jobs in LPT order.
The sorted jobs and their processing times of sorted job are
(7, 3, 8, 4, 6, 10, 1, 2, 9, 5) and (9.48, 9.11, 9.04, 8.73, 7.93,
7.82, 7.40, 6.75, 5.97, 5.01), respectively. Using the LPTBK
heuristic procedure, we calculate N. Table 1 presents the
procedure for generating N.

Once we found the number of preventive maintenances
as N03, we randomly generate three positions from [1, 10].
If the randomly generated positions are 3, 5, and 8, we
generate a chromosome for preventive maintenance as fol-
lows: (0, 0, 1, 0, 1, 0, 0, 1, 0, and 0).

4.2 Objective and fitness function

The flexibility of objective function is one of the most pow-
erful characteristics in genetic algorithm. In the genetic algo-
rithms, whether the objective function is linear or not is not
important. So, we can use any equations for makespan or total
completion time for objective function. Since all the problems

Table 1 Generation
procedure for N j pj δj π N

7 9.48 0.00 0.00 0

3 9.11 1.82 1.82 0

8 9.04 3.98 5.80 0

4 8.73 0.00 0.00 1

6 7.93 1.59 1.59 1

10 7.82 3.44 5.03 1

1 7.40 0.00 0.00 2

2 6.75 1.35 1.35 2

9 5.97 2.63 3.98 2

5 5.01 0.00 0.00 3
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under consideration are minimization problems, however, we
have to convert the objective function values to fitness func-
tion value of maximization form. To get the fitness value for a
chromosome (i.e., Fi) from the objective function value of the
chromosome (i.e., Zi) and the maximum objective function
value among the population (i.e., Zmax) as follows:

Fi ¼ Zmax � Zið Þ
Xn
i¼1

Zmax � Zið Þ
,

: ð8Þ

4.3 Crossover and mutation and reproduction

A simple genetic algorithm that yields good results in many
practical problems is composed of three essential operators:
crossover, mutation, and reproduction. The crossover oper-
ator takes two chromosomes and swaps a part of genes
containing their genetic information to produce new chro-
mosomes. The easiest and the most classical method for
crossover is to choose a random cut-point and generate the
offspring by combining the segment of one parent to the left
of the cut-point with the segment of the other parent to the
right of the cut-point. When some representations, like the
permutation representation, are used in the sequencing prob-
lem, this one-cut-exchange crossover can hardly be applied
since the offspring from the crossover may be illegal. Due to
using the random key representation for chromosome rep-
resenting job sequence, we can use the one-cut-exchange
crossover without violating feasibility. For binary represen-
tation for preventive representation, we can also use the one-
cut-exchange crossover without violating feasibility.

Mutation produces spontaneous random changes in various
chromosomes. This genetic operation serves the crucial role of
replacing the genes lost from population during the selection
process so that they can be tried in a new context or providing
the genes that were not present in the initial population. In our
algorithm, we also use the simplest method, in which a gene is
selected by a very small probability and replaced with another
random number from [0, 1] for chromosome representing job
sequence and with other binary number for chromosome
representing preventive maintenance.

Reproduction is a process in which individual chromo-
somes are proportionally copied from their fitness function
value. We use the most popular method that is referred to as
roulette wheel reproduction where each current string in the
population has a roulette wheel slot sized in proportion to its
fitness. Adopting the elitist strategy, the two best chromo-
somes are directly copied to the next generation. The detailed
procedure to generate the next generation is as follows:

Step 1: Copy two best sets of chromosomes (a chromo-
some for job sequence and a chromosome for preven-
tive maintenance)

Step 2: Select two sets of chromosomes by roulette
wheel method. If a random number from [0, 1] is less
than a given crossover probability, i.e., pc, generate two
sets of chromosomes by one-cut-exchange crossover or
copy the two sets of chromosomes directly, otherwise.
Repeat this step until the next generation is constructed.
Step 3: For every gene in the set of chromosomes gener-
ated at step 2 excluding the best set of chromosomes, if a
random number from [0, 1] is less than a given mutation
probability, i.e., pm, then replace that gene in the chromo-
some for job sequence with another random number from
[0, 1] and replace that gene in the chromosome for
preventive maintenance with the other binary value.

5 Computational experiments

To evaluate the performance of heuristic algorithms pre-
sented in this paper, computational experiments have been
conducted using randomly generated problems. Since the
complexity of a problem depends on the number of jobs (N),
preventive maintenance period (t), and deterioration rate
(α), we control these parameters to several levels, in which
n can be one of three values (50, 100, 150, and 200), t can be

one of three values (5p, 10p, and 15p), where p ¼ Pn
j¼1

pj, and

α can be one of four values (0.01, 0.03, 0.05, and 0.07). For
each combination of out of these 36 combinations, we
randomly generate 20 problems. Here, problem generation
means the generation of pj and wj for each job. The value of
each pj and wj is U (10, 30) and U (0, 1), where U (a, b)
means a random real number generated from interval (a, b).

All solution approaches have been coded in C++ and run
on 2.17 GHz, Intel Core 2 Duo CPU with 4 GB of memory
and Windows Vista operating system. Under these condi-
tions, the CPU time to get a solution from a heuristic
algorithm excluding genetic algorithm is shorter than
1 ms. But computing times for genetic algorithms are rather
long and depend highly on the number of jobs (i.e., N).
Table 2 shows the computation time s when we set the
population size to 20 and the maximum generation is
1,000. The value in of each cell in this table represents the
average CPU time (in seconds) from 360 problems (30
random problems in three levels of t and four levels of α).

Table 2 CPU time (in seconds) for GA

n 50.00 100.00 150.00 200.00

Cmax 0.88 2.77 5.66 9.56

SUMC 0.97 3.16 6.68 11.41

SUMWC 0.98 3.18 6.70 11.48

SUMC sum of total completion time; SUMWC sum of total weighted
completion time
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In the comparison with other heuristics, the computation
times for genetic algorithm are very long, which vary from
0.88 to 11.48 s in average. But, from the practical viewpoint,
11.48 is not very long time to schedule the jobs for a week
or a month. So, we think that the genetic algorithm can be
also a reasonable alternative to get a schedule provided that
it produces a good result.

5.1 Results for makespan

Table 3 shows the results for makespan, which include the
results for LPTRT and LPTBK heuristics and the genetic
algorithm (GA). In small deterioration rate, LPTRT and
LPTBK heuristics give reasonably good solutions compared
to GA. Both LPTRT and LPTBK heuristics are focused on
an appropriate number of preventive maintenances and their
positions rather than job sequences. Since the number of
preventive maintenances increases, LPTRT and LPTBK
heuristics give a good performance. However, GA is better
than LPTRT and LPTBK heuristics as the deterioration rate
increases and the number of jobs becomes larger. The reason
for this is there are more chances to have large number of
jobs between preventive maintenances. In other words, the

number of maintenances decreases as the number of jobs
and the deterioration rate increases. In this case, there are
many alternatives to construct jobs between preventive
maintenances. Therefore, the sequence of jobs between pre-
ventive maintenances is relatively more critical than the
decision of the position of maintenances for solution perfor-
mance. As a result, GA performs better than other heuristics
because the problem becomes a larger solution space as the
number of jobs between preventive maintenances.

5.2 Results for total completion time

The results of GRD, V‐shaped greedy heuristic (VGRD),
and GA for minimizing total completion time are presented
in Table 4. In this table, VGRD heuristic is better than GRD
and GA for minimizing total completion time. The reason
for this is that we provide V-shaped job sequence by Mosh-
eiov [18] between preventive maintenances. In the case of a
single machine problem, Mosheiov [18] proved that the
actual processing time of each job grows linearly with its
starting time to minimize total completion time and there is
an optimal sequence for minimizing total completion time.
In this problem, since the jobs between preventive

Table 3 Performance comparison for makespan

t α n050 n0100 n0150 n0200

LPTRT LPTBK GA LPTRT LPTBK GA LPTRT LPTBK GA LPTRT LPTBK GA

5p 0.01 Mean 26 26 26 25 25 24 25 25 24 25 25 24

SD 0.539 0.537 0.532 0.442 0.44 0.448 0.313 0.321 0.332 0.284 0.285 0.291

0.03 Mean 20 20 19 20 20 17 20 20 17 19 19 16

SD 0.634 0.633 0.612 0.401 0.403 0.393 0.363 0.367 0.378 0.276 0.279 0.301

0.05 Mean 17 17 16 17 16 14 17 16 13 16 16 12

SD 0.539 0.54 0.536 0.383 0.394 0.408 0.369 0.37 0.379 0.32 0.317 0.354

0.07 Mean 15 15 13 15 14 11 15 14 10 14 14 9

SD 0.441 0.445 0.483 0.337 0.343 0.323 0.291 0.296 0.373 0.313 0.309 0.387

10p 0.01 Mean 51 53 53 52 53 52 51 51 50 51 51 50

SD 0.761 0.701 0.702 0.457 0.454 0.468 0.498 0.494 0.496 0.314 0.31 0.332

0.03 Mean 46 46 46 44 44 43 43 44 41 44 44 41

SD 0.73 0.724 0.749 0.578 0.573 0.59 0.527 0.529 0.569 0.484 0.462 0.463

0.05 Mean 41 41 40 39 39 36 41 40 37 40 40 35

SD 0.786 0.784 0.799 0.563 0.58 0.624 0.459 0.465 0.538 0.378 0.389 0.479

0.07 Mean 39 38 37 37 37 34 36 36 32 36 36 30

SD 0.749 0.759 0.757 0.737 0.762 0.753 0.435 0.426 0.504 0.402 0.402 0.495

15p 0.01 Mean 66 67 67 64 65 64 64 64 63 63 63 62

SD 0.728 0.72 0.716 0.422 0.419 0.426 0.383 0.371 0.386 0.284 0.281 0.3

0.03 Mean 60 60 60 57 57 56 57 57 55 57 57 54

SD 0.711 0.713 0.717 0.506 0.509 0.549 0.484 0.49 0.541 0.336 0.334 0.36

0.05 Mean 56 56 55 53 53 51 52 52 49 51 51 47

SD 0.731 0.728 0.773 0.559 0.556 0.575 0.417 0.422 0.48 0.451 0.453 0.489

0.07 Mean 50 51 49 48 48 45 48 48 44 49 48 43

SD 0.75 0.773 0.821 0.649 0.637 0.71 0.549 0.55 0.619 0.309 0.314 0.38
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maintenances are deteriorated and the objective function in
this problem is minimizing total completion time, the job
sequences between the preventive maintenances in VGRD
heuristic give good performance. In the table, the GA pro-
vides the worst results among the heuristics in spite of the
long CPU time. The differences of mean values of VGRD
and GA in this table vary from 0 to 8 %. If this machine is a
bottleneck of the production line, 8 % of difference seems to
be very significant one. For example, if we are to schedule
jobs for 30 days, we can save 2.1 days. From the viewpoint
of theory of constraints, this saving results in a 0 to 8 %
improvement of the plant capacity without any investment.

5.3 Results for total weighted completion time

The results for minimizing total completion time are pre-
sented in Table 5. In this table, we summarize the results of
GRD, VGRD, and GA. In fact, this problem generalizes the
problem in minimizing total completion time. In this prob-
lem, VGRD heuristic provides relatively poor performance
unlike the problems for minimizing total completion time.
This table shows that GRD and GA are better than VGRD.
But one of the GRD and GA does not dominate the other. If

the number of jobs becomes smaller, the GRD heuristic
becomes better than GA. As the number of jobs becomes
larger, GA performs better than GRD. This means that GA
performs well in large solution space. Furthermore, GA
gives a lower standard deviation of percent improvement
compared to GRD and VGRD. This result provides that GA
provides robust performance in various control parameters.
The mean percent improvement values of GA vary from 15
to 70 %, which means that if we use the GA heuristic during
30 days of scheduling to minimize total weighted comple-
tion time, we can save 4.5 to 21 days of the time in com-
parison with RSRM heuristic.

6 Conclusions

Deterioration of processing times of jobs and preventive
maintenance planning are in common and significant prob-
lems in real production scheduling areas. Ozturkoglu and
Bulfin [21] showed that human or machine fatigue results in
the deterioration of processing time of the jobs. The preven-
tive maintenance recovers the machine’s fatigue and prevents
the potential risk for machine failure. However, excessive

Table 4 Performance comparison for total completion time

t α n050 n0100 n0150 n0200

GRD VGRD GA GRD VGRD GA GRD VGRD GA GRD VGRD GA

5p 0.01 Mean 25 26 29 23 25 26 23 24 25 23 24 24

SD 0.7927 0.7821 0.7296 0.528 0.4847 0.441 0.3811 0.4887 0.3637 0.3824 0.3624 0.3106

0.03 Mean 19 20 23 19 20 20 18 18 18 18 19 18

SD 0.9712 0.949 0.8452 0.5303 0.5499 0.5524 0.4871 0.4086 0.3665 0.4175 0.3824 0.36

0.05 Mean 15 17 18 15 16 16 15 16 14 14 16 13

SD 0.6915 0.6825 0.6191 0.5121 0.5371 0.4963 0.3672 0.421 0.4289 0.3205 0.3388 0.3531

0.07 Mean 13 14 16 12 14 13 12 13 11 13 14 10

SD 0.7514 0.8731 0.6619 0.5679 0.5482 0.4714 0.4232 0.3986 0.3744 0.3582 0.3918 0.4116

10p 0.01 Mean 51 53 54 52 52 53 50 51 51 50 51 50

SD 0.912 0.9073 0.833 0.6376 0.6559 0.6598 0.4878 0.4661 0.501 0.4778 0.4439 0.4736

0.03 Mean 45 47 48 43 43 43 43 43 42 43 44 42

SD 1.243 1.165 1.226 0.6073 0.6322 0.625 0.5825 0.5704 0.5388 0.4106 0.4474 0.4256

0.05 Mean 40 41 42 39 40 38 39 40 37 38 39 35

SD 1.054 0.9548 0.9492 0.633 0.6194 0.6231 0.6621 0.6124 0.6039 0.5281 0.5445 0.5884

0.07 Mean 38 40 40 37 39 36 35 36 33 35 35 31

SD 0.8175 0.7683 0.7378 0.6185 0.6078 0.6261 0.4771 0.448 0.496 0.4822 0.5268 0.5143

15p 0.01 Mean 64 65 66 63 64 64 64 64 64 63 63 63

SD 0.7898 0.6928 0.6932 0.5831 0.5519 0.5612 0.5339 0.4908 0.5109 0.4187 0.4195 0.3927

0.03 Mean 59 60 61 57 58 57 56 57 56 57 57 55

SD 0.672 0.5632 0.5891 0.5876 0.5431 0.5449 0.5644 0.5498 0.5418 0.5076 0.5219 0.5336

0.05 Mean 53 55 55 52 53 51 51 52 49 51 52 48

SD 1.167 1.089 1.088 0.5822 0.5941 0.5896 0.52 0.5256 0.4703 0.4449 0.434 0.4854

0.07 Mean 52 53 53 47 49 47 48 49 45 47 48 44

SD 1.019 1.003 1.018 0.8698 0.8747 0.8954 0.629 0.642 0.6976 0.409 0.3804 0.4058
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preventivemaintenance results in too muchmaintenance time.
In this paper, we studied scheduling of jobs and the planning
of the preventive maintenance under the job scheduling. We
presented a simple integer programming formulation to min-
imize makespan, total completion time, or total weighted
completion time. Since the problem is NP-hard and the size
of a real problem is very large, we proposed a number of
heuristic algorithms and a genetic algorithm to solve large-
scale problems in a reasonable computational time.

The results of computational experiments show that the
heuristics have different performances for the problems and
some heuristics provide very good solutions for particular prob-
lems in reasonable CPU time. From the results, we highly
recommend that one should use GA for makespan compared
to LPTRT and LPTBK heuristics as the deterioration rate
increases and the number of jobs becomes large. In the case of
the total completion time, VGRD heuristic is better than GRD
and GA. However, VGRD heuristic does not perform well for
the total weighted completion time and one of the heuristics
cannot dominate the other. In this case, GRD heuristic works
better than GA, as the number of jobs becomes smaller. If the
number of jobs becomes larger, GA performs better than GRD.

Several directions for future research are apparent
from this study. In this study, we have not reflected
the machine failure time yet. In general, the risk of
machine failures increases if preventive maintenances
do not execute appropriately. Since the machine failure
happens stochastically, it is difficult to model to express
job deterioration. If we include machine failure in the
current model, more realistic study can be expected.
Secondly, this study can be extended in the scheduling
framework with human learning curve and preventive
maintenance. In general, task processing time of work-
ers is decreased by the human learning effect. If the
worker does not perform preventive maintenance appro-
priately, the risk of failure increases so that more fail-
ures happen stochastically during scheduling. As a
result, the task processing time increases because the
worker frequently takes breaks from the task and learn-
ing effect is diminished. Using the trade-off between
learning curve, preventive maintenance, and risk of fail-
ure, we can propose an optimal schedule. Finally, the
current study can be extended to research for the paral-
lel machine problem with identical machines.

Table 5 Performance comparison for total weighted completion time

t α n050 n0100 n0150 n0200

GRD VGRD GA GRD VGRD GA GRD VGRD GA GRD VGRD GA

5p 0.01 Mean 24 24 32 23 23 29 23 23 28 25 24 28

SD 1.569 1.446 0.9887 1.089 0.7069 0.6676 0.6327 0.7419 0.4286 0.6697 0.7263 0.5867

0.03 Mean 20 21 28 18 19 23 20 19 22 20 19 22

SD 1.159 1.248 0.7835 1.24 1.311 0.9359 0.9149 0.9273 0.6987 0.6639 0.7859 0.572

0.05 Mean 17 16 25 16 15 21 16 16 19 15 15 17

SD 1.795 1.251 1.192 1.202 1.282 0.8644 0.839 1.023 0.6902 0.7823 0.792 0.6257

0.07 Mean 16 15 22 12 12 16 16 16 17 14 14 15

SD 1.326 1.239 0.9352 0.867 0.9519 0.6357 0.8705 0.8599 0.6258 0.6069 0.6838 0.4964

10p 0.01 Mean 53 50 58 50 51 55 50 49 53 51 51 53

SD 0.9847 1.221 0.8424 0.7654 0.8974 0.6003 0.6054 0.7213 0.5144 0.472 0.5309 0.3847

0.03 Mean 43 42 49 44 43 46 43 42 45 44 43 44

SD 1.345 1.352 0.9782 0.9549 1.031 0.8692 0.9951 0.7956 0.8535 0.6203 0.5323 0.4915

0.05 Mean 40 38 46 40 39 43 38 38 39 37 37 38

SD 1.514 1.445 1.231 0.8667 1.008 0.7482 0.9089 0.9031 0.7335 0.7656 0.7282 0.6753

0.07 Mean 38 36 44 37 36 40 36 35 36 34 33 33

SD 1.423 1.274 1.212 1.108 0.9051 0.8922 0.8524 0.9269 0.7963 0.776 0.6495 0.5736

15p 0.01 Mean 66 63 70 62 61 66 63 63 65 62 62 64

SD 0.9778 1.349 0.9179 0.8537 0.8272 0.6968 0.6614 0.6764 0.5126 0.4218 0.4174 0.3668

0.03 Mean 59 58 65 57 55 60 57 56 58 56 55 57

SD 1.243 1.368 0.7887 0.8044 1.01 0.5782 0.8603 0.8981 0.6636 0.6477 0.7195 0.5427

0.05 Mean 53 51 60 50 48 53 49 48 51 51 50 51

SD 1.351 1.355 0.9762 1.269 1.436 1.17 0.7481 0.9906 0.5913 0.6705 0.6892 0.6094

0.07 Mean 49 47 55 48 47 51 48 46 47 49 48 49

SD 1.347 1.703 1.226 0.9162 1.222 0.7393 0.8391 0.6933 0.7793 0.5795 0.6353 0.5233
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