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Abstract Composite products are often subjected to sec-
ondary machining processes as integral part of component
manufacture. However, rapid tool wear becomes the limit-
ing factor in maintaining consistent machining quality of the
composite materials. Hence, this study demonstrates the
development of an indirect approach in predicting and mon-
itoring the wear on carbide tool during end milling using
multiple regression analysis (MRA) and neuro-fuzzy mod-
elling. Although the results have indicated that acceptable
predictive capability can be well achieved using MRA, the
application of neuro-fuzzy yields a significant improvement
in the prediction accuracy. It is apparent that the accuracies
are pronounced as a result of nonlinear membership func-
tion and hybrid learning algorithms. Using the developed
models, a timely decision for tool re-conditioning or tool
replacement can be achieved effectively.

Keywords Tool wear prediction . End milling . GFRP
composites . Regression analysis . Neuro-fuzzy modelling

1 Background

Advanced composite materials such as fibre-reinforced
polymer (FRP) composites have been regularly designed
and manufactured for various structural and functional appli-
cations. Their appealing properties can also be deliberately
tailored in improving fire resistance, thermal and electric
insulation, as well as the sound absorption. These make
them desirable for non-structural products, in areas, such
as acoustic or panel wall applications. In common practise,
composite products are endeavoured to be manufactured to
the near-net shapes. Nonetheless, finishing steps that involve
machining are inevitably essential to meet the final dimen-
sional and functional requirements of the composite products.
In spite of this, cutting mechanisms of FRP composites are
very different from conventional metallic material. The cut-
ting processes are characterised by the combinations of mate-
rial fracturing, shearing, buckling and bending, and inter-
laminar failures with little plastic deformation owing to the
laminate structure, inherent anisotropic, and brittleness of
fibre reinforcements [1–3]. Moreover, it is literally known that
fibre orientations, types of polymer matrix, as well as the
bonding strength between fibres and the matrix material dis-
tinguish the machinability of FRP composites from that of
homogeneous metals [4–6]. Among different machinability
characteristics, quality consistencies of machined surface and
tool life expectancy have been found to be critically linked to
the fibre structure within the FRP composites [7, 8]. The
damage susceptibility FRP composites can significantly im-
pede the consistency of machining quality on the workpiece,
whereas its abrasiveness inflicts rapid wear on the cutting
tools. It is well understood that mechanical abrasion on the
flank face of the cutting tool characterises the primary tool
wear mechanism when machining FRP composites [4, 8]. In
addition, low thermal conductivities of both matrix material
and the glass fibres may result in a higher temperature in the
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cutting zone. This can also be accounted for the increase in
wear of the cutting tool. Very often, inadequate sharpness of
the cutting tools increases the likelihood of inducing surface
damage to composite materials. Poor surface qualities of the
composite products degrade their in-service or mechanical
performance and under the worst circumstances, get them
rejected prior to the final usage.

A review of literature reveals that a number of experimental
efforts have been carried out to elucidate and improve the
machinability of FRP composites under different machining
processes [8–13]. Yet, very little has considered the milling
operation. This could mainly be attributed to the complexity
associated with the cutting actions in milling operation. Nota-
bly, due to multiple cutting edges, the cutting mechanisms
change with different fibre orientations and/or architecture.
The intermittent cutting mechanisms of milling operation also
lead to variations of chip sizes, contact stresses and cyclic
temperatures. Under certain machining conditions, the fluctu-
ated loadings on the cutting tool may easily change the cutting
mechanisms from that of continuous machining. Hence, the
physical and mathematical descriptions for end milling of
FRP composites still remain a challenge. In addition to the
previous study on optimising machining parameters using
Taguchi methodology [14], other results with regard to im-
provement of surface quality and reduction of delamination
damage on the machined composites have been reported
recently in Refs. [15–17]. However, the various aspects of
developing general and accurate tool wear prediction models
for end milling of glass fibre-reinforced polymer (GFRP)
composites are still hardly mentioned. For any machining
operation, continuousmonitoring of the tool wear is imperative
for determination of a suitable time for tool replacement or re-
conditioning in order to alleviate any adverse effects of the
worn tool on the machined surface. The common practice for
monitoring the tool condition is by directly measuring the size
of wear lands on tool flank or rake faces. However, the draw-
backs of this method are: (1) it is time consuming, and (2) the
machining operation has to be interrupted in order to determine
the extent of tool wear. In contrast, an indirect approach of tool
condition monitoring that involves measurements of machin-
ing signals, which can be correlated to the tool wear, offers a
more practical solution for industrial applications. Indeed,
previous studies on different machinability domains have
shown that the growth of tool wear not only depends on the
machining conditions but also on the forces generated during
machining [18–22]. Hence, this paper presents the develop-
ment of generalised tool wear prediction models for end mill-
ing of GFRP composites using measured machining forces
under a broad range of machining parameters.

Two tool wear modelling approaches are proposed, namely
the multiple regression analysis (MRA) and the adaptive
network-based fuzzy inference systems (ANFIS) or simply
known as neuro-fuzzy. In the former, general empirical

models are derived to establish mathematical equations or
constitutive relationships between tool wear and the machin-
ing forces, whereas, the latter is used to further improve the
predictive capability. In spite of the more implicit expression,
the use of artificial intelligence (AI) or soft computing techni-
ques, such as neural network and fuzzy logic have been found
to be more suitable to solve complex, nonlinear and imprecise
relationships that exist among experimental variables. One of
the main attractions of the soft computing approach is that it is
not necessary to postulate a complex mathematical model
beforehand, in order to describe experimental relationships.

Principally, a constitutive relationship of experimental
parameters can be ‘learned’ by a neural network model
through adequate training of experimental data. On the other
hand, a fuzzy logic model constructs the input–output map-
ping according to human thinking characteristics or decision
rules using the stipulated input–output data pairs. Hitherto, a
number of research works have reported successful applica-
tions of artificial neural networks (ANN), particularly for
modelling machinability output characteristics, such as sur-
face roughness, machining forces and tool wear in metal
cutting [17–23]. The research studies on modelling of ma-
chinability characteristics have reported the successful
applications of radial basis function and the multi-layer
perceptron (MLP) neural networks for composite materials
[17, 19, 30]. Until recently, the development of tool wear
predictive model for condition monitoring through fuzzy
logic modelling coupled with neural network training, while
end milling GFRP composites has not been attempted. One
of the advantages of ANFIS modelling is the use of hybrid
learning procedures (from neural network training) and
fuzzy reasoning (from fuzzy logic) for predicting the con-
sequent (effect) parameters due to the premise (cause)
parameters [27–29].

2 Experimental procedure

2.1 Sample manufacturing

Composite testing specimens for the end milling experi-
ments were GFRP plates, made of uni-directional E-glass
fibre-reinforced thermosetting epoxy resin. They were fabri-
cated using vacuum assisted resin infusion. Sixteen layers of
E-glass fibre mats (EU450-1270 supplied by SP High Mod-
ulus (NZ)) of 300×300 mm were laid up dry on a flat glass
panel to create a preform. This preform is then properly
sealed by vacuum bagging and arrangement of peel ply and
distribution media. The use of distribution media is to facil-
itate the uniform flow of resin during filling, whereas the
peel ply allows easy removal of distribution media once the
composite panels/plates are fully cured. Subsequently, epoxy
resin (Nuplex R300) and hardener (Nuplex R310) mixed in a

702 Int J Adv Manuf Technol (2013) 67:701–718



4:1 ratio were infused into the E-glass preform under a
vacuum pressure of approximately 10 mbar (1 kPa). The
infused panel was left to cure for more than 12 h under room
temperature, and further post cured in an oven at 60–70 °C.
The cured panels were cut, using a water-cooled diamond
saw, into size of 200×135×6 mm, for the machining experi-
ments. Cap screw holes were drilled into the sample plates
for secured mounting onto the Kistler® 9265B piezoelectric
milling dynamometer. The fibre volume fraction, vf, was
regularly monitored according to ASTMD3171-09 to ensure
the consistency of the manufactured part quality. The average
value of vf for the manufactured sample plates was 0.52.

2.2 Experimental matrix

In order to establish a complete tool wear response, a series of
experiments were carried out over a wide spectrum of end
milling parameters, which were based on preliminary experi-
ments as well as results from previously published work [14].
These parameters were selected such that they covered the
practical range of industrial applications and were within the
limit of the CNC machine. The summary of the machining
parameters employed in this study is given in Table 1. The
axial depth of cut was kept constant at 2 mm, as this parameter
was found previously to be less important towards tool wear
or tool life [14]. This depth of cut was chosen for a decent
material removal rate to maintain uniform growth of flank
wear and to facilitate the morphological study of the machined
surface through scanning electron microscopy.

2.3 Milling experiment and data acquisition equipment

The end milling tests were carried out on a Centroid 1050A
CNC machine centre (8,000 rpm maximum spindle speed
and 28 kW power). As the tests were conducted under dry
conditions, a vacuum cleaner was used to handle the haz-
ardous chips and to minimise the chip interference on the
cutting edge, which could lead to a local heat accumulation
in the cutting zone [30]. For the cutting tool selection,
despite the commercially available PCD and diamond-
coated tools for machining ‘difficult to cut’ material such
as composite materials, carbide tools are still widely used in
the industry as well as in the research related to composites

machining [15, 16, 30, 31, 34]. Hence, uncoated tungsten
carbide end mill cutter of 12 mm diameter (supplied by SGS
Tools, Inc) was selected as the cutting tool in this study. To
further evaluate the effects of fibre orientation on machining
performance, cutting tests were performed using the same
sets of machining parameters in two directions: (1) 0° when
the table or tool feed was along the fibre orientation and (2)
90°, across the fibre orientation (Fig. 1). These two fibre
orientations represent the extreme cases, as far as the tool
wear is concerned, based on preliminary experiments con-
ducted previously. Kistler® 9265B piezoelectric milling dy-
namometer with Kistler® 5001 charge amplifier was used to
monitor the feed force, Fx, and the cutting force, Fy, gener-
ated after each end milling pass (Fig. 1). The machining
force signals were acquired through a PC with LabVIEW
data acquisition system. Replication tests under selected
conditions were performed to ensure repeatability of the
experiments, with deviations to be within ±5–10 %.
Depending on the machining conditions and tool wear rate,
the machining process was interrupted at predetermined
intervals in order to measure the extent of tool wear on each
cutting flute. The optical study of the tool wear was per-
formed under the Leica MZ16 optical stereo microscope.

Within the range of testing parameters, abrasive wear was
found to be the dominant tool wear mechanism. This was
observed on the flank face of each cutting flute. Digital
camera attached to the microscope was used to capture
images of flank wear at different machining times. From
the images captured, flank wear height was measured using
the UTHSCSA Image Tool® software. The extent of flank
wear was determined based on average of three measure-
ments of flank wear heights on each of the cutting flutes.
Upon reaching an average flank wear value of 0.3 mm, the
experiment was stopped, and the tool useful life based on
total machining time was determined for subsequent analysis.

3 Modelling of tool wear

3.1 Multiple regression analysis

MRA is a widely used statistical modelling technique to
establish empirical models or mathematical relationships
between a dependent variable and the independent variables.
In the present work, the dependency of the output variable,
Y, is considered by a power law function:

Y ¼ Csaf bFgAz ð1Þ

where C is the empirical constant, s, f, F, A are the input
parameters and α, β, γ and ζ are the corresponding exponents
of the empirical model. The exponent for each independent

Table 1 Machining conditions

Machining conditions Values

Spindle speed, N 3,000; 4,000; 5,000; 6,000 RPM

Effective linear cutting speed, s 110, 150, 190, 230 m/min

Feed rate, f 0.16, 0.24, 0.32 mm/rev

Fibre orientation/ angle, A 0°, 90°
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variable determines the effect it has on the dependent variable.
The adequacy of the developed empirical model can be veri-
fied using the coefficient of correlation, R2, which measures
the variability in the data accounted for by the model. R2 will
have a value of between 0 and 1, where a value of 1 would
mean perfect correlation while 0 means no correlation exists
between dependent and independent variables.

3.2 Fuzzy logic or fuzzy inference system

Fuzzy logic or fuzzy inference system (FIS) has been one of
the popular and effective soft computing methods used to
model control and automation systems. On the basis of its
multidisciplinary nature, FIS is also particularly attractive in
other engineering applications. This includes the modelling
of highly nonlinear input and output experimental relation-
ships in machining operations [21]. Typically, FIS employs
a human reasoning or human structured knowledge in the
form of fuzzy rules (rather than using mathematical models)
to match a given input into an output. The FIS model
normally consists of three components, which are the data
base, the rule base and the fuzzy output. The database
defines fuzzy membership functions (MFs) to be used in
the FIS, whereas, the rule base contains a selection of fuzzy
rules and an inference system to carry out fuzzy reasoning of
the input MFs to produce fuzzy outputs. Finally, defuzzifi-
cation of the fuzzy output gives the final crisp value of the
FIS. The primary working mechanism of an FIS is through
the construction of a set of fuzzy rules (in the form of IF–
THEN statements) which will then be evaluated in parallel
using fuzzy operators, such as AND, OR and NOT to deter-
mine the functional relationships.

3.2.1 Architecture of the adaptive network-based fuzzy
inference system

ANFIS (also known as Neuro Fuzzy) is an advanced FIS
with learning capability of a neural network. This feature

distinctively differentiates it from the traditional FIS, as the
neural network training algorithm enables the change in the
FIS structure and its parameters. Due to this fact, fine tuning
of the predicted output would be possible [21]. Additionally,
the application of fuzzy inferencing allows better interpret-
ability of the neural network while maintaining the accuracy
of the input–output matching [21]. This reduces large com-
putational efforts which would typically be required in the
traditional neural network algorithm, such as the multi-layer
perceptron neural network. Similar to that of any neural
network model, working principles of ANFIS is also based
on its architecture [21]. It provides the mapping of input–
output dataset through combination of ‘learning’ and ‘fine-
tuning’ procedures of the neural network and fuzzy infer-
encing. Figure 2 exhibits a simple ANFIS architecture con-
sisting of two inputs (x and y), each with two MFs, a fuzzy
rule base (number of rules, R) and a single output, f. The
network implements the first-order (linear function) Takagi–
Sugeno-type fuzzy reasoning for learning and fine tuning.
Examples of the first-order Takagi–Sugeno fuzzy rules are
as follow:

Rule 1: IF x is A1 AND y is B1 THEN z is f1(x,y)
where f10p1x+q1y+r1
Rule 2: IF x is A2 AND y is B2 THEN z is f2(x,y)
where f20p2x+q2y+r2
The aforesaid fuzzy rules can be depicted as in Fig. 2a,

where x and y represent the inputs, z is the output, and A1,
A2, B1, B2 are the nonlinear parameters or fuzzy sets (repre-
senting the linguistic variables such as SMALL, MEDIUM
and HIGH). The p1, p2, q1, q2, r1 and r2 are linear parame-
ters for the Takagi–Sugeno first-order models, f1 and f2. As
depicted in Fig. 2b, the ANFIS architecture comprises five
distinct layers of feed-forward neural network. Typically, the
layers are characterised by the operations that they perform,
namely: (1) fuzzification; (2) rule base; (3) normalising; (4)
defuzzification and (5) output of layer 1 to 5. Furthermore,
each layer of the architecture is represented by different
node functions, which can be in the form of adaptive nodes

Fig. 1 Set-up for the end
milling experiments showing x
as the table feed direction and
the different fibre orientations
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(denoted by squares) and fixed nodes (denoted by circles).
The parameter sets are adjustable in the adaptive nodes and
vice versa for the fixed nodes. During fuzzy inferencing,
output signals from each layer are manipulated by the node
functions so as to provide the input signals for the subse-
quent layer.

3.2.2 Processing of node functions in ANFIS architecture

The processing of node functions in each layer of the
ANFIS architecture are briefly explained here, whereas the
greater details are available elsewhere in [24, 25].

& Layer 1: each node in this layer contains adaptive node
functions in which they are used to map or fuzzify the
inputs, x and y, into the corresponding fuzzy linguistic
values of SMALL, MEDIUM or HIGH using fuzzy MFs.
Fuzzification of the output, O1

i in this layer is given by:

O1
i ¼ μAiðxÞ; i ¼ 1; 2: ð2Þ

where μAi(x) denote the MFs of corresponding linguistic
value. In general, the MF can take the form of linear
function such as a triangular and trapezoidal function or

a nonlinear function like a generalised bell-shaped,
Gaussian or a sigmoid function.

& Layer 2: in this level, the fixed node function provides
the strength of layer 2 output signal rules, O2

i by multi-
plying the input signals from Layer 1. The multiplication
of the incoming signals is given by:

O2
i ¼ wi ¼ μAiðxÞ � μBiðxÞ; i ¼ 1; 2: ð3Þ

& Layer 3: this layer calculates the normalised strength of
the fuzzy rules,wi, obtained from the previous layer. This
is achieved through:

wi ¼ wi

Xn
i¼1

wi; i ¼ 1; 2:

,
ð4Þ

& Layer 4: defuzzification of the first-order Takagi–
Sugeno-type fuzzy rules to solve the overall weighted
output,wifi; , using weighted average, wi is performed in
this layer. Typically, defuzzification is accomplished
using the following expression:

wifi ¼ wi pixþ qiyþ rið Þ; i ¼ 1; 2: ð5Þ

a

b

Fig. 2 a First-order Takagi–
Sugeno fuzzy inference model
b architecture of Adaptive
Network-Based Fuzzy Infer-
ence System (ANFIS)
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& Layer 5: finally, the overall output is calculated using the
sum of all weighted signals from layer 4. This is given
by:

f ¼ w1f1 þ w2f2
¼ w1xð Þp1 þ w1yð Þq1 þ w1ð Þr1 þ w2xð Þp2
þ w2yð Þq2 þ w2ð Þr2

ð6Þ

where f1 and f2 are the Takagi–Sugeno first-order linear
functions, p1, q1, p2, q2 are the linear parameters of those
functions.

3.2.3 Learning algorithm of ANFIS model

The ANFIS model applies hybrid learning algorithms of the
gradient descent and the least-squares estimation in order to
tune the FIS parameters to match the training data. Specif-
ically, during the forward pass of neural network, function
signals go forward until Layer 4 so that the consequent
parameters can be optimised by the least-square estimates
in order to determine the error rates [24, 25]. During the
backward pass, error rates are propagated backward to up-
date or fine-tune the premise parameters by the gradient
descent [24, 25]. These learning or training processes con-
tinue until the desired number of training iterations (epochs)
has been reached, or when the lowest root mean square error
(RMSE) between the measured and the generated output has
been achieved [28].

4 Results and discussion

4.1 Results from experiments

Figure 3 exhibits the tool wear growth under different cut-
ting speeds, s, fibre orientations, A and constant feed rate, f
of 0.16 mm/rev. In general, tool wear increases substantially
with a higher cutting speed as expected from the Taylor’s
model, VcT

n0C [2, 33, 35]. Interestingly, it is evident that a
mild flank wear growth was experienced when the tool was
fed across the fibre orientation, A090°, as compared to
along the fibre orientation, A00°. This results in a longer
machining period prior to reaching the critical tool wear
criteria. It was not initially anticipated; although Hocheng
et al. reported similar trends when machining carbon fibre-
reinforced composites (CFRP) [34], under relatively milder
machining conditions compared to those employed herein.
The difference in the growth rate of tool wear can most
likely be attributed to the tool/fibre contact mechanism
during machining (i–ii in Fig. 1). When the tool is fed along
the fibre direction, increasingly intense contact and rubbing
actions between the fractured fibres and each cutting flute

can be observed. This is apparent as the undeformed chip
thickness changes from small at the entry position of cutting
to its maximum at the centre of cutting during a single tool
rotation cycle (i in Fig. 1). At the centre position (denoted by
the red circle), each of the cutting flutes fractures the fibres
orthogonally, which results in the broken fibres rubbing
directly on the tool flank face to abrade the tool material.
As each of the cutting flutes continues the rotating motion
from the centre position, the rubbing actions were main-
tained at a similar rate. Moreover, since the tool is fully
immersed into the workpiece, the cutting mechanisms pro-
mote a similar rate of abrasion for each single rotation of the
cutting tool.

When the tool was fed across the fibres (ii in Fig. 1),
maximum direct contact between the tool and the fibres
is only at the entry and exit points of the workpiece. At
these positions, the undeformed chip thickness is the
smallest, while the contact time between fractured fibres
and the tool flank face is relatively short. Although chip
loading is the highest at the centre position of cutting
(denoted by a red circle shown in ii of Fig. 1), each of
the rotating cutting flutes seems to be sliding along the
fibres instead of fracturing them. Apparently, the fibres
fail due to buckling and bending [34], which alleviate
the direct rubbing of the fibres on flank face of the
cutting tool. Hence, on the basis of this, a lower rate of
tool wear or longer time to arrive at the predefined tool
life criteria (Fig. 3) is observed.
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Fig. 3 Tool wear growth at different cutting speed and fibre orienta-
tion with constant feed rate of 0.16 mm/rev
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Nevertheless, the tool wear growth for all machining
parameters employed in this study follows the typical
Taylor’s tool wear curve. Hence, the generalised Tay-
lor’s tool useful life equation can be derived to predict
the tool life during end milling of GFRP composites.
Based on the wear criterion of 0.3 mm, the tool life of
each machining parameter can be estimated from the
tool wear curves. Using these values, the Taylor’s tool
useful life equation, TL, derived as a function of cutting
speed, s and feed rate, f is given by:

TL ¼ 107:279 � s�3:161 � f �0:422;R2 ¼ 0:969 ð7Þ

When fibre orientation, A, is taken into account, a more
general Taylor’s equation is given in Eq. 8:

TL ¼ 100:351 � s�0:722 � f �0:251 � A0:445;R2 ¼ 0:946 ð8Þ

Judging from the R2 values of 0.969 and 0.946, it can be
concluded that both equations can describe the experimental
trend very well. In addition, the results from these statistical
analyses suggest that cutting speed has the dominant influ-
ence on the TL. This was based on the exponents of the
derived Taylor's equation, Eq. 7, in which n1>n2 and n1>n3
(where n1, n2 and n3 are the exponents for cutting speed,
feed rate and fibre orientation, respectively). Moreover, the
expected inverse relationship of cutting speed with tool
useful life is in agreement with recently reported study on
drilling of CFRP composites [36]. Hence, this warrants it to
conclude that the tool life/wear is essentially or highly
dependent on the cutting speed. Although the change of
orientation certainly affects the rate of tool wear, surprising-
ly, the resulting exponent of Eq. 8 indicates that the influ-
ence of fibre orientation on TL is marginal compared to that
of the machining parameters. This is despite the two fibre
orientations studied herein are the extremes as far as the tool
wear growth is concerned.

From the aforementioned discussion, it may be said that
the wear and critical life of the cutting tool during end
milling of this composite material are mainly governed by
mechanical actions of the tool rotation and table feed during
machining. Indeed, the combinations of these parameters
contribute to the aggressive rubbing of the fibre reinforce-
ments on flank face of the cutting tool. This results in a rapid
increase of heat energy being absorbed by the tool during
machining to accelerate the wear, and consequently reduces
the tool life. In contrast, the fibre orientation plays an
opposite role in influencing the tool wear growth and deter-
mining the critical tool life. As apparent, the effect of
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Fig. 5 Tool wear growth and machining force development at differ-
ent cutting speed and constant feed rate of 0.24 mm/rev for: a feed
force, Fx and b cutting force, Fy
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changing fibre orientation of the GFRP composites is not
large enough to offset the results of increasing machining
parameters. Furthermore, due to the fact that milling is a
highly complex machining process that involves oblique
cutting mechanisms, fibre orientation, A, cannot be easily
controlled as minute changes of fibre/tool contact which
takes place continuously during the engagement of the tool
with the workpiece material.

The variations of predicted TL with the measured experi-
mental data are displayed in Fig. 4 for different cutting speeds
and feed rates. The mean absolute percentage error (MAPE)
has been found to be within 15%.More encouraging results are
exhibited when additional tests under randomly chosen param-
eters of s0170 m/min, f00.24 mm/rev with A00° and s0
190 m/min, f00.32 with A045°, are performed. Experimental
tool life, TLexp_A00 has been recorded to be 3.00 min, whereas,
the calculated or predicted tool life, TLpredicted_A00 is 3.09 min.
As forA045°, slightly higher prediction of tool life is observed,
TLpredicted_A045 is 3.24 min in comparison to 3.38 min obtained
from the experiment. The resulting percentage errors between
the predicted and experimental data of TL are 3.00 % and
4.29 % respectively. Hence, the derived equations can be used
with a reasonably accuracy to predict the useful life of the end
mill tool when machining GFRP composites.

Apart from the tool wear growth, variations of machining
forces were regularly monitored for each end milling pass
until the end of tool life. Figure 5 demonstrates the trends of
feed force (Fx) and cutting force (Fy) magnitudes, with respect
to machining time for the given machining parameters. The
feed and cutting forces can be seen to consistently increase up
to maximum values of 230 and 209 N, respectively. Since the
variations of machining forces follow similar trends as that of
the tool wear growth, it can be asserted that these variations
are due to the growth of the tool wear. Hence, the measured
machining force can be directly used to indicate the extent of
tool wear. A later section will discuss the development of tool
wear-machining force relationships using statistical analyses
and fuzzy logic modelling.

Scanning micrographs of the worn tool (Fig. 6), have
confirmed that the tool wear or failure mechanism observed
in this set of experiments is predominantly due to abrasion
on the flank face of each cutting flute. It is apparent that
two-body abrasion between the fibres and the tool flank
face, results in the uniform scratch marks along the tool
rotation or cutting direction. The marks caused by rubbing
actions of the fibres are noticeable on flank face of the worn
tool which can be verified by comparing with the condition
of the new or fresh tool (Fig. 6a). On the other hand, the

Fresh or new tool v = 150 m/min, fr = 0.24 mm/rev

Worn tool Fresh tool

Tool rotation or 
cutting direction

ba

dc

Fig. 6 Tool wear mechanisms
during end milling of GFRP
composites
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intermittent end milling cutting process and high fluctuation
of machining forces when machining this composite mate-
rial promote some micro-chipping on the edges of the cut-
ting tool, as indicated by the white coloured box in Fig. 6b.
A comparison of a higher magnification microstructure of
the new/fresh tool surface and the worn tool surface is
shown side by side in Fig. 6c–d. It is evident that the
tungsten carbide (WC) grains appeared to be closely bonded
together with the cobalt binder (Fig. 8c) prior to the ma-
chining process. As the tool wears out, voids on the tool
surface are clearly visible as pointed-out by the arrows
(Fig. 6d). These microstructure characteristics indicate that
the cobalt binders between the WC grains are severely
removed by the highly abrasive fibre reinforcements. As
the machining process continues, the fractured fibres can
penetrate between the WC grains under high machining
pressure to further erode the cobalt binder and fracture the
larger WC grains into smaller fragments. The wear phenom-
enon discussed herein was also observed by Sheikh-Ahmad
et al. when turning fibreboards [32].

4.2 Results of statistical modelling using MRA

During the first stage of statistical analysis, basic regression
fittings were performed on individual machining parameters

employed in this study in order to understand relationships
between tool wear and the machining forces. Experimental
data were fitted using both linear and power law functions
for feed force, Fx and cutting force, Fy (Fig 7a and b),
respectively. From these individual analyses, it appears that
the changes of tool wear with magnitude of machining
forces can be fairly modelled using both functions. Howev-
er, the power law function yields a more accurate result to
match the experimental data, judging from the R2 values for
most machining parameters. Therefore, following the power
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Fig. 7 Individual regression results for a feed force, Fx, and b cutting
force, Fy
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Fig. 8 Comparison of experimental and predicted data from MRA for
a feed force, Fx, and b cutting force, Fy, under different machining
conditions

Table 2 Details of ANFIS training and checking datasets

Input/ Output variables Training data range Validation data range

Minimum Minimum Minimum Minimum

Cutting speed, s
(m/min)

110 230 150 230

Feed rate, f (mm/rev) 0.16 0.32 0.16 0.24

Feed force, Fx (N) 25 230 50 173

Cutting Force, Fy (N) 41 210 70 158
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law function, general tool wear-machining force relation-
ships representing different machining parameters employed
in this work were then derived using MRA. As previously
discussed, fibre orientation was not deemed to be critical
due to its relatively low influence on tool life based on the

derived Taylor’s model, Eq. 8. As far as machining is
concerned, cutting speed and feed rate are still the governing
parameters to influence the tool life or tool wear. Hence,
fibre orientation has not been used as one of the input
variables to derive the empirical models. Considering feed

Fig. 9 Initial Gaussian MFs for
all input prior to ANFIS
training
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and cutting forces separately, the derived general equations
from MRA are given by Eqs. 9 and 10, respectively:

TW ¼ 10�2:547 � s�0:409 � f �0:564 � F1:150
x ;

R2 ¼ 0:851
ð9Þ

TW ¼ 10�3:382 � s�0:694 � f �1:296 � F1:667
y ;

R2 ¼ 0:821
ð10Þ

where TW is tool wear (in millimeter), s is the cutting
speed (in meters per minute), f is the feed rate (in
millimeters per revolution), and Fx (in newton) and Fy

(in newton) are feed and cutting forces, respectively.
Overall, based on the R2 values, the results of these
multiple regression analyses suggest that the derived
general equations can predict the trend of tool wear
with acceptable accuracy. However, it is evident that
the tool wear-feed force equation gives a slightly better
prediction on the extent of tool wear as compared to the
tool wear-cutting force relationship. The calculated

results using Eqs. 9 and 10 are displayed in Fig. 8 for
two selected machining parameters employed in this
work. The predicted TW from the tool wear-feed force
relationship, Eq. 9, appears to be satisfactory, as most
of the experimental data lie within the ±15 % error zone
(compared to the predicted values) (Fig. 8a). However,
the tool wear-cutting force relationship seems to under-
estimate the extent of tool wear (Fig. 8b), within certain
cutting force region. Scattering of the experimental data
from the predicted or calculated TW is evident with
only part of them being within ±15 % zone. Owing to
the nature of intermittent or discontinuous cutting
actions during end milling and random variations in
the material properties, inherent scattering or fluctuation
of the measured cutting force data is observed. This is
obvious as the tool fractures the non-homogeneous
layers of fibre reinforcements and epoxy matrix with
different chip sizes. On the basis of these factors, slight-
ly poorer results are obtained in the regression analysis,
Eq. 10.
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Fig. 10 Comparison of experimental, MRA- and ANFIS-predicted
data for a feed force, Fx, and b cutting force, Fy, under different
machining conditions
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4.3 Construction of ANFIS model and its results

Due to the anisotropic and inhomogeneous properties of
GFRP composites, variations in the machining force
measurement exist. Hence, highly accurate constitutive
relationships of tool wear-machining forces are difficult
to be established by the method of regression analysis,

as shown earlier. Therefore, in this section, the applica-
tion of advanced fuzzy logic modelling, known as
ANFIS is demonstrated for improving of the tool wear
prediction. Prior to the ANFIS modelling, restructuring
of the datasets was performed to enhance the predictive
capability of the ANFIS model. Firstly, feed and cutting
force datasets were normalised between 0.1 and 0.9 in

(i) MRA (ii) ANFIS

(i) MRA (ii) ANFIS

a

b

Fig. 12 a 3D surface diagram
of (i) MRA- and (ii) ANFIS-
predicted data superimposed
upon the experimental data for
feed force, Fx ,at f00.16 mm/
rev, b 3D Surface diagram of (i)
MRA- and (ii) ANFIS-
predicted data superimposed
upon the experimental data for
feed force Fx, at s0150 m/min
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order to produce uniform non-dimensional experimental data.
This was carried out using the following expression:

xn ¼ 0:1þ 0:8� di � dmin

dmax � dmin

� �
ð11Þ

where dmax and dmin are the maximum andminimum values of
raw data while di is the ith data point of a dataset. For better
generalisation of an ANFIS model, the normalised data are
randomised and divided into training and validation datasets
as would normally be performed in any neural networkmodel.
Machinability data and/or experimental results gathered from

(i) MRA (ii) ANFIS

(i) MRA (ii) ANFIS

a

b

Fig. 13 a 3D surface diagram
of (i) MRA- and (ii) ANFIS-
predicted data superimposed
upon the experimental data for
cutting force, Fy ,at f00.24 mm/
rev, b 3D Surface diagram of (i)
MRA- and (ii) ANFIS-
predicted data superimposed
upon the experimental data for
cutting force, Fy, at s0150 m/
min
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the wide range of experiments (Table 1) were used for training
of the ANFIS model. The validation of the trained ANFIS
model was then implemented using new input data from
repeated experiments of randomly selected machining param-
eters. Obviously, the new datasets were different from the
training datasets. Table 2 summarises the range of values for
training and validation input–output datasets used to develop
the ANFIS predictive models. Similar to that of MRA, two
different ANFIS models were constructed using feed and
cutting force datasets to predict a single output variable, tool
wear, TW. This approach offers the flexibility of having
different types of MFs in the ANFIS architecture. An impor-
tant element in the ANFIS modelling is the selection of
parameters for fuzzy inferencing, which are the type and
number of MFs. These parameters are essential to form the
antecedent or premise parameters of the fuzzy rules. In the
current work, the developed ANFIS model employed the
nonlinear Gaussian MFs for each of the input data (cutting
speed, feed rate and machining forces). The smoothness and
symmetrical shape of the Gaussian function curvesmake them
suitable for the development of these highly nonlinear tool
wear-machining force relationships. Typically, a Gaussian
membership function, which spreads across the experimental

input range with maximum and minimum degree of member-
ship range from 0 to 1, is given by:

μAi
j ¼ exp

� xj � aij

� �2

2b2j

2
64

3
75 ð12Þ

where x is the input parameter, and a and b are the Gaussian
function parameters which will be optimised in the subsequent
input space partitioning stage. Parameter a represents the
Gaussian function centre (mean) whereas b determines the
width (standard deviation) of the Gaussian function. The
aforementioned input space partitioning of the training data-
sets was performed using subtractive-clustering technique in
order to determine the optimum number and size of the
Gaussian MFs and fuzzy rules required for the ANFIS model.
Both parameters were determined based on the number of
cluster centres obtained from the clustering technique. This
technique assumes that each data point can be a potential
cluster centre and calculates the likelihood of each selected
point being the cluster centre [24–26]. The potentiality of
being a cluster centre is based on the density of surrounding
data points. Results of applying the subtractive-clustering

a bFig. 14 Histogram of ratio
between predicted value against
experimental data for a
MRA_Fx and b ANFIS_Fx

a bFig. 15 Histogram of ratio
between predicted value against
experimental data for a
MRA_Fy and b ANFIS_Fy
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technique to the current datasets produced 9 to 12 Gaussian
MFs, which were spaced over the range of input parameters
(Fig. 9). It is imperative to note that the purpose of using
clustering method is to identify natural groupings of data so as
to produce a concise representation of large dataset. Following
the clustering of input data, the neural network training of the
ANFIS model was performed in several epochs (iterations)
using the predetermined number of Gaussian MFs and fuzzy
rules in order to identify the final ANFIS models for tool wear
prediction. The fuzzy rules formulated in the model are shown
here for one of the ANFIS models developed:

R1 If (Cutting Speed is HIGH) and (Feed Rate is
MEDIUM) and (Feed Force is CLUSTER1) then (TW10
p1s+q1f+r1Fx+s1)

R9 If (Cutting Speed is HIGH) and (Feed Rate is
MEDIUM) and (Feed Force is CLUSTER9) then (TW0

p9s+q9f+r9Fx+s9)
These formulated rules were implemented using Takagi–

Sugeno-type FIS in the MATLAB Fuzzy Logic Toolbox
environment. Repeated training and checking of the ANFIS
neural network module were performed until the minimum
training error has been achieved. A comparison of ANFIS-
predicted outputs with the MRA-calculated results and exper-
imental data are displayed for feed and cutting forces (Fig. 10a
and b), respectively. In both cases of ANFIS and MRA mod-
elling, it can be seen that the tool wear-force relationship
follows a linear trend in the lower machining force region
(at approximately less than 80 N). However, as the high
machining force region approaches, ANFIS models show a
remarkable match to the experimental data. This may indicate
that the functional relationship has changed to nonlinearity.
Indeed, with the hybrid learning algorithms of gradient de-
scent and backpropagation network of ANFIS architecture, as
well as the application of nonlinear Gaussian functions as the
fuzzy logic MFs, a highly accurate prediction of the tool wear
is displayed throughout the entire force range. On the contrary,
it is noticeable that change in the functional relationships,
particularly in the high machining force range, could not be

closely fitted by MRA technique (Fig. 10). This is likely to be
a result of linear interpolative nature of theMRAwhich results
in a continuous linear relationship between tool wear and the
machining force. Similar trends exist for validation datasets,
which were implemented on the final ANFIS trained models.
Notably, an excellent fit of predicted values against experi-
mental data is also evident for the selected validation datasets
(Fig. 11).

Since a wide range of machining parameters was
employed, it was possible to plot 3D surface diagrams of
predicted values obtained from each modelling technique
superimposed with the experimental data. These plots
(Figs. 12 and 13) provide a clearer representation of how well
the predicted values fit the experimental data. From these
plots, it is evident that the MRA-predicted values show a
linear trend within all force levels. In contrast, it appears that
the accuracies of the ANFIS models are well pronounced
throughout all machining force levels, as shown in both fig-
ures. As indicated earlier, the apparent difference between
them can be easily noticed in the high machining force region.

4.4 Statistical and error analyses of the MRA and ANFIS
models

The ratios of predicted values to experimental data for each of
the developed models are presented using histograms in order
to compare their statistical characteristics, based on frequency
distribution functions (Figs 14 and 15). As shown in these
histograms, the standard deviations of the calculated ratios are
0.157 and 0.104 for MRA and ANFIS models, respectively for
the feed force, Fx, datasets, whereas they are, 0.184 and 0.118
for the cutting force, Fy, datasets. This shows the tendency for
the variance of the ratio to decrease with the shift from MRA
models to ANFISmodels and also from using cutting force data
to feed force data in order to predict the tool wear. Hence, this
supports the results of regression analysis presented earlier with
regard to better accuracy of tool wear-feed force relationship. In
addition, the performance of the developed tool wear prediction

Table 3 Statistical comparison
of the MRA and ANFIS predic-
tive performance

Tool wear-Fx MRA modelling Tool wear-Fx ANFIS modelling

All datasets Training datasets Validation datasets

R2 0.9789 0.9920 0.9933

RMSE 0.0294 0.018 0.016

cov (%) 15.52 9.56 8.87

MAPE 12.64 8.20 6.74

Tool wear-Fy MRA modelling Tool wear-Fy ANFIS modelling

All datasets Training datasets Validation datasets

r2 0.9744 0.9889 0.9877

RMSE 0.033 0.021 0.022

cov (%) 17.50 11.29 12.06

MAPE 15.14 8.66 8.67
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models was evaluated using several statistical indices. The
indices are in terms of statistical error measures namely, the
RMSE, the coefficient of variation (cov.), the absolute fraction
of variance (R2) and the MAPE. The equations for these statis-
tical error measures are as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

ypred;i � yexp;i
� �2

m

vuuut
ð14Þ

cov: ¼ RMSE

yexp
		 		 ð15Þ

r2 ¼ 1�
Pm
i¼1

ypred;i � yexp;i
� �2
Pm
i¼1

yexp;i
� �2 ð16Þ

MAPE ¼
Pm
i

ypred;i�yexp;i
ypred;i

� �
� 100

m
ð17Þ
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Fig. 16 a Scatter diagram of MRA-predicted values against experi-
mental data for Fx, b scatter diagram of MRA-predicted values against
experimental data for Fy
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Fig. 17 a Scatter diagram of ANFIS-predicted values against experi-
mental data for Fx, b scatter diagram of ANFIS-predicted values
against experimental data for Fy
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where, ypred,i and y,exp,i are the predicted value and experi-
mental data of the tool wear respectively, yexp is the average
experimental data of tool wear and m is the number of
sample. Table 3 compares the results of statistical perform-
ances for each of the developed predictive models. It is
apparent that the accuracy and improvement of ANFIS
predictive capabilities compared to the MRA models. Nev-
ertheless, as mentioned earlier, large variations, fluctuations
or noises in the measured cutting force, Fy, render a less
accurate prediction of tool wear for both MRA and ANFIS
models. Scatter diagrams (Fig. 16) were also plotted to
demonstrate the accuracy of the predicted tool wear from
MRA models in comparison to the experimental data under
all experimental conditions. A perfect prediction would
show that all points lie on the 45° line. A ±15 % error zone
line is imposed along the 45° line to display how close the
comparative data points are bunched together. Comparative-
ly, there are a number of data points, scattered outside the
error zone for both the MRA models indicating only accept-
able accuracy in the MRA predictive capabilities. Likewise,
scatter diagrams displaying all predicted values of tool wear
from the ANFIS models against the measured tool wear
were also plotted (Fig. 17). It can be seen that almost all
predicted data clustered within ±15 % error and close to the
45° line (for perfect prediction). Hence, this indicates the
significant improvements in the tool wear prediction using
ANFIS models for both feed and cutting force datasets.

5 Concluding remarks

This paper has presented the results of end milling
machinability tests of GFRP composites using uncoated
tungsten carbide tools. The Taylor's tool life equations
have been derived to determine the useful life of the
end mill cutter. Additionally, tool wear-machining force
models have been developed in order to monitor the
extent of tool wear during end milling of these com-
posite materials. The following conclusions can be
drawn from the results presented earlier:

– An increased cutting speed or feed rate accelerates the
tool wear growth and leads to rapid failure of the cutting
tool.

– Machining across the fibre orientation (90° to fibre
orientation) eases the growth of the tool wear which
eventually prolongs the tool useful life when compared
to machining along the fibre orientation (0°). The mar-
ginal increase of tool wear when machining at 90° fibre
orientation is likely due to inherently tool/fibre contact.

– The derived Taylor’s equations have confirmed that the
useful life of the end mill cutter is strongly influenced
by cutting speed and feed rate.

– As indicated in the equations, the effect of machining at
the two fibre orientations does not show significant
influences on the tool life as compared to those for
varying machining parameters.

– The progression of tool wear can be effectively moni-
tored without interrupting the cutting process by using
the derived relationships between tool wear and ma-
chining forces. General equations from MRA (based
on power law function) exhibit an acceptable accuracy
in predicting the extent of tool wear when compared to
the experimental data.

– The evidence is highly conclusive that reasonably ac-
curate tool wear prediction can be easily achieved using
the feed force, Fx, data rather than the cutting force, Fy.

– The ANFIS models applied on the same dataset has
yield a significant improvement in predicting the tool
wear during end milling of the composite materials.
Results show that the developed ANFIS models exhibit
highly accurate predictive capabilities, especially when
the functional relationships are nonlinear. The ANFIS
superiority is attributed to the hybrid learning algo-
rithms of backpropagation and gradient descent, as well
as the application of the nonlinear Gaussian function as
the fuzzy logic membership function.
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