
Int J Adv Manuf Technol (2013) 64:587–600
DOI 10.1007/s00170-012-4429-0

ORIGINAL ARTICLE

Large-scale process optimization for focused ion beam 3-D
nanofabrication

Ruwen Qin · Jing Fu · Zhaozheng Yin ·
Changxi Zheng

Received: 1 October 2011 / Accepted: 14 June 2012 / Published online: 25 August 2012
© Springer-Verlag London Limited 2012

Abstract With the ever-decreasing size of manufac-
tured objects, fabrication processes driven by charged
particle beams, such as focused ion beam (FIB), be-
come important for a wide spectrum of interdisciplinary
applications. A designed three-dimensional (3-D) pat-
tern to fabricate may contain millions of pixels,
which will require solving an unprecedented large-scale
problem for planning. This paper proposes a general
framework of planning FIB milling for fabricating 3-D
nanostructures, including model formulations to enable
FIB for scalable and automated applications and a cor-
responding optimization model to support the process
planning. The implementation of proposed work does
not affect the fabrication quality and yet tremendously
reduces the required computational time and data
storage during planning. The proposed framework of
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process planning is further illustrated and verified by
simulation and milling experiments of submicron fea-
tures on Si and Si3N4. This research offers an accurate
and economical solution to the realization from designs
to actual micro/nanoscale models and builds a scientific
foundation for immediate development of complex,
yet more accurate and cost-effective, beam scanning
techniques.
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1 Introduction

Miniaturization has become an important theme in
manufacturing with products in micro/nanoscale, bring-
ing great impact to different industries as well as the so-
ciety [1–4]. Various fabrication approaches have been
developed, and the dimensions of artifacts manufac-
tured today can be in the order of nanometer, which
is equal to one-billionth of a meter. The definition of
nanomanufacturing is broad in some sense and can be
referred to as processes to fabricate objects or systems
at the nanometer scale. To achieve the expected di-
mensions, fabrication processes are mainly driven by
particle–solid interactions based on pixel scanning. The
corresponding systems, including focused ion beam
(FIB), focused electron beam, and alternatives with
similar functionality, become standard tools for nano-
manufacturing with capabilities of both additive (“bot-
tom up”) and subtractive (“top down”) processes [5].

A comparison of macroscale and micro/nanoscale
machining is presented in Fig. 1a. At macroscale, tool
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Fig. 1 a Comparison of the
three stages of machining at
different scales, b test
submicron spherical cavities
milled on GaAs substrate
with FIB, and c an example of
scanning pattern with sparse
pixels

selection and numerical control patch can be translated
and optimized for downstream machining processes [6,
7] or incorporated into the design stage [8]. Compared
to well-studied design-to-manufacturing at macroscale,
both the underlying physics and the associated plan-
ning techniques at micro/nanoscale are significantly
different. Charged particle beams, instead of cutting
tools, are often applied to “cut” the target material, and
the effective pixel size of beam scanning in the highest
resolution model is about 1 nm in current instruments.
This allows for the realization of micro/nanoscale de-
signs with high level of accuracy. Figure 1b displays
submicron spherical cavities milled on GaAs substrate
with FIB. Current charged particle-based systems can
raster scan more than 105 pixels per second. Dwell
time at each pixel, together with the beam sizes, can
be determined and executed to directly translate three-
dimensional (3-D) results from CAD designs. How-
ever, unlike automation at macroscale, limited planning
tools are currently available to support 3-D freeform
fabrication, even for simple geometries. A significant
amount of trial-and-error efforts are often needed in
current fabrication practices.

The aim of this study is to investigate the planning
scheme for FIB milling processes, particularly for cre-
ating submicron features. Nanoscale milling with FIB
involves the use of ion-sputtering technique to fabri-
cate arbitrary 3-D objects [3, 4, 9–14]. The focused
ions on material are of a near-Gaussian shape; there-
fore, the creation of a predetermined 3-D shape relies
on the mathematical modeling of the spatial distribu-
tion of beam intensity and combined beam deflections
[3, 4, 15–17]. Two representative approaches of 3-D
FIB milling have been studied in the literature. One
approach dedicates to the use of variable dwell time

to create desired 3-D shapes (e.g., [18]). The other
approach using uniform dwell time produces a series of
2-D slices to form 3-D shapes (e.g., [19]). The work of
this paper shares some similarity with the first approach
in that dwell time is considered as a decision vari-
able. The existence of various fabrication parameters
dramatically increases the complexity of process plan-
ning for producing 3-D freeform structures, indicating
the need for optimization tools to build a systematic
planning framework for various applications based on
FIB milling [2, 4]. An attempt to optimize FIB milling
processes was presented in [20]. However, it was limited
to one specific application, and no actual modeling
or optimization framework was developed to extend
the results to additional models. Little work has been
done to study the process planning for FIB milling in a
model-based optimization approach, and this research
is the first attempt to explore that direction, which will
serve as a standard computational approach for large-
scale freeform fabrications. Results from optimized
planning are expected to improve the cost-effectiveness
and accuracy of beam scanning processes and to en-
hance the feedback cycle of micro/nanoscale products
as well.

This paper formulates the process planning for FIB
milling as a quadratic programming problem that per-
mits varied dwell time at arbitrary beam settings. It sup-
ports implementation of the sparse scanning strategy
we propose in this paper, as the solution of a linear
system At = b becomes more difficult to solve than
in [18]. An FIB system typically has multiple current
settings, similar to the selection of multiple tools in
macroscale milling. Each setting is determined by the
ion optics and corresponds to a fixed beam size. At
focused mode, the spatial beam intensity distribution
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can be modeled as a spatial Gaussian distribution, with
the full width at half maximum of the distribution as the
beam diameter. Scanning with a larger size beam on a
single pixel will generate a cavity spanning more neigh-
boring areas. Currently, a designed pattern to scan may
include millions of pixels and, consequently, to deter-
mine the dwell time at each individual pixel becomes a
large-scale nonlinear problem, often infeasible to solve
in a reasonable time frame. One alternative approach
is to divide the target geometry to multiple primitive
features such as horizontal slices, which can then be
programmed in a sequential manner [19]. However, this
approach and other proposed methods intend to solve
the dwell time only, with all the other decision variables
such as beam current and spacing presumably provided
by experts. The dimension of solvable patterns was sup-
posed to be much larger than pixel size, and planning
submicron and micron features is still challenging.

By investigating FIB process parameters, we propose
a general framework of modeling and optimization for
FIB milling in 3-D freeform fabrication. A sparse setup
of the pixels to scan, referred to as sparse scanning and
illustrated by Fig. 1c, is planned in the form of quadratic
programming problem. Methods to improve the com-
putational efficiency are also proposed to prepare for
large-scale planning. Verifications are performed based
on both simulation and milling experiments of submi-
cron features, showing that the proposed approach can
be further extended to features of varied size and geom-
etry. The remaining of the paper is organized as follows:
in Section 2, the planning of FIB milling is modeled as
a quadratic programming problem. Section 3 discusses
the solution approach to large-scale problems. Simula-
tion studies are presented in Section 4 to develop a bet-
ter understanding of the proposed planning approach,
and Section 5 shows results from actual experiments.
Findings from this study and discussions of potential
future research are summarized in Section 6.

2 The optimization model

2.1 Formulation of sparse scanning for FIB milling

Without loss of generality, the planning of FIB process
for producing designed 3-D shapes is assumed in a 3-
D Euclidean space. A grid on the XY surface is set up
with u columns on the X direction and v rows on the
Y direction, as shown in Fig. 2. Therefore, there are N
pixels in total, N = u × v. Assume that the pixel size is
δ nm on both X and Y directions. The operation of an
FIB is to focus and deflect the beam on the XY grid.
The geometry profile, zO (in nanometers), is an N × 1

Fig. 2 A grid of pixels on the XY surface and the spatial
Gaussian distribution of beam intensity centered at a scanned
pixel (x j, y j)

vector specifying the desired depth on the Z direction
for each of the N individual pixels.

The spacing of scanning, on both X and Y directions,
is allowed to vary with current settings; however, the
pixel size is kept unchanged. This approach allows the
use of multiple current settings in producing a single
shape yet without changing the standard of quality
control (i.e., the total number of quality checkpoints
is fixed). Assume only M pixels among N (M ≤ N)
are considered for milling (so named fabricated pixels).
Therefore, the number of decision variables is reduced
from N to M. The sparse level of scanning depends on
the spacing of scanning and is measured by 1 − M/N.
For example, M is equal to N if every pixel will be
considered for milling, and thereby the sparse level is
0 %. Approximately 25 % of pixels are considered for
milling if the spacing of scanning is two pixels, yielding
a 75 % sparse level of scanning.

Given any beam size, FIB process planning involves
determining the dwell time on each of the fabricated
pixels. Let t be an M × 1 vector of which the jth
element, t j, represents the dwell time on the jth fab-
ricated pixel, j ∈ {1, 2, . . . , M}. The energetic collision
at pixel j produces a cavity of a bell-shaped spatial
geometry which spans over the neighboring pixels, as
illustrated in Fig. 2. The shape can be described by the
beam intensity function, typically modeled as a spa-
tial Gaussian distribution [3]. Therefore, positive dwell
time at the jth fabricated pixel affects the neighboring
pixels and vice versa. A, an N × M matrix, is set up to
measure milling coefficients. As it is shown in Fig. 2,
the element aij(≥ 0) of A represents the yielded depth
on the ith pixel contributed by the milling on the jth
fabricated pixel with one unit of dwell time (i.e., 1 s).
aij (in nanometers per second) at any current setting
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can be decided by a near-Gaussian spatial distribution;
therefore,

aij = Ys exp

[
− (xi − x j)

2 + (yi − y j)
2

2σ 2
s

]
. (1)

where (xi, yi) and (x j, y j) are the coordinates of the
pixels i and j on the grid, respectively. σs (in nanome-
ters) is the standard deviation of the spatial Gaussian
distribution of beam intensity, and Ys measures the
speed of erosion (in nanometers per second), both at
the current setting, s. The ultimate depth at pixel i is
the aggregate results from milling on all the fabricated
pixels [2]; that is,

zi =
M∑
j=1

aijt j = Ait, for i = 1, 2, . . . , N, (2)

where Ai is the ith row of coefficient matrix A. The
length of Ai has been reduced from N to M because
of the reduced number of decision variables.

2.2 Optimization model of dwell time

The decision on dwell times, t, must take two issues into
consideration. The first issue is fabrication quality. It is
desirable to make the material removal, At, close to the
geometry profile, zO, as much as possible. The other is-
sue is the processing time cost. It is economical to keep
the total dwelling time, 1T t, as minimum as possible.
Consequently, a quadratic optimization problem is set
up to take into account of both criteria,

min F(t) = ∥∥At − zO
∥∥2

2 + η1T t

subject to : t ≥ 0 (3)

Equation 3 is also named the convex relaxation tech-
nique [21], which overcomes problems caused by an
ill-conditioned, or even singular, matrix A in solving
a linear system At = zO. Therefore, Eq. 3 is more
adaptive to a broader range of fabrication conditions
and strategies. η (≥ 0) in Eq. 3 is the weight put on the
processing time cost; therefore, it manages the tradeoff
between fabrication quality and processing time cost.
The objective function in Eq. 3 is rewritten to adopt a
standard quadratic programming format:

min F(t) = tTQt + 2pT t + r

subject to : t ≥ 0 (4)

where

Q = ATA,

p = −ATzO + 0.5η1,

r = (zO)TzO. (5)

Q in Eq. 5 is positive definite (because Q = ATA and
the columns of A are linearly independent). p can have
both positive and negative elements. Equation 5 indi-
cates that the size of the optimization problem varies
with the sparse level of scanning; however, the number
of quality checkpoints, N, always remains unchanged.

3 Solution approach

3.1 Size reduction of optimization problem

Scanning of a designed pattern for FIB milling may in-
clude millions of pixels, making (Eq. 4) a large-scale op-
timization problem. For example, the maximum pixel
sizes of DualBeam 3-D (FEI Company, USA) are u =
4096 and v = 3072. Therefore, the number of decision
variable may be N = u × v ≈ 12.6 × 106, and A is an
N × N matrix with N2 = 1.6 × 1014 elements. The re-
quired memory to load matrix A into a computer is
6.4 × 1014 bytes = 640 TB = 6.4 × 105 GB (each double
precision floating number consists of 4 bytes), which
is far beyond today’s computing technology. However,
we can utilize the sparse property of the coefficient
matrix A to tackle the large-scale problem since the
geometric effect at any pixel on the grid of planning is
primarily contributed by the milling at that pixel and
its neighboring pixels. Therefore, A can be saved as a
sparse matrix to enhance the capability of dealing with
large-scale problems. To save A as a sparse matrix,
nonzero elements in A, together with their row and
column indexes, must be identified. A “local window”
centered at each pixel is defined to efficiently identify
the neighboring fabricated pixels that can contribute to
the production of depth at the central pixel, shown in
Fig. 3. Clearly, the size of the window is dependent on
the beam intensity distribution of selected current, σs.
For any pixel on the grid, it is reasonable to exclude
fabricated pixels that are outside of a circle of 3σs radius
centered at that pixel. Therefore, the diameter of the
window, in the unit of pixels, is

w = 2

⌈
3σs

δ

⌉
+ 1. (6)

When raster scan is used, a square window, which
circulates the circle window, is easier to implement in
terms of problem formulation and analysis. The width
of the square window is equal to w defined in Eq. 6.
Therefore, we assume the pixel centered in the local
window is affected by milling at any of the w2 pixels
within the square window.

Pixels within a local window are just a small por-
tion of all pixels on the grid. Therefore, the number
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Fig. 3 A local window centered at a pixel determines the
neighboring pixels whose milling effect to that pixel must be
considered

of nonzero elements, w2 N, is smaller than the total
number of elements in matrix A, N2,

w2 N ≤ N2. (7)

However, the sparse level of matrix A may be severely
decreased by the use of large-sized beams because w2

increases with σs. The proposed sparse scanning has
potential to prevent the quick increase in nonzero el-
ements in matrix A. When the beam size is increased, it
is reasonable to enlarge the spacing of milling. Conse-
quently, although more pixels are included by a larger
local window, less pixels within that window will be
actually milled. If fabricated pixels are evenly distrib-
uted on the grid, approximately w2 M elements of A are
nonzero, and

w2 M ≤ w2 N ≤ N2. (8)

Therefore, matrix A may still be relatively sparse when
larger beams are used.

3.2 An iterative approach of solution

The quadratic objective function in Eq. 4 is convex
since Q is positive definite, and all decision variables
are nonnegative. This type of problems is named non-
negative quadratic programming (NQP). No analytical
solution for the global minimum of NQP exists and
an iterative approach to solution (i.e., a gradient-based
method) is commonly applied. Among the literature
dedicated to NQP, multiplicative updates [22, 23] are
perhaps the simplest algorithm to implement. It avoids
the estimate of a learning rate that is commonly needed
in gradient-based methods. Let t0 represent an initial
value of t, and tk (k > 0) designates the result of t from

the kth update. Multiplicative updates for searching an
optimal solution to Eq. 4 are expressed as

tk+1
j ← max[−pj, 0]

(Qtk) j
tk

j . (9)

Equation 9 means to use the jth (for j = 1, 2, . . . , M)
elements of vectors Qtk and P to update the jth element
of tk. The factor multiplying tk

j in Eq. 9 is nonnegative
since the numerator and denominator of that factor are
both nonnegative. Therefore, solutions to Eq. 9 always
remain in the feasible region for NQP during the itera-
tive process. It is implied in Eq. 9 that the starting point
of the iterative process, t0, must be positive. Otherwise,
zero elements of t0 will remain unchanged throughout
iterations.

The algorithm of updates in Eq. 9 will be derived
in two steps. First, we will show that the updates in
Eq. 9 monotonically decrease the objective function,
F(t). Then, we will prove that the updates in Eq. 9
converge to a global minimum, F(t∗), where t∗ is the
minimizer.

We define G(s, t) as a function of two positive vec-
tors, s and t:

G(s, t) = sTK(t)s + 2pTs + r, (10)

where p and r have been defined in Eq. 5, and K(t) is a
diagonal matrix with elements

Kmn =
{

(Qt)m/tm, if m = n;
0, otherwise.

(11)

From Eq. 4, we have

G(t, t) = F(t). (12)

Moreover, G(s, t) is an upper bound of F(s), that is

G(s, t) ≥ F(s), (13)

which can be derived for all positive vectors s and t as
follows. Since G(s, t) − F(s) = sT(K(t) − Q)s, to prove
the inequality in Eq. 13 is equivalent to showing that
K(t) − Q is positive semidefinite. The Hadamard prod-
uct of two positive vectors, s and t, s ◦ t, is still a positive
vector, and

(s ◦ t)T(K(t) − Q)(s ◦ t)

=
∑
mn

smtm(Kmn − Qmn)tnsn

=
∑
mn

Qmntmtns2
m −

∑
mn

Qmntmtnsmsn

= 1

2

∑
mn

Qmntmtn(sm − sn)
2

≥ 0. (14)
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K(t) − Q being positive semidefinite verifies that
G(s, t) is an upper bound of F(s). Therefore, G(s, t) is
an auxiliary function for F(t).

Because Q is positive definite, K(t) is positive
definite as well according to Eq. 11. Therefore, G(s, t)
is convex on s. The choice of

s′ = arg min
s

G(s, t) (15)

ensures that

F(s′) ≤ G(s′, t) ≤ G(t, t) = F(t); (16)

and F(s′) < F(t) if s′ 
= t. We take the first derivative of
G with respect to s to find that

∂G(s, t)
∂s

= 2K(t)s + 2p. (17)

∂G(s, t)/∂s j > 0 when pj ≥ 0; therefore, the solution to
Eq. 15 is s′

j = 0 under this condition. There exists a
solution to ∂G(s, t)/∂s j = 0 when pj < 0, that is

s′
j = − pj

(Qt) j
t j. (18)

Therefore, the solution to Eq. 15 at any value of pj can
be written as Eq. 9.

Next, we show that the fixed point of the updates
in Eq. 9, t∗, satisfies the Karush–Kuhn–Tucker (KKT)
conditions [24] to the NQP problem defined in Eq. 4.
The KKT conditions are as follows:

Qt + p = λ, t ≥ 0, λ ≥ 0, t ◦ λ = 0, (19)

where λ is a vector whose elements are Lagrange mul-
tipliers that enforce the nonnegativity constraints on
t. “◦” in Eq. 19 represents the Hadamard product. t∗
satisfying the KKT conditions implies that either of the
following two conditions must hold for each element of
t∗: (i) t∗j = 0; or (ii) ∂ F

∂t j
|t∗ = 0 if t∗j > 0. Equation 9 shows

that max[−pj, 0]/(Qt∗) j = 1 for t∗j > 0. Under this con-
dition, λ j, which is equal to 1

2
∂ F
∂t j

|t∗ = (Qt∗) j + pj, is 0.
That is, the fixed point of the updates in Eq. 9 satisfies
the KKT conditions of Eq. 4. Since F(t) is strictly con-
vex on t ≥ 0 and t0 is not the origin, the updates defined
in Eq. 9 generate solutions {t0, t1, t2, . . . } that makes
the sequence {F(t0), F(t1), F(t2), . . . } monotonically
decrease and converge to the global minimum, F(t∗).

3.3 Processing time cost

The value of η represents the ratio of processing time
cost relative to the cost pertaining to fabrication qual-
ity. It manages the tradeoff between these two costs.

To better understand the impact of η on the optimal
solution to Eq. 4, t∗, we rewrite Eq. 9 as follows:

tk+1
j ← max

[
A j · zO − 0.5η, 0

]
A j · (At)

tk
j (20)

to explicitly show η in the updates. “·” in Eq. 20 rep-
resents the inner product of two vectors. A j in Eq. 20
is the jth column of the coefficient matrix A, which
represents the yield of the jth fabricated pixel at all
pixels of planning. A j, zO, At∗, and all Atk are vectors
in an N dimensional Euclidean space. At∗ is close to
zO, and the vector pointing from At∗ to zO, At∗ − zO, is
the minimized errors of FIB milling for the N pixels of
planning. The updates in Eq. 20 involve searching At∗,
iteratively, and Att − zO is the error associated with the
result from the kth iteration. The path of search in the
N dimensional space, {At1, At2, . . . }, is affected by η as
the factor multiplying tk

j is a function of η in Eq. 20.
Besides the path of search, the location of At∗ on

the N dimensional space is also affected by η. At At∗,
where the search is accomplished, the vector of mini-
mized error, At∗ − zO, and t∗j (for ∀ j) satisfy

{
A j · (At∗ − zO) = −0.5η, if 0 ≤ η < 2A j · zO

t∗j = 0, if η ≥ 2A j · zO (21)

In general, fabrication quality decreases with the in-
crease in η. Under an extreme situation of η = 0, the
error vector, At∗ − zO, is required to be equal to 0 or
perpendicular to vector A j for all j. Positive η relaxes
the restriction on error. As η increases, some elements
in t∗ become zeros; others also no longer satisfy the
perpendicular relationship between At∗ − zO and A j,
according to Eq. 21. If η keeps increasing, the other
extreme situation will occur, ultimately; that is, all el-
ements of t∗ become zeros. This means no milling is the
best solution to Eq. 4 when milling cost is tremendously
high, which clearly is not appropriate for most real
world applications. Very large η may fail the model in
Eq. 4, and the NQP problem in Eq. 4 needs to be re-
vised to adapt to situations that the processing time cost
is dominating; for instance, minimizing the milling error
subject to a budget constraint on processing time cost.

4 Numerical simulation

4.1 Numerical examples

A numerical example that uses 100 pA to mill a spheri-
cal lens governed by

zO
i = R−

√
R2−x2

i −y2
i , |xi|≤hx, |yi|≤hy (22)
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Fig. 4 Numerical results of the spherical lens example

is first studied. hx = hy = 300 nm, and the pixel size is
3 nm on both X and Y directions. Consequently, a 200
by 200 grid is set up, and the total number of pixels, N,

is equal to 4 × 104. The beam diameter corresponding
to this current setting is 23 nm. A silicon (Si) wafer
sample is used, for which the sputtering rate is known

Fig. 5 Simulation results of the submicron spherical lens based on yield calculation only (without optimization) and the proposed
optimization approach
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(0.27 μm3/nC). The volume of removal is 3,608,437 nm3,
and the spacing of scanning is 3 pixels. Consequently,
the number of decision variables is just about 11 %
of the 4 × 104 pixels under planning. We solve the
problem using Matlab on a Dell desktop (OptiPlex
760: Intel(R) Core(TM)2 Duo CPU, 2.6 GHZ, and
4-Gb memory). The matrix A was generated in 0.9 s.
The optimization process took 29.0 s when we set the
termination condition as ||tk − tk−1||1/M < 1 ns or the
number of iterations >500 (detailed information about
the computational requirement is presented in Fig. 7).

Simulation results of this example are displayed in
Fig. 4. The plot on the upper left is the desired 3-D
shape with R = 3 μm. The plot on the upper right is
the simulation result from the optimized FIB process
planning with η = 0. The optimized planning result is

very close to the desired 3-D shape. The difference
between these (i.e., the error on the Z direction), At∗ −
zO, is displayed at the bottom left. Large errors mainly
occur on the XY boundaries of the shape. The plot
at the bottom right is the statistical distribution of the
error. Mean value of the error on the 4 × 104 pixels is
−1.4549 × 10−3 nm. The standard deviation of the error
is 0.1850 nm. The 95 % confidence interval of the mean
is [−0.0033, 0.0004], indicating the mean value of errors
is from a normal distribution centered at zero. The
maximum absolute value of error, 3.0821 nm, occurs
at a corner. The cumulative error on the Z direction
is 3.0026 × 103 nm, equivalent to a 0.75 % deviation
from the desired volume of removal. Total dwell time is
150.4 ms. The statistical results show that the deviation
is limited by the proposed planning approach.

Fig. 6 Summary of numerical examples
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Fig. 7 CPU time (in seconds) and cumulative error (in percentage) against the number of iterations, k, for the spherical lens example:
a k = 10 and b k =10,000

We compare the improvement by optimization in
this example to a nonoptimization setting. The user
manual of FIB instrument (FEI Company, USA) gives
a method for estimating the dwell time [25]:

t = 10−9(δ[nm])2

(current[nA])(sputtering rate[μm3/nC])zO. (23)

Planning results, which are based on yield calculation
only (without optimization), is displayed on the left of
Fig. 5, and our optimization results are on the right. Im-
proved geometry fidelity is clearly accomplished by the
proposed optimization, and the error statistics shown in
Fig. 5 further confirms the improvement.

To understand the factors affecting the computa-
tional time for optimization, we perform several tests
and summarize results in Fig. 6. For a square cavity
with a uniform depth of 20 nm on the Z direction, with
all else kept unchanged, the optimization time is 30 s.
No significant change in the computational time has
been observed from this comparison, which indicates
that geometry complexity does not impact the CPU
time of optimization. We further optimize the process
plan for a spherical lens with a bigger size, on a 1.2 by
1.2-μm grid, and all other settings remain unchanged.

The size of the grid is four times of the original one,
and the number of decision variables are also increased
by four times. The computational time for optimizing
the process plan is 114 s, approximately four times of
the computational time for optimizing the smaller lens.
The tests suggests that the computational time is not
affected by geometry complexity but is dependent on
problem sizes. Additional examples are also studied
including a sinusoidal grating and a pore on membrane,
and results from all the examples are consistent.

The efficiency of the proposed approach in Eq. 4
depends on the selection of termination condition. It
will cost additional computational time if a solution of
high accuracy is expected. Figure 7 displays the cumula-
tive error in percentage, ‖Atk − zO‖1/‖zO‖1, and corre-
sponding computational time, both against the number
of iterations, k. Figure 7a shows that the cumulative
error decreases rapidly in the initial several iterations.
Figure 7b further shows that the computational time
linearly increases with the increase in iterations, and
yet the decrease in cumulative error gradually slows
down. The decision on when an approximate solution
is of sufficiently high quality is case-dependent, and
simple heuristics are often developed to facilitate the
selections.

Table 1 Current settings with
the corresponding current
density and erosion rate for
30 keV gallium ion milling on
silicon

Setting (s) Current Beam diameter SD of intensity Current density Erosion rate
[pA] (ds) [nm] Dist (σs) [nm] [nA/μm] (Ys) [μm/s]

1 1 7 2.97 18.04 4.87
2 100 23 9.77 240.69 45.02
3 1000 50 21.23 509.30 95.34
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Fig. 8 Minimized cumulative error at the current 100 pA

4.2 Study design

The proposed framework in this paper formulates the
dwell times as an optimization problem. To develop a
scientific understanding of the model-based optimiza-
tion approach to process planning, we examine the op-
timization result for varied fabrication settings. Factors
that may influence the optimization result include the
geometry complexity of 3-D objects, maximum depth
of fabrication, size of focused ion beam, and spacing of
scanning.

To determine if the geometry complexity affects the
optimization outcome, two representative 3-D shapes
are compared. The first one is the square cavity that has
a uniform depth on the Z direction; whereas the other
is the spherical lens that has a curved depth. Both are
within a 600 by 600 nm area on the XY surface.

Three levels of maximum depth on the Z direction
are selected for each shape to study the effect of milling
depth. 1.5, 9, and 30 nm are selected for the square cav-
ity. Three levels of R (1.5, 3, and 10 μm), corresponding
to three different maximum depths on the Z direction,
are selected for the spherical lens.

Three current settings, 1, 100, and 1,000 pA, are
displayed in Table 1. The current density can be cal-
culated for each current setting, s, according to Eq. 1.
Given the characteristics of the bombarding ion and

Table 2 Mean and variance of minimized milling error at
different spacing of FIB milling

Groups Mean Variance

Spacing = 1 pixel −0.00082 0.019167
Spacing = 2 pixels −0.00081 0.019021
Spacing = 3 pixels −0.00079 0.018693
Spacing = 4 pixels −0.00149 0.032984
Spacing = 5 pixels −0.00280 0.062073

the target material, erosion rate, Ys, is considered as a
constant in this study. It can be obtained by multiplying
the maximum current density with ion-sputtering rate.
For example, for 30 keV gallium ion milling on Si, the
sputtering rate is 0.27 μm3/nC at normal incidence [26].
It should be noted that the sputtering rate may decrease
with the increase in aspect ratio due to the redeposition
effect. It may also increase if the dwell time of a single
deflection on a pixel is too long.

The optimization of process planning is expected to
be effective if the spacing of FIB scanning is limited
below a threshold. This is because positive overlap
of beam scanning (i.e., scanning spacing is less than
the beam diameter) is needed to avoid the situation
that some areas are left, not fabricated. Therefore,
identification of the threshold is critical. The threshold
spacing of FIB scanning is the largest spacing (or the
smallest overlap) that does not sacrifice fabrication
quality. The optimization model makes it possible to
identify the threshold because, with it, we can study
how the minimized cumulative error is affected by the
spacing of FIB scanning. Spacing no greater than 1.5σ

is suggested in [3]; therefore, we consider spacing up to
1.5σ (i.e., from 1 to 5 pixels) in the examples.

Table 3 Significant levels for t test and F test

1 pixel 2 pixels 3 pixels 4 pixels 5 pixels

1 pixel 0.996 0.981 0.556 0.164
0.446 0.124 0.000 0.000

2 pixels 0.985 0.553 0.163
0.082 0.000 0.000

3 pixels 0.541 0.158
0.000 0.000

4 pixels 0.395
0.000



Int J Adv Manuf Technol (2013) 64:587–600 597

Fig. 9 Minimized cumulative errors against milling spacing at
different current settings

4.3 Numerical results

Figure 8 displays the cumulative errors for both 3-D
shapes at their three levels of maximum depth when the
current is 100 pA. The results imply that the minimized
cumulative error is relatively even when the spacing is
not greater than 3 pixels, equivalent to a 61 % overlap
(overlap=1−spacing/beam diameter). The same pat-
tern is consistently observed for both shapes at all levels
of maximum depth, which suggest that the shape and
maximum depth of the 3-D nanostructure to fabricate
have no significant impact on the optimization result.
The impact of spacing on the minimized error is further
examined from a statistical viewpoint. Table 2 lists the
mean and variance of minimized error for the spherical
lens when using the 100 pA ion current. Both the mean
and variance of minimized error show a clear change
as the spacing of scanning increases from 3 to 4 pixels
(3 nm per pixel), which are verified by the t test and F
test results in Table 3.

We also examine the threshold spacing for varied
current settings. Figure 9 displays the minimized cumu-
lative error at different spacings for the selected three
current settings. At the 1- pA current, the spacing of

1 pixel effectively controls the milling error. When the
current is increased from 1 pA to 100 pA, the spacing
of scanning can be increased to 3 pixels without sac-
rificing the fabrication quality. At the 1,000-pA current,
the spacing can be as large as 7 pixels. The threshold
spacing (in the unit of σ ), L∗, and overlap (in the unit
of beam diameter), of scanning for the three current
settings are further summarized in Table 4. In the table,
it has been shown that the threshold spacing of FIB
scanning is about 1σ or the threshold overlap is near
0.58, at any of the three current settings.

When larger current is used, enlarging the spacing
of scanning from 1 pixel to the threshold level dramat-
ically improves the computational efficiency without
lowering fabrication quality. The improved computa-
tion efficiency is due to the reduced number of decision
variables and the smaller size of the coefficient matrix
A, as Table 4 summarizes. Without sparse scanning
(i.e., every pixel is fabricated), the number of nonzero
elements in each row of A (w2) significantly increases
as the beam diameter, d, increases. By implementing
the sparse scanning, the number of nonzero elements
in each row of A, w2 M/N, remains at a lower level that
makes it feasible for solving the optimization problem.

5 Milling experiments

The spherical lens defined in Eq. 22 is first used to
verify the proposed planning approach. All the milling
experiments were performed on DualBeam 3-D (FEI
Company, USA) equipped with a liquid metal ion
source of gallium. The simulation studies in Section 4
have suggested that optimal planning result can be
affected by the beam current and spacing of FIB scan-
ning. Therefore, we tested the proposed optimization
method in two-factor (current × spacing) four-level
full factorial experiments. Spacing is changed from 1 to
4 pixels (pixel size is 6 nm on both X and Y directions),
and the current settings are 1, 30, 100, and 500 pA.
There are 16 experiments in total, as shown in Table 5.

Table 4 The threshold spacing (and overlap) of FIB that provides satisfied milling quality and high computational efficiency

Current Beam Standard deviation Threshold Threshold Sparse The number of nonzero
pA diameter of beam intensity spacing (L∗) overlap level elements in each row of A

(d) [nm] distribution [nm] (σ ) (1 − L∗/d) (1 − M/N) at min at optimal
(σ ) [nm] spacing spacing

(w2) (w2 M/N)

1 7 2.97 3 1.01 0.57 0.000 49 49
100 23 9.77 9 0.92 0.61 0.889 441 49
1,000 50 21.23 21 0.99 0.58 0.980 2,025 41
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Table 5 Optimization results of milling experiments

ID Current Spacing Cumulative error by Planned total processing Volume of removal
optimized planning time (standard) (theoretic value=5.815E-02 μm3)

[pA] [pixel] [nm] [ms] [μm3] Error [%]

a 1 1 N/A 210,074.43 5.815E-02 −0.0025 %
b 1 2 1,027,231 117,814.74 3.254E-02 −44.0358 %
c 1 3 1,352,687 57,417.96 1.581E-02 −72.8064 %
d 1 4 1,466,396 32,922.76 9.024E-03 −84.4813 %

e 30 1 3,237 7,427.81 5.815E-02 −0.0041 %
f 30 2 12,364 7,408.27 5.814E-02 −0.0172 %
g 30 3 163,686 7,296.34 5.730E-02 −1.4680 %
h 30 4 533,400 6,409.54 4.966E-02 −14.5975 %

i 100 1 5,465 2,275.38 5.815E-02 −0.0068 %
j 100 2 7,499 2,272.38 5.815E-02 −0.0099 %
k 100 3 13,570 2,266.90 5.814E-02 −0.0178 %
l 100 4 101,026 2,261.89 5.779E-02 −0.6173 %

m 500 1 8,615 477.59 5.814E-02 −0.0097 %
n 500 2 8,643 477.58 5.814E-02 −0.0097 %
o 500 3 11,024 476.86 5.814E-02 −0.0129 %
p 500 4 15,633 474.40 5.814E-02 −0.0246 %

In each experiment, pixels to mill are determined
by the scanning spacing for that experiment; then
coefficient matrix, A, is generated for the given current.
The optimization problem in Eq. 4 is solved to find the
optimal dwell time for each selected pixel. Indexes of
these pixels and the corresponding dwell time are saved
as ASCII codes and sent to the FIB instrument through
the “stream” interface provided by the manufacturer.

The maximum size of 4,096 by 3,072 for beam scan-
ning is limited by the control unit of the instrument.
To illustrate the entire implementation process, FIB
milling is assumed to be on a grid, similar to that in the
simulation study, and unless stated elsewhere, each grid
pattern for test contains 200 by 200 pixels. At ×6,500
magnification, the pixel size is approximately 6 nm, and
the corresponding spacing can be varied at 6q nm (q is
a positive integer). A silicon wafer sample is mounted
for milling, and the sputtering rate is 0.27 μm3/nC. The
total volume for removal to produce the spherical lens
(with R = 3 μm) is 0.05815 μm3, and the total milling
time varies with current settings. In Table 5, we provide
the simulation results for experiments, including the
minimized cumulative error on the Z direction, total
milling time, and realized volume of removal, all based
on the optimized planning for FIB scanning.

The scanning electron microscope (SEM) images of
the experiment results are presented in Fig. 10. Results
in the same row are produced with the same current,
and the same spacing of scanning is used for results in
the same column. To achieve quality finish at the pixel
size of 6 nm, the current should be large enough to

form a beam diameter no less than 14 nm (= 6 nm/(1 −
0.58)), or equivalently, a standard deviation of beam
intensity distribution no less than 6 nm (since σ ≥ 6q).
For the results in the first row with the lowest current,
1 pA, the beam diameter is approximately 7 nm, and
the standard derivation of beam intensity distribution

Fig. 10 SEM imaging (tilted at 45◦) of FIB-milled patterns on Si
with varied settings: a–d 1 pA, e–h 30 pA, i–l 100 pA, m–p 500 pA.
(scale bar 500 nm)
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is 2.97 nm, smaller than the minimum requirements
of scanning spacing. The milled geometries, however,
are still close to the expected one with 1- and 2-pixel
spacing. It implies that the tail effect at this current
setting may be larger than the Gaussian distribution
model used by the process planning. For larger spacing,
the yielded geometries (Fig. 10c–d) are significantly
different from the designed geometry, which primarily
are the results of insufficient overlap of beam scanning.
At the 6-nm pixel size, 30 and 100-pA current settings
(Fig. 10e–l) appear to be more appropriate compared to
1-pA current in terms of the fidelity of the geometries
produced. Yet “roughened” surface can be observed by
milling with larger beams, consistent with the results
of simulation. It should be noted that 30 and 100 pA
offer much higher milling rate (in cubic micrometers
per second) compared to 1 pA. The milling time for
the test pattern by 1 pA is more than 3 min, but only
seconds by 30 and 100 pA. Results from the current
setting of 500 pA (Fig. 10m–p) are not convincing. A
possible reason is that the beam covers a large number
of pixels within an extremely short time and, therefore,
ion dose may not be properly delivered to each pixel.

Although threshold spacing for the current setting of
100 pA is suggested to be between 1.61 and 1.63 pixels,
theoretically, experimental results show that the milling
error does not increase significantly as the spacing of
scanning is enlarged to 2 pixels and yet becomes sub-

Fig. 11 Schematic diagrams of a milling designed conical nano-
pore on 500-nm Si3N4 membrane and c exposing the nanopore
geometry by milling additional cross section. The acquired SEM
images are presented in b and d correspondingly (scale bar 1 μm)

stantially large as the spacing is greater than 2 pixels.
The current setting such as 500 pA used in the experi-
ment may not be appropriate for small features due to
large beam size and extremely short dwell time during
scanning. Additional constraints can be enforced in the
optimization model to prevent improper settings iden-
tified by experiments and, eventually, an automated
design-to-fabrication scheme can be accomplished.

To further demonstrate the proposed approach, sin-
gle submicron pores on membrane were milled as
shown in Fig. 11a. Si window-coated Si3N4 membrane
of 500 nm in thickness was chosen, with free standing
membrane in the center of a 2 by 2-mm region. FIB
milling commands (the X and Y indexes of pixels
selected to mill and the dwell time on these pixels)
then were transferred to the instrument, and no coating
is performed prior to milling. To control the beam
charging effect, electron beam was also scanning in fast
mode during the ion beam milling. With this charge
compensation approach, no sample drifting was de-
tectable during the milling experiment, as monitored by
SEM. To investigate the geometry of the newly milled
pores, micrometer sized patterns were further milled
adjacent to each pore to expose the cross sections of
nanopores (Fig. 11c). The results were verified by SEM
and presented in Fig. 11b and d. The designed tapered
sidewall is confirmed after the geometry is exposed
(Fig. 11d), and the proposed framework can be further
used to tune the geometry for various potential uses.

6 Conclusions

Charged particle beams, particularly FIB, are becom-
ing flexible tools for fabrication and prototyping at
the nano/microscale. However, a designed pattern to
scan can contain millions of pixels, which results in an
unprecedented large-scale problem for the process
planning. A general framework of modeling and op-
timization for planning is proposed in this research,
targeting arbitrary designed 3-D shapes. Enhanced
with a number of optimization techniques, computa-
tional time and data storage requirement are effectively
reduced. In addition, engineering aspects such as fabri-
cation quality are also considered in the objective func-
tion. The proposed approach can be extended to ma-
chining processes, particular those at micro/nanoscale
with the feature size approaching tool/beam size. The
model formulation is also expected to enable FIB for
scalable and automated applications. The optimization
model proposed has built a scientific foundation for
an immediate realization of complex yet more accu-
rate and cost-effective, fabrication methods at micro/
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nanoscale. For instance, the proposed planning ap-
proach can easily adopt the coarse-to-fine method; that
is, a single object can be produced using multiple beam
sizes with larger beams for faster material removal and
smaller beams for greater geometry fidelity.

The optimization model has provided opportunities
to streamline and promote FIB for flexible applications
such as the two examples tested with submicron fea-
tures. It should be noted that only simple examples
were examined with predefined current settings. Re-
sults may require minor revision for complex geome-
tries, e.g., high aspect ratio cavities. The results also
motivate interesting thoughts that are worth of further
studies. For instance, theoretical analysis may explain
the actual physical phenomenon suggested by the roles
of σ . This study has also built a foundation for using
multiple beam sizes in producing a single 3-D shape,
which will further improve the cost-effectiveness and
fabrication quality of FIB milling. Numerical results
suggest that a relative larger amount of errors were
presented close to the boundaries of fabricated pat-
terns; therefore, the error may be better controlled if
the sparse level of fabrication is not uniform on the
grid of pixels (e.g., less spacing at boundaries and areas
with large curvature). The selections of starting points
and termination conditions for the iterative algorithm
also present opportunities for further improving the
optimization scheme. All the points above require a
formulation of repeated scanning and are subjects of
future studies.
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