
ORIGINAL ARTICLE

A hybrid imperialist competitive algorithm for single-machine
scheduling problem with linear earliness and quadratic
tardiness penalties

A. H. Banisadr & M. Zandieh & Iraj Mahdavi

Received: 20 April 2011 /Accepted: 8 May 2012 /Published online: 2 August 2012
Springer-Verlag London Limited 2012

Abstract In this paper, we study single-machine scheduling
problem when each job is considered with linear earliness
and quadratic tardiness penalties with no machine idle time.
Here the objective is to find the best sequence of jobs in the
reasonable time. This model was studied in several
researches, and some algorithms were proposed to solve it
such as genetic algorithm. As the size of problem increased,
such algorithms were not effective and efficient. Hence, we
proposed the hybrid imperialist competitive algorithm. The
proposed algorithm is based upon the imperialist competi-
tive algorithm and genetic algorithm concepts. This algo-
rithm was tested in problems with different sizes. The results
denoted that the hybrid algorithm can solve different size of
problem in reasonable time. This procedure showed its
efficiency in medium- and large-sized problems as com-
pared with other available methods.

Keywords Hybridization . Imperialist competitive
algorithm . Single-machine scheduling . Genetic algorithm

1 Introduction

Scheduling models with single facility rarely occur in prac-
tice. However this scheduling procedure occurs in several
activities for example chemical industry [26]. In addition,

the analysis of this scheduling procedure is very significant
because the performance of many production systems is
often determined by a single-bottleneck machine schedul-
ing. The analysis of the single-machine subproblem is es-
sential for complex system scheduling [5].

Scheduling problems with both earliness and tardiness
penalties are compatible with supply chain management and
just-in-time concepts. In these concepts, the objective is to
produce goods only when they are required. Any earliness
in producing goods causes costs such as holding cost, dete-
rioration perishable goods, and opportunity costs. Any tar-
diness in producing goods results tardiness costs such as
backlogging costs, lost sales, and lost goodwill. The linear
earliness and quadratic tardiness penalties have been con-
sidered in this paper [21, 25]. When each job has distinct
due date, the problem is NP-hard [7].

The scheduling problem with no machine idle time is
suitable for most of the production systems. Some of the
cases in which the assumption is used are as follows: limi-
tation of the machine capacity accordant with the demand,
high operational costs, and high costs of a new production
which demands high setup costs and extended setup time.
Some of the apparent instances of the production systems
with no machine idle time have been proffered by Korman
[13] and Landis [14].

Hybrid imperialist competitive algorithm (HICA) has been
proposed to solve the problem in this article. This algorithm
applies the concepts of two algorithms named imperialist
competitive algorithm and genetic algorithm (GA) in a way
that the high convergence speed of the ICA is used to obtain
the initial solution and the genetic approach is used to achieve
better final solution. Then, the performance of this algorithm
is analyzed in a wide range of instances.

Literature review has been presented in Section 2. The
problem has been described in Section 3, and the algorithm

A. H. Banisadr : I. Mahdavi
Department of Industrial Engineering,
Mazandaran University of Science and Technology,
Babol, Iran

M. Zandieh (*)
Department of Industrial Management, Management and
Accounting Faculty, Shahid Beheshti University, G.C.,
Tehran, Iran
e-mail: m_zandieh@sbu.ac.ir

Int J Adv Manuf Technol (2013) 65:981–989
DOI 10.1007/s00170-012-4233-x

to solve the problem has been proffered in Section 4. In
Section 5, the computational results of the proposed ap-
proach have been compared with other algorithms. The
conclusion of this study has been presented in Section 6.

2 Literature review

Sidney [20] is one of the researchers who studied the single-
machine scheduling problem with earliness and tardiness
penalties with distinct due date. He considered the problem
of minimizing the maximum earliness or tardiness penalty.
Baker and Scudder [6] provided a significant review of
researches in this area until the end of the decade 1980.
Several papers have presented the single-machine problem
with a common due date for all jobs, for example Kanet
[12], Hall [9], and Bagchi et al. [4]. Abdul-Razaq and Potts
[1] and Ow and Morton [16] have considered earliness and
tardiness problem with distinct due dates. The idle time was
not regarded in these investigations. The problem of no
machine idle time was presented by Korman [13] and
Landis [14]. The problem with inserted idle time was con-
sidered by Schaller [19] in which a time table procedure was
proposed.

Different approaches have been proffered to solve the
problem in past. One of these approaches was branch and
bound algorithm proposed by Valente [21]. Beam search
and dispatching rule heuristics were suggested to solve the
problem so far [15, 22, 23]. A genetic approach was presented
by Valente and Goncalves [25]. Their proposed algorithm
differed from the standard GA because the local search was
used to obtain the initial population. This approach was more
effective than the standard GA in the small-sized problem (at
most 100 jobs).

A hybrid imperialist competitive algorithm is proposed in
this article to solve the problem. So the related performance
is explored in a wide range of instances. The imperialist
competitive algorithm is one of the procedures applied in the
hybrid algorithm. ICA was presented by Atashpaz and
Lucas [3] which was used for solving the continuous opti-
mization problems. This algorithm has lower computational
time as compared with other calculation methods for in-
stance the genetic approach. The concepts of ICA and GA
approaches succor us to obtain an ideal final solution within
an acceptable computational time for medium- and large-
sized problems.

3 Problem description

The problem is focused to schedule a set of n independent
jobs {J1, J2,…, Jn} on the single machine in which at most
one job can handle at a moment. It is supposed that no idle

time is allowed and the machine is continuously available.
Each job requires a processing time pi and distinct due date
di. In this model, the earliness and tardiness of ith job are
respectively defined as follows:

Ei ¼ max 0; di � Cif g ð1Þ

Ti ¼ max 0; Ci � dif g ð2Þ

where Ci is the completion time of the ith job; thus, the
objective function is designated as follows:
Xn

i¼1
Ei þ Ti

2
� � ð3Þ

4 Proposed algorithm description

In this section, the proposed solution procedure has
been presented in details. Hence, the standard genetic
algorithm and imperialist competitive algorithm ought to
be expounded at first. The hybrid algorithm will be
explained afterwards.

4.1 Genetic algorithm

Genetic algorithm is a statistical methodology which is
applied to solve optimization problems. This procedure is
based upon the evolutionary process on the natural biology.
The basic principles of the genetic algorithm were first
presented by Holland [11] in Michigan University. Holland
[10] published the mathematics basics in a book entitled
“Adaptation in natural and artificial systems.” Then most of
researchers described the genetic approach and its applica-
tions in their investigations [8, 17, 18].

In order to use genetic algorithm, the appropriate encod-
ing method should be proposed for each specific problem
first. A set of the problem parameters is considered as a
string. The string is named chromosome in genetic termi-
nology. A set of chromosomes is called population. Each
chromosome is a solution or an individual in the current
population. Each population has specific number of chro-
mosomes which is called the population size. If the number
of the chromosomes is small, only a little portion of the
solution space will be explored by genetic algorithm. If the
number of the chromosomes is so great, the algorithm will
become so slow. Here, the population size is equal to the
multiplication of pop-mult by the size of problem (number
of jobs). Pop-mult is a parameter defined by the user. After
identification of the number of solutions in the current
population, the fitness value of each chromosome ought to
be obtained.

982 Int J Adv Manuf Technol (2013) 65:981–989

4.1.1 Chromosome representation and fitness function
description

Each set of chromosomes is composed of n jobs in which a
uniform random number within the range of 0 and 1 is
dedicated to each one of these jobs. Thus, the chromosome
is coded based upon the vector of random numbers. The
correspondent chromosome of each individual ought to be
decoded, in which the jobs sequence ought to be obtained,
so that the fitness value of each individual is determined.
This can be achieved by arrangement of genes in each
chromosome (refer to Fig. 1). The linear earliness and
quadratic tardiness penalties can be achieved based upon
the processing time and due dates of jobs. The fitness value
of each chromosome is determined by these penalties.

The first generation is formed to explain the encoding
procedure. The fitness value will be evaluated afterwards.
The next generation is obtained through fundamental oper-
ators consequently available in genetics.

4.1.2 Reproduction strategy

The reproduction is a mechanism in which the best
individual of the current generation is copied to the next
generation. Hence, the best individual will not be lost
and the least fitness value of the next generation will not
escalate as compared with the previous one. In this
article, the chromosome with the best fitness value is
selected and then transferred to the next generation with
no changes.

4.1.3 Crossover strategy

Two new chromosomes are produced in the crossover mech-
anism by exchange of some of the genes of a pair of the
current chromosomes which have been selected on a ran-
dom basis. The uniform crossover methodology has been
chosen in this article.

4.1.4 Mutation strategy

Mutation operator has a vital role in avoiding the local
optimal solutions and increasing of the convergence rapid-
ness of the genetic algorithm. In this paper, one of the

chromosomes is randomly selected. Then two genes will
be randomly chosen and swapped their positions.

This evolutionary strategy is continued until a stopping
criterion is satisfied. Here, the stopping criterion is the
number of iterations with no improvements. The evolution-
ary strategy has been shown in Fig. 2.

4.2 The imperialistic competitive algorithm procedure

4.2.1 Imperialist competitive algorithm in general

Imperialist competitive algorithm is one of the new evolutionary
algorithms to solve optimization problems, which uses the im-
perialist competitive concepts among countries. Atashpaz and
Lucas [2 ,3] used this algorithm to solve the continuous optimi-
zation problems. ICA begins with the initial population like
other evolutionary algorithms. Each one of the individuals of
this population is known as a country. Such countries are equal
to chromosomes in a genetic algorithm. In imperialist compet-
itive algorithm, countries are classified as imperialists and colo-
nies. An aggregation made up of one imperialist and several
colonies is called an empire. The main core of this algorithm is
composed of the imperialistic competition among these empires.

Imperialists and colonies ought to be determined in this
algorithm at first. The best countries and the remaining ones
are categorized as imperialists and colonies, respectively.
The number of imperialists (N_imp) is a portion of the
population size where N_imp is a parameter determined by
the user. The number of the colonies belonging to each
imperialist depends upon the cost of the imperialist. Hence,
an imperialist with the higher cost than another one has
lower power and fewer number of colonies.

The first strategy explained in this algorithm is the as-
similation policy which aims to attract the culture and the
structure of each colony toward its related imperialist. The
colonies of an empire commence moving towards their

Fig. 1 Chromosome decoding example

Elit_prop

mig_prop

Reproduction

Crossover

Mutation

Best fitness value

Worst fitness value

Current population Next population

Fig. 2 Evolutionary strategy on GA

Int J Adv Manuf Technol (2013) 65:981–989 983

imperialist. The assimilation policy has been shown in
Fig. 3.

Sometimes fitness value of one of colonies will be better
than the relevant imperialist's fitness value in assimilation
strategy. This is the situation where the algorithm changes
the position of the imperialist and the colony. Then, this
procedure continues with the new imperialist in a new
position and colonies move towards the position of new
imperialist.

The total power of empires ought to be calculated in the
imperialistic competition. The total power of each empire
can be obtained by the total power of the imperialist and that
of all the colonies. In the imperialist competition, the weak-
est empire loses its own colonies and more powerful ones
take possession of such colonies to increase their power.
Hence, the weak empire is weakened and the more powerful
one will increase its power during this strategy. The empire
is collapsed when it loses all its colonies. Therefore all the
empires will be lost except the most powerful one, and all
the colonies will have the same positions and costs. Figure 4
displays a flowchart of the basic ICA.

4.2.2 Encoding and decoding procedures

A unified random number between 0 and 1 is used to
encode the imperialistic competitive algorithm. So each
country is encoded based upon a vector of random
numbers. The length of this vector is equal to the
number of the jobs.

Each country should be decoded to the corresponding
solution (sequence of jobs) so that its fitness value can be
obtained. Such a sequence is determined by a sorting of
jobs.

4.2.3 Evolutionary strategy

Here we explain the evolutionary strategy by means of
the imperialistic competition approach. The population
size is obtained by the multiplication of the pop-mult
and the size of problem. pop_mult is the user-defined

parameter and constant. The population size is kept fixed
throughout the algorithm. The number of the imperialists
(N_imp) and the colonies ought to be determined. Con-
sequently the number of the imperialists can be obtained
by multiple of the population size. impp is a proportion
of the population size which is a user-defined parameter.
Imperialists are selected from countries with higher fit-
ness value than others. Number of colonies (N_col) is

Fig. 3 Movement of colonies
toward their relevant imperialist

Begin

Initialize the empires

Move the colonies to their
relevant imperialist

Exchange the positions of that
imperialist and colony

Is there a colony in an empire which
has higher cost that that of imperialist?

Output

Pick the weakest colony from the weakest empire and give it to the
empires that has the most likelihood to possess it

Yes

Is there an empire with no
colonies?

Compute the total cost of all empires

Eliminate this empire

Stop condition satisfied?

NO

NO

NO

Yes

Yes

Fig. 4 Basic ICA flowchart

984 Int J Adv Manuf Technol (2013) 65:981–989

achieved by:

N col ¼ populationsize� N imp ð4Þ
To form the initial empires, the colonies are divided

among imperialists based upon their power. The initial num-
ber of colonies of each empire is achieved by normalized
comparative power of its imperialist. The initial number of
ith empire's colonies ncol_imp(i) can be obtained by:

ncol impðiÞ ¼ round p impðiÞ � N colð Þ ð5Þ

where p_imp is the normalization comparative power of
imperialist. The normalized power of ith imperialist is de-
fined by:

p impðiÞ ¼ NCimpðiÞP N imp
i¼1 NC impðiÞ

�����

����� ð6Þ

The normalized cost of ith imperialist (NC_imp(i)) can be
achieved as follows:

NC impðiÞ ¼ C impðiÞ �max C impðiÞf gi ð7Þ
where C_imp(i) is the cost of ith imperialist.

Evolutionary strategy is a mechanism which is used to
generate a new generation from the current one. This mech-
anism is begun with the assimilation strategy in imperialist
competitive algorithm where colonies move towards their
imperialist's position. If the fitness value of one of colonies
is better than the imperialist, the algorithm swaps the posi-
tion of the colony and the imperialist. Hence, colonies move
toward the position of the new imperialist.

The power of each empire can be achieved by the total
costs for the imperialistic competition. Then the total cost of
the empire can be obtained by the combining cost of the
imperialist and a proportion of the cost of colonies.

TC empðiÞ ¼ C impðiÞ þ S �
X

j
tc col i; jð Þ

� �
ð8Þ

where TC_emp(i) is the total cost of ith empire and tc_col(i, j)
is the total cost of jth colony of ith empire. In addition, S is an
attenuation coefficient that is used to reduce the affect of
colonies cost. S is the number between 0 and 1.

To start the imperialistic competition, the possession prob-
ability of each empire must be obtained by its total power. The
normalized total cost of ith empire (NTC_emp(i)) will be:

NTC empðiÞ ¼ TC empðiÞ �max TC empðiÞf g ð9Þ

Then the power of each empire is computed as follows:

P empðiÞ ¼ NTC empðiÞP
jNTC empðjÞ

����
���� ð10Þ

where P_emp(i) is the power of ith empire.

An empire with the highest total cost is the weakest one.
The weakest colony is chosen from the weakest empire. The
imperialistic competition commences among empires to
take this colony afterward. An appropriate procedure is used
for imperialistic competition with relation to the power of
empires. The calculated power of empires is set in a vector
named P-emp. Then another same-size vector called R_emp
is made whose arrays should be unified random number
between 0 and 1. A vector called D_emp, same-sized as
these two vectors, can be given by:

D emp ¼ P emp� R emp ð11Þ
The colony is allocated to one of empires based upon the

D-emp Vector which has a greater quantity. The more pow-
erful empire may have the higher quantity in D_emp Vector
with more probability. The powerless empire will be col-
lapsed during the imperialistic competition. This situation
can be encountered when the empire losses all of its
colonies.

This evolutionary strategy is continued until the stopping
criterion is met. Here the stopping criterion is the number of
the iterations without any improvement.

4.3 Hybridized ICA

When imperialist competitive algorithm was executed and
compared with other evolutionary algorithms such as the
genetic ones, we perceived that its computational time was
better than GA’s one; however, it did not yield a better final
solution. Therefore, we proposed the hybrid imperialist
competitive algorithm.

HICA is composed of two stages. The imperialist
competitive algorithm is carried out in the first stage.
Some of the countries with the best fitness value will
be selected when the stopping criterion is met. These
countries are the final solution of the first stage. Then
the second stage is initiated. The initial population is
included the chromosomes corresponding with the final
solution of the first stage and other chromosomes cre-
ated randomly. GA is implemented with this initial
population. The chromosomes achieved by the first
stage cause genetic procedure to be initiated with a
total cost less than before. The second stage continues
until the stopping criterion is met. A better final solu-
tion can be obtained in an acceptable computational
time by utilization of this procedure. Such results are
much better than the results of ICA and GA algorithms.
The implementation procedure of HICA is described as
follows:

1. The hybrid algorithm will be started with ICA procedure.
At first we introduce initial parameters. N means the
number of the countries, N_imp is the number of the

Int J Adv Manuf Technol (2013) 65:981–989 985

imperialists, N_col is the number of the colonies, where
the following equality should be given.

N ¼ N impþ N col ð12Þ
Here the number of the imperialist is obtained by

multiple impp of total number of countries. Also, the

stopping criterion, the crossover (cross_prop) and muta-
tion (mig_prop) parameters are proffered in this section.

2. The fitness value of all the countries is achieved. Then
imperialists are selected from the most powerful
countries which have the best fitness values. The
remaining countries are the colonies. Such colonies are
possessed by empires through normalized power of
their imperialists. Therefore initial empires are obtained.
Then ICA approach can be carried out.

3. The colonies of each empire move towards the position
of imperialist in the assimilation strategy. The fitness
value of each colony is determined after this policy. If
the fitness value of each colony is better than the impe-
rialist's one in each empire, their position will be
swapped. The imperialistic competition begins after-
wards. The weakest colony of the most powerless em-
pire is chosen for the imperialistic competition. The
D_emp Vector is formed afterwards, and one of the rival
empires is selected to possess this colony. This proce-
dure continues until the stopping criterion is met. The
stopping criterion is the number of the generations with

Generate initial population
Calculate fitness values
Create empires (Consider some of countries with best fitness values as imperialists and

remaining them as colonies)

While (iteration_withoutimprove < stop _itr)
Perform assimilation approach
Calculate fitness value

If fitness value of colony < fitness value of imperialist
Swap colony and its imperialist

End if

Calculate empires power (summation of imperialists’fitness value and
proportion of their colonies)
Select weakest colonies of weakest empires
Perform imperialist competition strategy

If new_bestsolution is found
Update best solution
Itration_withoutimprove=0

Else
Itration_withoutimpove=itration_withoutimprove+1

End if

End while

Generate initial population (5 chromosomes are the best solutions of ICA and remaining
them are generated randomly)
Calculate fitness values of chromosomes (P)

While (itration_noimprove < stop_itr)
Perform crossover;
Perform mutation;
Perform elitism;
Calculate fitness values of new chromosomes (newP)
Set P=newP

If new_bestsolution is found
Update best solution
itration_noimprove=0

Else
itration_noimpove=itration_noimprove+1

End if

End while

Select five best different best fitness values of country and insert them to chromosomes

Fig. 5 Main steps of hybrid imperialist competitive algorithm
description

ICA

GA

Fig. 6 Comparison chart between ICA and GA with 500 jobs

ICA

GA

Fig. 7 Comparison chart between ICA and GA with 250 jobs

Table 1 Comparison between GA and ICA costs with fixed time

N Fixed time Cost Ratio

GA ICA

150 12.1 1.50E+08 5.46E+07 3

200 30.6 3.35E+08 1.88E+08 2

250 70.0156 7.07E+08 2.87E+08 2

300 102.5 1.78E+09 8.81E+08 2

350 193.6 2.67E+09 1.17E+09 2

400 301.3 3.32E+09 1.91E+09 2

450 415.4 4.12E+09 1.38E+09 3

500 540.4 7.55E+09 2.36E+09 3

550 762.3 1.00E+10 4.62E+09 2

600 1,059.8 1.78E+10 6.17E+09 3

986 Int J Adv Manuf Technol (2013) 65:981–989

no improvement. Some of the best countries with the best
dissimilar fitness values will be selected. Here the number
of these countries is considered five. The chromosomes
similar to these countries are formed afterwards.

4. Genetic procedure is begun in the second stage. An
initial population is formed in which five chromosomes
inserted from the imperialistic competitive procedure
and the remaining chromosomes have been produced
randomly. The genetic algorithm is carried out after-
wards until the stopping criterion is met.

The main steps in the proposed algorithm are summa-
rized in the pseudo code shown in Fig. 5.

5 Computational results

We applied three algorithms (the genetic algorithm, the impe-
rialist competitive algorithm, and the hybrid imperialist com-
petitive algorithm) to solve the problem. These algorithms have

been coded in Matlab 7.5 and executed in the Intel® Core(TM)
2 Duo 1.80 GHz. The hybrid algorithm has been compared
with other algorithms by means of diverse instances. The
different instances have different number of jobs, and each of
them has been executed for five times. The processing time of
each job has been generated by a uniform distribution random
number between 1 and 100 for each instance. The distinct due
dates are considered for each job which are obtained by a
uniform random distribution between P(1−T+R/2) and
P(1−T−R/2). Here, P is the sum of processing times of all jobs
and T is the tardiness parameter and R is the range of due dates.
T and R quantities are severally equal to 0.8 and 0.4 [24, 25].

The parameters related to imperialist competitive algorithm
have been set as follows: population size is a multiple pop_-
mult of the size of problem. The pop-mult quantity has been
presumed to be 3. The crossover and mutation possibilities are
0.75 and 0.25, respectively, and the stopping criterion is equal
to 100 generations without any improvement. The number of
imperialists is a multiple impp of the population size. The
impp quantity has been presumed to be 0.1.

At first we use the genetic and imperialist competitive
algorithms to solve the problem. There is no apparent

Table 2 Comparison between GA and ICA computational times with
fixed cost

N Fixed cost Computational time Ratio

GA ICA

150 54,611,000 39.1 12.1 3

200 1.88E+08 78.6 30.6 3

250 2.87E+08 200.1 70 3

300 8.81E+08 256.2 102.5 3

350 1.17E+09 795.4 193.6 4

400 1.91E+09 946.3 301.3 3

450 1.38E+09 1,684.3 415.4 4

500 2.36E+09 2,330.8 540.5 4

550 4.62E+09 2,633.1 762.3 3

600 6.17E+09 4,481.4 1,059.8 4

Table 3 Comparison
among three algorithms for
computational time and
final solution

Problem Computational time Final solution

N GA ICA HICA GA ICA HICA

150 255.2313 13.35626 234.3125 258,502.4 59,959,690 135,423.8

200 531.5039 29.28752 502.2313 284,042 2.02E+08 260,993.8

250 1,460.48 63.0469 1,153.9 321,467.8 2.93E+08 303,694.4

300 4,416.52 109.6906 2,824.94 500,019.6 6.61E+08 460,578.2

350 5,170.74 158.3875 3,808.14 785,406.4 1.19E+09 603,092.8

400 10,102.52 207.3971 6,178.046 1,236,206 1.37E+09 1,077,498

450 12,604 225.6847 10,785 1,248,094 1.96E+09 1,111,476

500 15,587 394.8813 12,385 1,359,554 2.56E+09 1,162,506

550 30,747 470.8609 21,144.65 1,663,568 3.46E+09 1,453,846

600 52,606.33 469.043 33,977.37 1,887,919 6.38E+09 1,217,173

ICA

GA

HICA

Fig. 8 Comparison among HICA, ICA, and GA with 600 jobs

Int J Adv Manuf Technol (2013) 65:981–989 987

difference in small-sized instances (smaller than 100 jobs)
between these two algorithms. However the final solution of
the genetic algorithm is better than ICA in medium- and large-
sized instances (more than 150 jobs), but the computational
time of GA is much more than ICA. The comparative per-
formances of these two algorithms have been shown in Figs. 6
and 7.

We used two assumptions to show differences between two
algorithms in different instances. One of them refers to fixed
time (ICA convergence time). The costs of GA and ICA are
then extracted on this time. Then we concluded that ICA costs
better than those of GA with regard to the fixed time. The
word “ratio” in Table 1 shows the proportion of GA costs to
that of ICA. Another assumption concerns the fixed cost. The
costs of these algorithms are assumed to be fixed and same.
The computational times of two algorithms are extracted, and
it is shown that the computational time of ICAwith fixed cost
is less than GA. The word “ratio” in Table 2 displays the
proportion of the computational times of GA to ICA.

The hybrid imperialist competitive algorithm has been
proposed to achieve appropriate final solution with accept-
able computational time especially in medium- and large-
sized instances. The performance of this algorithm was

compared with GA and ICA. We perceived that the perfor-
mance of this algorithm is better than others. Table 3 shows
that HICA has more efficient performance for solving
medium- and large-sized problems. The computational time
of the hybrid algorithm is less than the genetic one. The final
solution of the proposed algorithm is better than the other
two algorithms. For instance in a problem whose number of
jobs is 600, the final solution of GA is equal to 1,887,919
and its computational time is equal to 52,606 s, but the final
solution of HICA is equal to 1,217,173 and the computa-
tional time is equal to 33,977 s. The average costs and
computational time of five times of each instance imple-
mentation have been given in Table 3. An example has been
presented in Fig. 8 to show comparative performances of
every three algorithms. One example for comparison of
HICA, ICA, and GA is shown in Fig. 8.

The results of three algorithms have been tested by
Tukey’s method. The normalized data have been used for
this method. These normalized data have been computed as
follows:

Normalized Si ¼ Si �min S1 : S3ð Þð Þ=min S1 : S3ð Þ ð13Þ
where Si is the computational time or final solution of ith
algorithm.

These normalized results should be tested by Tukey's
method. An interval plot is regarded for the final solution
and the computational time. The error ratio of these interval
plots has been assumed 0.05. The interval plot of these
algorithms has been shown for the computational time in
Fig. 9. Interval plots of the three algorithms have been
depicted for the final solution in Figs. 10 and 11.

We perceived that the means of normalized computation-
al results of three algorithms have significant differences in
Fig. 9, and also, a lot of notable differences among the
conclusions of final solutions of ICA and the hybrid algo-
rithm in Fig. 10 are observed. Moreover, the considerable
difference is depicted between the means of normalized
final solution of genetic algorithm and HICA in Fig. 11.

Fig. 9 Confidence interval of three algorithms for computational time

Fig. 10 Confidence interval of HICA and ICA for final solution

Fig. 11 Confidence interval of GA and HICA for final solution

988 Int J Adv Manuf Technol (2013) 65:981–989

According to the results of Tukey’s method, the results of
three algorithms are proved consequently. Considering the
executing of these three algorithms, we can clearly conclude
the effectiveness of the proposed hybrid algorithm in com-
parison to the other ones.

6 Conclusion

We applied the hybrid imperialist competitive algorithm for
single-machine scheduling with linear earliness and quadratic
tardiness with no machine idle time. This approach is based
upon the genetic algorithm and imperialist competitive algo-
rithm concepts. The performance of the genetic algorithm and
that of the imperialist competitive algorithm was compared in
this problem. According to the computational results, it was
observed that ICA has a lower computational time than GA
but its final solution is worse than that of GA. Hence, HICA
was proposed. The proposed algorithm was compared with
GA and ICA. Thus, this algorithm achieved a better final
solution with acceptable computational time as comparedwith
the other two algorithms. This algorithm can be applied to
solve medium- and large-sized problems.

For future researches, the following subjects can be
considered:

& The machine idle time and setup time;
& The other type of objective function in single-machine

scheduling environment such as quadratic earliness and
tardiness penalties; and

& Other types of scheduling environment such as parallel
machine, job shop, and so on.

References

1. Abdul-Razaq TS, Potts CN (1988) Dynamic programming state–
space relaxation for single machine scheduling. J Oper Res Soc
39:141–152

2. Atashpaz E, Hashemzadeh G, Rajabioun F (2008) Colonial com-
petition algorithm: a novel approach for PID controller design in
MIMO distillation column process. Int J Intell Comput Cybern 1
(3):337–355

3. Atashpaz E, Lucas C (2007) Imperialist competitive algorithm: an
algorithm for optimization inspired by imperialist competitive.
IEEE Congress on Evolutionary Computation 4661–4667

4. Bagchi U, Sullivan RS, Chang YL (1986) Minimizing mean ab-
solute deviation of completion times about a common due date.
Nav Res Logist Q 33:227–240

5. Baker KR (1974) Introduction to sequencing and scheduling.
Wiley, New York

6. Baker KR, Scudder GD (1990) Sequencing with earliness and
tardiness penalties: a review. Oper Res 38:22–36

7. Du J, Leung JY (1990) Minimizing total tardiness on one machine
is NP-hard. Math Oper Res 15:483–495

8. Goldberg DE (1989) Genetic algorithms in search, optimization,
and machine learning. Addison-Wesley, Reading

9. Hall NG (1986) Single and multiple-processor models for mini-
mizing completion time variance. Nav Res Logist Q 33:49–54

10. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor, re-issued by MIT Press
(1992)

11. Holland JH (1962) Outline for a logical theory of adaptive systems.
J Assoc Comput Mach 9(3):297–314

12. Kanet JJ (1981) Minimizing the average deviation of job comple-
tion times about a common due date. Nav Res Logist Q 28:643–
651

13. Korman K (1994) A pressing matter. Video 46–50
14. Landis K (1993) Group technology and cellular manufacturing in

the Westvaco Los Angeles VH department. Project report in IOM
581, School of Business, University of Southern California

15. Ow PS, Morton TE (1988) Filtered beam search in scheduling. Int
J Prod Res 26:35–62

16. Ow PS, Morton TE (1989) The single machine early/tardy prob-
lem. Manag Sci 35:177–191

17. Reeves CR (1997) Genetic algorithms for the operations research-
er. INFORMS J Comput 9:231–250

18. Reeves C (2003) Genetic algorithms. In: Glover F, Kochenberger
GA (eds) Handbook of metaheuristics. Kluwer, Dordrecht, pp 55–
82

19. Schaller J (2004) Single machine scheduling with early and qua-
dratic tardy penalties. Comput Ind Eng 46:511–532

20. Sidney JB (1977) Optimal single machine scheduling with earli-
ness and tardiness penalties. Oper Res 25:62–69

21. Valente JMS (2008) An exact approach for the single machine
scheduling problem with linear early and quadratic tardy penalties.
Asia Pac J Oper Res 25:169–186

22. Valente JMS (2008) Beam search heuristics for the single machine
early/tardy scheduling problem with no machine idle time. Comput
Ind Eng 55:663–675

23. Valente JMS (2009) Beam search heuristics for the single machine
scheduling problem with linear earliness and quadratic tardiness
costs. Asia Pac J Oper Res 26:319–339

24. Valente JMS (2007) Heuristics for the single machine scheduling
problem with early and quadratic tardy penalties. Eur J Ind Eng
1:431–448

25. Valente JMS, Goncalves JF (2009) A genetic algorithm approach
for the single machine scheduling problem with linear earliness
and quadratic tardiness penalties. Comput Oper Res 36:2707–2715

26. Wagner BJ, Davis DJ, Kher H (2002) The production of several
items in a single facility with linearly changing demand rates.
Decis Sci 33:317–346

Int J Adv Manuf Technol (2013) 65:981–989 989

	A...
	Abstract
	Introduction
	Literature review
	Problem description
	Proposed algorithm description
	Genetic algorithm
	Chromosome representation and fitness function description
	Reproduction strategy
	Crossover strategy
	Mutation strategy

	The imperialistic competitive algorithm procedure
	Imperialist competitive algorithm in general
	Encoding and decoding procedures
	Evolutionary strategy

	Hybridized ICA

	Computational results
	Conclusion
	References

