
ORIGINAL ARTICLE

Optimization of multi-pass turning operations using hybrid
teaching learning-based approach

Ali R. Yildiz

Received: 6 January 2012 /Accepted: 23 July 2012 /Published online: 11 October 2012
# Springer-Verlag London Limited 2012

Abstract This paper presents a novel hybrid optimization
approach based on teaching–learning based optimization
(TLBO) algorithm and Taguchi’s method. The purpose of
the present research is to develop a new optimization ap-
proach to solve optimization problems in the manufacturing
area. This research is the first application of the TLBO to the
optimization of turning operations in the literature The pro-
posed hybrid approach is applied to two case studies for
multi-pass turning operations to show its effectiveness in
machining operations. The results obtained by the proposed
approach for the case studies are compared with those of
particle swarm optimization algorithm, hybrid genetic algo-
rithm, scatter search algorithm, genetic algorithm and inte-
gration of simulated annealing, and Hooke–Jeeves patter
search.

Keywords Hybrid optimization . Teaching–learning based
optimization algorithm . Taguchi method . Manufacturing .

Turning

1 Introduction

The machining processes have been widely used to produce
high-quality products by many companies. These machining
processes include large number of parameters that may affect
the cost and quality of the products. Selection of optimum
machining parameters is very important to satisfy all the
conflicting objectives of the process. In the first study on the
machining economics problems, Gilbert [1] presented theoret-
ical analysis of the optimization of the machining process.
Various research efforts have been made on single and multi-

pass turning problems [2–14]. Recently, a comparison of evo-
lutionary-based optimization techniques to solve multi-pass
turning optimization problems is presented by Yildiz [14].

The convergence speed of evolutionary algorithms to the
optimal results is better than those of traditional optimiza-
tion algorithms. Population-based algorithms such as cuck-
oo search algorithm, differential evolution algorithm (DE),
particle swarm optimization algorithm (PSO), and genetic
algorithm (GA) have been preferred in many applications
instead of conventional techniques [8, 15–30].

The population-based algorithms may have premature
convergence towards a local minimum. To find a remedy
the mentioned weakness, they have been integrated with
other techniques [31–36]. In [36], the differential evolution
algorithm was integrated with Taguchi method for optimi-
zation of multi-pass turning operations. The results of the
HRDE were better than those of scatter search, the GA and
the simulated annealing powered with a Hooke–Jeeves Pat-
tern Search (SA–PS) algorithm for turning operations.

In this research, a new hybrid approach based on teaching
learning-based optimization (TLBO) algorithm and Taguchi
method is presented. The proposed hybrid approach
(HRTLBO) is applied to the two case studies to optimize
cutting parameters in multi-pass turning operations. The rest
of the paper is organized as follows: Section 2 describes a
detailed formulation of the objective and constraints in
multi-pass turning. The TLBO algorithm and Taguchi meth-
od are presented in Section 3. In Section 4, two case studies
are solved. The results and discussions for case studies are
given in Section 4. The paper is concluded in Section 5.

2 Metal cutting optimization model

In multi-pass turning operations, the aim is to minimize unit
production cost (CU). The unit production cost is the sum of
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the cutting cost (CM), machine idle cost (CI), tool replace-
ment cost (CR), and tool cost (CT), respectively. The devel-
oped hybrid optimization approach is applied to optimize
multi-pass turning operation for the determination of cutting
parameters considering minimum production cost under a
set of machining constraints which are presented and adop-
ted in the references of Shin and Joo [5], Chen and Tsai [8],
and Chen [30].

2.1 The cost function

CU ¼ CM þ CI þ CR þ CT ð1Þ

CU ¼ k0 pDL
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2.2 Parameter bounds and cutting condition constraints

In multi-pass turning operations, CU is imposed by differ-
ent constraints which are (1) parameter bounds cover
depth of cut, cutting speed and feed; (2) tool-life con-
straint; (3) cutting force constraint; (4) power constraint;
(5) stable cutting region constraint; (6) chip–tool interface
temperature constraint; (7) surface finish constraint (only
for finish machining); and (8) parameter relations. These
constraints are as follow [5]:

2.2.1 Rough machining

Depth of cut drL � dr � drU ð3Þ
Feed frL � fr � frU ð4Þ

Cutting speed VrL � Vr � VrU ð5Þ

Tool� life contraint TL � tr � TU ð6Þ

Cutting force constraint k1f μr d
u
r � FU ð7Þ

Power contraint k1f
μ
r d

u
r Vr

6120η � PU ð8Þ

Stable cutting region contraint V l
r frd

v
r � SC ð9Þ

Chip� tool interface temperature constraint
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R f

ϕ
r d

d
r � QU

ð10Þ

2.2.2 Finish machining

Depthofcut dsL � ds � dsU ð11Þ

Feed fsL � fs � fsU ð12Þ

Cutting speed VsL � Vs � VsU ð13Þ

Tool� life constraint TL � ts � TU ð14Þ

Cutting force constraint k1f
μ
s d

u
s � FU ð15Þ

Power constraint k1f
μ
S d

u
SVS

6120η � PU ð16Þ

Stable cutting region constraint V l
S fS d

n
S � SC ð17Þ

Chip� tool interface temperature constraint

QS ¼ k2V t
s f

ϕ
s d

d
s � QU

ð18Þ

Surface finish constraint f 2s
8R � SRU ð19Þ

2.2.3 Parameter relations

Vs � k3Vr ð20Þ

fr � k4fs ð21Þ

dr � k5d5 ð22Þ

dr ¼ dt � dsð Þ=n ð23Þ
In addition to these constraints, the total depth of cut is

another important constraint for the case study. The total
depth of cut (dt) is the sum of the depth of finish cut (ds), and
the total depth of rough cut (ndr). The optimization algo-
rithm does not determine the optimal depth of roughing
since it can be given by the mathematical manipulation as
expressed in Eq. (24). Therefore, one can eliminate the
equality constraint (Eq. 23) and the decision variable (dr)
in the optimization procedure [8].

ds ¼ dt � ndr ð24Þ
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Therefore, the equality constraint and the decision vari-
able (dr) and (n) in the optimization procedure can be
eliminated. The five machining parameters (Vr, fr, ds, Vs,
fs) are determined for turning model optimization. Further
details about the turning mathematical model and data with
respect to machining can be obtained from Shin and Joo [5]
and Chen and Tsai [8] and Chen [30].

3 The proposed hybrid approach

3.1 Taguchi method

The Taguchi method is a universal approach, which is widely
used in robust design [37]. There are three stages to achieve
Taguchi’s objective: (1) concept design, (2) robust parameter
design (RPD), and (3) tolerance design. The robust parameter
design is used to determine the levels of factors and to mini-
mize the sensitivity of noise. That is, a parameter setting should
be determined with the intention that the product response has
minimum variationwhile its mean is close to the desired target.
Taguchi’s method is based on statistical and sensitivity analysis
for determining the optimal setting of parameters to achieve
robust performance. The responses at each setting of parame-
ters were treated as a measure that would be indicative of not
only the mean of some quality characteristic, but also the
variance of that characteristic. The mean and the variance
would be combined into a single performance measure known
as the signal-to-noise (S/N) ratio. Taguchi classifies robust
parameter design problems into different categories depending
on the goal of the problem and for each category as follows:

Smaller the better For these kind of problems, the target
value of y, that is, quality variable, is zero. In this situation,
S/N ratio is defined as follows:

S=N ratio ¼ �10 log
X

y2i n=
� �

ð25Þ

Larger the better In this situation, the target value of y, that is,
quality variable, is infinite and S/N ratio is defined as follows:

S N ratio ¼ �10 log
X

1 y2i
�

n=
� �.

ð26Þ

Nominal the best For these kind of problems, the certain
target value is given for y value. In this situation, S/N ratio is
defined as follows:

S N ratio ¼ �10 log
X

y2 s2
�� �.

ð27Þ

Taguchi’s method uses an orthogonal array and analysis of
mean to analyze the effects of parameters based on statistical
analysis of experiments. To compare performances of param-
eters, the statistical test known as the analysis of variance
(ANOVA) is used. Further details and technical merits about
robust parameter design can be found in [37, 38].

3.2 Teaching–learning-based optimization algorithm

TLBO is a teaching–learning process inspired algorithm pro-
posed by Rao et al. [39], which is based on the effect of
influence of a teacher on the output of learners in a class. It
has been used for optimization of mechanical elements [40],
structural design [41], and manuafcturing problems[42]. The
algorithm mimics the teaching learning ability of teacher and
learners in a class room. Teacher and learners are the two vital
components of the algorithm and describes two basic modes of
the learning, through teacher (known as teacher phase) and
interacting with the other learners (known as learner phase).
The output in TLBO algorithm is considered in terms of results
or grades of the learners which depend on the quality of teacher.
So, teacher is usually considered as a highly learned person who
trains learners so that they can have better results in terms of
their marks or grades. Moreover, learners also learn from the
interaction among themselves which also helps in improving
their results.

TLBO is a population-based method. In this optimization
algorithm, a group of learners is considered as population and
different design variables are considered as different subjects
offered to the learners and learners’ result is analogous to the
“fitness” value of the optimization problem. In the entire popu-
lation the best solution is considered as the teacher. The working
of TLBO is divided into two parts, “teacher phase” and “learner
phase”. Working of both phases is explained below.

(a) Teacher phase
It is the first part of the algorithm where learners learn

through the teacher. During this phase, a teacher tries to
increase the mean result of the class room from any value
M1 to his or her level (i.e., TA). But practically, it is not
possible and a teacher canmove themean of the class room
M2 to any other valueM2 which is better thanM1 depend-
ing on his or her capability. ConsiderMj be as themean and
Ti as the teacher at any iteration i. Now, Ti will try to
improve existing meanMj towards it so the new mean will
be Ti designated as Mnew and the difference between the
existing mean and new mean is given by Rao et al. [40].

Difference Meani ¼ ri MnewTFMj

� � ð28Þ
where teaching factor (TF) is the teaching factor which
decides the value of mean to be changed, and ri is the
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random number in the range [0, 1]. Value of TF can be
either 1 or 2 which is a heuristic step and it is decided
randomly with equal probability as:

TF ¼ round 1þ rand 0; 2ð Þ 2� 1f g½ � ð29Þ

The teaching factor is generated randomly during the
algorithm in the range of 1–2, in which 1 corresponds to
no increase in the knowledge level and 2 corresponds to
complete transfer of knowledge. The in-between values
indicates amount of transfer level of knowledge. The
transfer level of knowledge can be any depending on
the learners capabilities. In the present work, attempt was
carried out by considering the values in between 1 and 2,
but any improvement in the results was not observed.
Hence to simplify the algorithm, the teaching factor is
suggested to take either 1 or 2 depending on the rounding
up criteria. However, one can take any value of TF in
between 1 and 2.

Based on this difference_mean, the existing solution
is updated according to the following expression

Xnew;i ¼ Xold;i þ Difference Meani ð30Þ

(b) Learner phase
It is the second part of the algorithm where learners

increase their knowledge by interaction among them-
selves. A learner interacts randomly with other learners
for enhancing his or her knowledge. A learner learns
new things if the other learner has more knowledge
than him or her. Mathematically, the learning phenom-
enon of this phase is expressed below.

At any iteration i, considering two different learners Xi

and Xj where i≠ j

Xnew;i ¼ Xold;i þ ri Xi � Xj

� �
If f Xið Þ < f Xj

� � ð31Þ

Xnew;i ¼ Xold;i þ ri Xj � Xj

� �
If f Xj

� �
< f Xj

� � ð32Þ
Accept Xnew if it gives better function value. The imple-

mentation steps of the TLBO are summarized below:

Step 1: Initialize the population (i.e., learners) and
design variables of the optimization problem
(i.e., number of subjects offered to the learner)
with random generation and evaluate them.

Step 2: Select the best learner of each subject as a
teacher for that subject and calculate mean
result of learners in each subject.

Step 3: Evaluate the difference between current mean
result and best mean result according to Eq.
(28) by utilizing the TF.

Step 4: Update the learners’ knowledge with the help
of teacher’s knowledge according to Eq. (30).

Step 5: Update the learners’ knowledge by utilizing the
knowledge of some other learner according to
Eqs. (31) and (32).

Step 6: Repeat the procedure from steps 2–5 till the
termination criterion is met.

The next section presents the applications of the proposed
algorithm for the parameter optimization of turning operation.

3.3 The proposed optimization approach

In this paper, a new hybrid optimization approach (hybrid
robust teaching–learning based optimization; HRTLBO) is
presented to define the optimal machining parameters for
multi-pass turning operations. The proposed approach hybrid-
izes teaching–learning based optimization algorithm and
Taguchi method. It has an important advantage to consider
hybridizing TLBO with other techniques to develop a new
approach that improves the performance of TLBO to solve
optimization problems.

A larger population makes the algorithm more likely to
locate a good masking string, but also increases the time taken
by the algorithm. Therefore, there is a need to define the
efficient range of population size to achieve better optimal
solutions in shorter times. In this research, this shortcoming is
eliminated by introducing Taguchi’s robust parameter design
through the initial population generation for TLBO.

The Taguchi method is a method that chooses the most
suitable combination of the levels of factors by using S/N
table and orthogonal arrays against the factors that form the
variation and are uncontrollable in product and process [37].
Hence, it tries to reduce the variation in product and process
as much as possible. Taguchi’s robust parameter design uses
statistical performance measure which is known as S/N ratio
that takes both medium and variation into consideration.
Therefore, the current approach uses the issues of robustness
to emphasize the statistical and sensitivity analysis of RPD
to achieve an efficient exploration using a small population by
avoiding the use of a large search space for the evolution
process. The current proposed approach involves two stages
of optimization: (a) refinement of search space of solutions
using Taguchi’s RPD and (b) TLBO search process using
refined population size.

4 Example of computational machining optimization

As stated in the above sections, the metal cutting oper-
ation has a complex nature, the objectives are usually in
conflict with each other, and they have uncontrollable
variations in their design parameters with complex
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nature. For example, increasing production rate may
increase the production cost by increasing the rate of
tool wear. As stated in Section 2, the complex nature
and high nonlinearity of machining optimization prob-
lems may present some shortcomings for optimization
approaches. There is a crucial need to overcome the
limitations owing to the traditional optimization methods
and also further to improve the strength of recent
approaches to achieve better results for the machining
problems in industry. In the present research, the search
space is refined based on the effect of the various
design variables on objective functions. An aim was to
reach optimum solutions by using Taguchi’s RPD ap-
proach coupled with TLBO.

4.1 Metal cutting example

In this section, the HRTLBO is used to find the optimum
machining parameters for the multi-pass turning problem,
which is described in section 2. The machining variables
(factors) x1 (Vr), x2 (fr), x3 (Vs), x4 (fs), and x5 (ds) are
selected as feed, cutting speed, and depth of cut in rough
and finish turning. Machining data for the first example of
multi-pass turning are shown in Table 1.

The equations for calculating S/N ratios for quality charac-
teristics are logarithmic functions based on the mean square
quality characteristics. For this problem, S/N ratios for objec-
tive function of first example are computed using smaller-the-
better (Eq. 25) as given in Table 2 since the objective is the
minimization of cost.

The relative effect of the different factors can be obtained
by the decomposition of variance, which is called ANOVA.
The purpose of ANOVA is to investigate the design parame-
ters that affect significantly the quality characteristic. It is
designed N using S/N ratios as shown in Table 3 for (case 1
with dt06 mm). The intervals of the design parameters are
found regarding the effects of factors on the objective.

The intervals of design variables for case 1 are found as 50
<x1<200, 0.53<x2<0.9, 50<x3<200, 0.1<x4<0.9, and 2.32
<x5<3. The computed levels are used to generate the initial
population in TLBO. The analysis of variance is applied for
case 2 with dt08 mm and results are given in Table 4.

It can be seen that the most effective variables and their
levels are the same as in case 1. Therefore, the search space
limits of the parameters are 50<x1<200, 0.53<x2<0.9, 50<
x3<200, 0.1<x4<0.9, and 2.32<x5<3. The initial population

Table 1 Data for the example of multi-pass turning

D050 mm L0300 mm dt06.0 mm

VrU0500 m/min VrL050 m/min frU00.9 mm/rev

frL00.1 mm/rev drU03.0 mm drL01.0 mm

VsU0500 m/min VsL050 m/min fsU00.9 mm/rev

fsL00.1 mm/rev dsU03.0 mm dsL01.0 mm

ko00.5 $/min kt02.5 $/edge h107×10
−4

h200.3 tc00.75 min/piece te01.5 min/edge

p05 q01.75 r00.75

C006×10
−11 TU045 min TL025 min

kf0108 μ00.75 υ00.95

η00.85 FU0200 kg f PU05 kW

λ02 ν0−1 Sc0140

kq0132 τ00.4 φ00.2

δ00.105 QU01,000 °C Rn01.2 mm

k301.0

Table 2 Experimental results and S/N ratio

Ex. no X1 X2 X3 X4 X5 F S/N

1 50 0.1 50 0.1 1 10.3 −20.2

2 50 0.27 200 0.27 1.66 3.1 −9.7

3 50 0.53 350 0.53 2.32 1.9 −5.7

4 50 0.9 500 0.9 3 1.4 −3.5

5 200 0.1 200 0.53 3 3.6 −11.1

6 200 0.27 50 0.9 2.32 1.8 −5.3

7 200 0.53 350 0.1 1.66 3.1 −10.1

8 200 0.9 500 0.27 1 9.5 −19.5

9 350 0.1 350 0.9 1.66 17.9 −25.1

10 350 0.27 500 0.53 1 26.7 −28.5

11 350 0.53 50 0.27 3 2.7 −8.8

12 350 0.9 200 0.1 2.32 2.2 −7.2

13 500 0.1 500 0.27 2.32 33.4 −30.4

14 500 0.27 350 0.1 3 3.8 −11.8

15 500 0.53 200 0.9 1 1.8 −5.1

16 500 0.9 50 0.27 1.66 2.6 −8.5

Table 3 Results of the analysis of variance for objective (case 1 with
dt06 mm)

Level 1 Level 2 Level 3 Level 4 SS %Cont.

x1 −9.8 −11.5 −17.4 −14 127 11.95

x2 −21.7 −13.8 −7.4 −9.7 472.4 44.45

x3 −10.7 −8.3 −13.1 −20.5 258.6 24.33

x4 −12.3 −15.4 −15.1 −9.7 71.7 6.74

x5 −18.3 −13.3 −12.1 −8.8 132.8 12.44

Table 4 results of the analysis of variance for objective (case 2 with
dt08 mm)

Level 1 Level 2 Level 3 Level 4 SS %Cont.

x1 −13.6 −14.3 −19.9 −16.3 94.5 7.9

x2 −25.7 −17 −9.8 −11.7 599.1 50.5

x3 −12.8 −11.4 −16.1 −24 294.5 24.8

x4 −14.4 −18 −19.1 −13 58 4.8

x5 −21.40 −16.1 −15.2 −11.5 139.8 11.7
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of TLBO is randomly generated for solutions within the
range of 50<x1<200, 0.53<x2<0.9, 50<x3<200, 0.1<x4<
0.9, and 2.32<x5<3. Then, TLBO evolution is processed to
find the best result for objective using the refined search
space of solutions.

From the comparison of best results given in Table 5, it is
seen that the minimization of the unit production cost in multi-
pass turning operation is achieved by proposed hybrid ap-
proach. The comparison of the results obtained by the pro-
posed approach, against other techniques, is given in Table 5.

It can be seen that better results for the best com-
puted solutions are achieved for the turning optimization
problem compared to PSO, HRGA, scatter search, float-
encoding GA (FEGA), and SA/PS as shown in Table 5.
PSO, HRGA, and FEGA required 10,000, 27,000,
40,000, 60,000 function evaluations to find the best
solutions, respectively.

The FEGA of Chen and Chen [29] required 60,000
function evaluations to find the best solutions 2.2988 and
2.8170 for cases 1 and 2, respectively. The use of the
HRTLBO improves the convergence rate by computing the
best values 2.0460 and 2.4790 for case 1 and case 2, respec-
tively, and maintaining the less function evaluations 9000.

5 Conclusions

In this paper, a hybrid optimization algorithm is presented for
the optimization of machining parameters considering mini-
mum production cost under a set of machining constraints in
turning operation. The HRTLBO is performed quite well on
the optimization of machining parameters of turning operation
problem finding better solutions compared to other
approaches. From the above computational results and dis-
cussions, it is demonstrated that HRTLBO can be used as a
powerful technique for optimization of machining problems.

Nomenclature

C0 constant pertaining to tool-life equation
CI machine idle cost (dollars per piece)
CM cutting cost by actual time in cut

(dollars per piece)
CR tool replacement cost (dollars per piece)

CT tool cost (dollars per piece)
dr, ds depths of cut for each pass of rough

and finish machining (millimeters)
drL, drU lower and upper bounds of depth

of rough cut (millimeters)
dsL, dsU lower and upper bounds of depth

of finish cut (millimeters)
dt total depth of metal to be removed

(millimeters)
D diameter of work piece (millimeters)
fr, fs feeds in rough and finish machining

(millimeters per revolution)
frL, frU lower and upper bounds of feed

in rough machining (millimeters
per revolution)

fsL, fsU lower and upper bounds of feed in finish
machining (millimeters per revolution)

Fr, Fs cutting forces during rough
and finish machining (kilogram force)

FU maximum allowable cutting force
(kilogram force)

h1, h2 constants pertaining to tool travel and
approach/depart time (minutes)

k1, k2,
k3

constants for roughing and finishing
parameter relations

kf coefficient pertaining to specific
tool–work piece combination

ko direct labor cost overhead
(dollars per minute)

kq coefficient pertaining to equation
of chip–tool interface temperature

kt cutting edge cost (dollars per edge)
L length of work piece (millimeters)
n number of rough passes
p, q, r constants pertaining to the tool-life

equation
Pr, Ps cutting power during roughing

and finishing (kilowatt)
PU maximum allowable cutting

power (kilowatt)
Qr, Qs temperatures during roughing

and finishing (degree Celcius)
QU maximum allowable temperature

(degree Celcius)

Table 5 Comparison of the best computed optimum results for turning problem

HRTLBO PSO [31] HRGA [35] SS [30] FEGA [29] SA/PS [8]

Case 1: cost ($) (dt06 mm) 2.0460 2.0470 2.0481 2.0667 2.2988 2.2795

Case 2: cost ($) (dt08 mm) 2.4790 2.4796 2.486 2.5417 2.8170 2.7411

HRTLBO hybrid robust teaching–learning based optimization algorithm, PSO particle swarm optimization algorithm, HRGA hybrid robust genetic
algorithm, SS scatter search, SA/PS simulated annealing and Hooke–Jeeves pattern search, FEGA float-encoding genetic algorithm
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Ra maximum allowable surface
roughness (millimeters)

Rn nose radius of cutting tool (millimeters)
Sc limit of stable cutting region
t tool life (minute)
tc constant term of machine idling time

(minute)
te tool exchange time (minute)
tp tool life (minute) considering roughing

and finishing
tr, ts tool lives (minute) for roughing

and finishing
tv variable term of machine idling

time (minute)
TI machine idling time (minute)
TL, TU lower and upper bounds of tool life
TM cutting time by actual machining

(minute)
TMr,
TMs

cutting time by actual machining
for roughing and finishing (minute)

TR tool replacement time (minute)
UC unit production cost except material

cost (dollars per piece)
Vr, Vs cutting speeds in rough and finish

machining (meters per minute)
VrL, VrU lower and upper bounds of cutting

speed in rough machining
(meters per minute)

VsL, VsU lower and upper bounds of cutting
speed in finish machining
(meters per minute)

X vector of machining parameters
τ, φ, δ constants pertaining to expression

of chip–tool interface temperature
η power efficiency
λ, ν constants pertaining to expression

of stable cutting region
μ, υ constants of cutting force equation
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