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Abstract This paper investigates the gyroscopic and
mode interaction effects on the micro-end mill dy-
namics and the stability behavior due to regenerative
chatter. A high-speed spindle system for micro-milling
is modeled using finite elements. The transfer functions
and the mode shapes are studied to gain a deep in-
sight into the dynamic characteristics. The experimen-
tally identified chatter states and operational vibration
modes are given to verify the analytical results. It is
shown that, due to the small rotary inertia of the micro-
end mill, the gyroscopic effect considered in the inertial
frame is less significant despite high rotational speeds.
The mode interaction strongly affects the dynamics and
the chatter stability. Moreover, piezoelectric elements
are applied to in-process excitation in order to identify
the transfer behavior of the micro-end mill in the oper-
ating state.
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1 Introduction

Regenerative chatter is known as an unstable phenom-
enon arising in machining processes and leading to
poor product quality, tool wear, and even tool damage.
However, chatter analysis in micro-cutting operations
has not been extensively investigated compared to that
of macro machining [1–3]. More structural and process
influences should be taken into account, e.g., the feed
rate effect due to the existence of different cutting
zones [4–6].

Micro-cutting operations are conducted at high rota-
tional speeds. The spindle dynamics should be studied
considering diverse aspects [7, 8], such as the changes
of bearing stiffness, the gyroscopic effect, and the mis-
alignment. For chatter analysis, however, the tool dy-
namics must also be involved. The stability behavior
is strongly influenced by the dynamics of the tool end
point. Movahhedy and Mosaddegh [9] studied the gy-
roscopic effect on the chatter stability in high-speed
milling based on the finite element (FE) model of
the spindle. Their numerical results showed that the
backward mode prominently decided the chatter stabil-
ity. In micro-milling operations, the spindle speeds are
much higher, but the mass and the radius of the micro-
end mill are much smaller. How is that case in micro-
milling?

Besides, as Riven pointed out in [10], the tooling
structure significantly affected the machine tool dy-
namics. In order to predict the dynamics of the tool
tip point, the stiffness and damping properties of the
clamping positions should also be taken into account.
The imperfect clamping conditions at the spindle–
tool holder–tool (STT) interfaces could result in er-
roneous estimation of the natural frequencies while
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modeling tools as cantilever beams with the free over-
hang length (projected from the first built-in point
to the tool tip point) only [10–12]. The tool tip dy-
namics is affected by different machine tool compo-
nents due to their mode interactions. Marui et al. [13]
investigated the contact rigidity between tool shank
and tool holder in turning. The spring constants were
estimated for different clamping forces and different
tools by simple empirical expressions. Smith et al. [14]
experimentally studied the drawbar force effect on the
spindle–tool holder joint. The changes of the resonance
frequencies as well as the magnitudes of the peaks
at different drawbar forces indicated the changes of
the stiffness and damping properties at the spindle–
tool holder interface. Luo et al. [15] studied the effects
of the tooling structural characteristics on the surface
generation and verified their significance for the ma-
chined surface quality. Albertelli et al. [16] presented
the effects of the interactions between spindle–control–
machine subsystems on the tool tip dynamics and thus
on the cutting process stability. Using the substructure
coupling technique [17–19], the interactions of the com-
ponent modes were presented in [20], where the so-
called dynamic absorber effect in high-speed machin-
ing was particularly studied for diverse tool overhang
lengths. Another type of mode interaction in milling
is deduced by the cutting forces in different mode di-
rections. Zatarain et al. [21] studied this mode coupling
effect due to the directional force factors.

The joint parameters of a machine tool model, on the
other hand, are usually estimated from the measured
tool tip transfer functions. However, it is challenging
to directly measure the transfer functions in micro-
milling. Due to the small size of the micro-end mills,
noncontact excitation and response measurements are
required to avoid the alteration of the tool tip dynam-
ics. In addition, excitation with a sufficient frequency
bandwidth should be employed since the dominant
natural frequencies of the machine tool system are
usually much higher than those in conventional milling.
Using substructure coupling analysis, the tool tip trans-
fer functions and the joint parameters can be semi-
analytically determined [17–19]. Mascardelli et al. [11]
applied this method to micro-end mills by extending
the experimental data from 10 to 150 kHz. Filiz and
Ozdoganlar [22, 23] employed piezoceramic materials
to excite the micro-scale tools under free–free bound-
ary conditions. They identified the transfer functions
up to 100 kHz, but the tools were not coupled to
the spindle system. In the field of break squeal, using
piezoelectric elements, the transfer functions of the ro-
tating disk brakes have been measured by von Wagner
et al. [24–27]. This method can be employed in micro-

machining to realize the in-process excitation. Together
with the response signals measured, e.g., by a laser
vibrometer, the transfer behavior in the operating state
can be identified.

This paper is organized as follows. Section 2 presents
the FE model of the spindle system and the micro-
end mill by treating the element as Timoshenko beam.
The equations of motion are derived with respect to
the inertial and rotating frames and compared with
each other. In Section 3, piezoelectric elements are
adopted to identify the transfer behavior of the micro-
end mill during cutting processes. In Section 4, the
gyroscopic effect on the micro-end mill dynamics and
chatter stability is studied by both analytical and ex-
perimental results. The effects of mode interaction and
joint flexibility are discussed in Section 5. The trans-
fer functions and mode shapes are obtained from the
FE model. For verification, a scanning laser vibrome-
ter is used to measure the corresponding operational
deflection shapes. Milling tests at different clamping
torques are conducted to study the chatter stability. The
conclusions are given in the last section.

2 Modeling of spindle system and micro-end mill

2.1 Coordinate systems

The micro-milling machine tool (WISSNER Gamma
303 HP 3-axis) is described by the inertial (fixed) Carte-
sian reference frame N with coordinates x, y, and
z, as shown in Fig. 1. The coordinate x is set to be
coincident with the rotational direction of the spindle,
which is usually in the clockwise direction (top view).
The milling plane is described with coordinates y and
z, where y denotes the feed direction and z denotes the
lateral direction.

In order to describe the kinematics of the rotating
bodies, a reference frame T with coordinates x̃, ỹ, and
z̃ is attached on the centerline of the rotor with the
x̃-axis normal to the cross-section. The direction cosine
matrix between N and T is defined by introducing
two intermediate frames as well as three successive
rotations as follows:

1. α about y defining the first intermediate frame with
coordinates x1, y1, and z1,

2. β about z1 defining the second intermediate frame
with coordinates x2, y2, and z2,

3. γ about x2 defining the body-attached frame with
coordinates x̃, ỹ, and z̃.

Accordingly, the position vector of the cross-section
in N is defined by two transverse translations in
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:

Fig. 1 Coordinate systems for the description of rotating bodies

accordance with z- and y(= y1)-directions, respectively.
It is assumed that a nonholonomic constraint

N ωT · ex = � (1)

holds, where N ωT is the angular velocity vector with
respect to the inertial system and � is the constant
spindle speed in rad s−1.

A second option to describe the direction cosine
matrix between the reference frames N and T is, e.g.,
changing the rotational sequence as follows:

1. γ about x defining the first intermediate frame with
coordinates x̂, ŷ, and ẑ, i.e., the rotating frame S ,

2. α about ŷ defining the second intermediate frame
with coordinates x̂1, ŷ1, and ẑ1,

3. β about ẑ1 defining the body-attached frame with
coordinates x̃, ỹ, and z̃.

Accordingly, the position vector of the cross-section
in N is defined by two transverse translations in accor-
dance with ẑ- and ŷ(= ŷ1)-directions, respectively, and
the same nonholonomic constraint (Eq. 1) remains.

In the following, the equations of motion are first
derived using the first option, i.e., with respect to the
inertial frame N . The linearized equations with respect
to the rotating frame S (quasi body-attached frame1)
are then obtained with the help of an orthogonal trans-
formation matrix. Both forms of dynamical equations
are compared with each other.

2.2 Element equations of motion

Figure 2 illustrates the studied spindle system (with ro-
tational speeds from 10,000 to 60,000 rpm), a micro-end
mill, and a beam element. The characterized geometric
parameters of the micro-end mill are the shank length
ls, the shank diameter ds, the taper length lc, the tip
length lt, and the nominal tip diameter dt. The taper
section possesses a varying radius along the beam axis

1By linearization of small bending angles, the quasi body-
attached frame can be approximated to the body-attached frame.

and is discretized by a series of uniform beam elements.
The radius of each element is approximated by the ra-
dius of the medium cross-section. The fluted part of the
micro-end mill is regarded as circular cross-section with
an effective diameter 0.8dt. The spindle shaft features a
hollow circular cross-section and a tapered segment at
the front in order to match the tool holder. It can be
treated as four sections, three of which have constant
outer and inner radii. The taper section has a constant
outer radius and a varying inner radius and can be
discretized by uniform beam elements with constant
cross-sections. The tool holder (ATC 2-10-6) inclusive
the collet (SRP 6) can be approximated by a taper
section that is combined with the spindle shaft and a
uniform section outside the spindle shaft. The inner
radius of the tool holder (inclusive collet) is assumed
to be the same as the shank radius of the tool.

Drawbar

Motor

(a)

Fig. 2 Schematics of a the spindle system Fischer Precise
SC 3062, b a micro-end mill, and c Timoshenko beam element
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Since micro-end mills are usually employed with rel-
atively short free shank length, the Timoshenko beam
theory is adopted to incorporate the shear deformation.
The angular deflections due to bending are α and β

which are consistent with the rotating angles. The an-
gular deflections due to shear are denoted by θy and
θz1 . Since these rotation angles are small, the slopes of
the beam can be linearized with respect to the axes x,
x1, and x̃, which leads to the following relations

w′
z(x̃, t) = ∂

∂ x̃
wz(x̃, t) ≈ ∂

∂x
wz(x, t)

= −α(x, t) − θy(x, t), (2)

w′
y(x̃, t) = ∂

∂ x̃
wy(x̃, t) ≈ ∂

∂x1
wy(x1, t)

= β(x1, t) + θz1(x1, t). (3)

A simple beam element, which has two nodes and
four degrees of freedom (two transverse translations
and two rotations) at each node, is used here for a
circular and uniform cross-section [28]. The axial and
torsional displacements are neglected because the rigid-
ity of the milling system with respect to these directions
is higher compared to that of the transverse directions.
In order to express the element, time-dependent gener-
alized coordinates

qe(t)=(
qe

1(t), qe
2(t), qe

3(t), qe
4(t), qe

5(t), qe
6(t), qe

7(t), qe
8(t)

)T

(4)

are defined. The translational displacements qe
1 and qe

3
at the start node as well as qe

5 and qe
7 at the end node

are in the same directions of the unit vectors ez and ey,
respectively. The rotational displacements qe

2 and qe
4 at

the start node as well as qe
6 and qe

8 at the end node are
rotating angles about the y-axis and the z1-axis, respec-
tively, which are consistent with the bending angles.
Neglecting the axial and torsional displacements, the
translations and the rotations of an arbitrary point on
the beam axis can be expressed as
(

wz(s, t)
wy(s, t)

)
= �(s)qe(t),

(
α(s, t)
β(s, t)

)
= �(s)qe(t), (5)

where s denotes the local coordinate of the beam ele-
ment and the shape functions � (for the translations)
and � (for the bending angles), considering both bend-
ing and shear deformations can be found in [28].

The equations of motion of the beam element can be
derived using Hamilton’s principle:

δ

∫ t2

t1

(
Te − Ue) dt +

∫ t2

t1
δWedt = 0, (6)

where δ represents the variational operator, Te and
Ue are the kinetic and potential energy of the beam
element, respectively, and δWe is the virtual work of
the nonconservative forces. The total kinetic energy is
composed of translational and rotational parts and can
be expressed as

Te = 1

2

∫ l

0
μ

(
ẇ2

z + ẇ2
y

)
ds

+ 1

2

∫ l

0

(
�x̃ω

2
1 + �ỹω

2
2 + �z̃ω

2
3

)
ds. (7)

Here, μ is the mass per unit length. ẇy and ẇz are
the components of the absolute translational velocity
with respect to the inertial frame. ω1, ω2, and ω3 are
the components of the angular velocity in the body-
attached frame. �x̃, �ỹ, and �z̃ are the components of
the moment of inertia with respect to the principal axes.
Note that the diametral terms �ỹ and �z̃ are the same
for a circular cross-section and equal to the half value
of �x̃.

Neglecting the torsional deformation and the axial
load, the total potential energy consists of the energy
due to bending and shear deformations. Using Eqs. 2
and 3, in which the coordinate x̃ is replaced by the
coordinate s, it can be described as

Ue = 1

2

∫ l

0
EI

((
α′)2 + (

β ′)2
)

ds

+ 1

2

∫ l

0
κGA

(
(−w′

z − α
)2 +

(
w′

y − β
)2

)
ds. (8)

The virtual work on the beam element δWe results
from the nonconservative forces due to external loads
and external as well as internal damping. For the ele-
ment equations, the damping effect is first excluded. It
will be implemented later into the assembled equations.

Expressing the translations and rotations by the
nodal coordinates qe and considering the nonholo-
nomic constraint (see Eq. 1), the equations of motion
of the beam element can be derived with the help of
variational calculation. The linearized form is given by

Meq̈e − �Geq̇e + Keqe = f e, (9)

where fe denotes the external loads (cutting forces) that
act on the corresponding nodes. The structural matrices
in this equation are time-independent since uniform cir-
cular cross-sections are assumed. The symmetric mass
matrix Me due to translational and rotational inertia is

Me = Me
t + Me

r =
∫ l

0
μ�T�ds +

∫ l

0

μr2

4
�T�ds, (10)
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where r denotes the radius of the beam element. The
skew-symmetric matrix Ge is

Ge =
∫ l

0

μr2

2
�T

[
0 −1
1 0

]
�ds = 2Me

rSe (11)

with

Se =

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

. (12)

The symmetric stiffness matrix Ke due to bending and
shear is

Ke = Ke
b + Ke

s =
∫ l

0
EI�′T�′ds

+
∫ l

0
κGA

([−� ′
z

� ′
y

]
− �

)T ([−� ′
z

� ′
y

]
− �

)
ds

(13)

with

� ′ =
[
� ′

z
� ′

y

]
. (14)

The equations of motion can be derived in the rotat-
ing frame in the same way. For the linearized equations,
a simplified and more convenient transformation can
be employed with the help of an auxiliary rotation
matrix Re (orthogonal transformation matrix consisting
of terms cos �t and sin �t) [28]. The relation between qe

with respect to the inertial frame and q̂e with respect to
the rotating frame can be given by

qe = Req̂e. (15)

Substituting this equation and the derivatives into Eq. 9
and premultiplying by ReT yields

Me ¨̂qe +
(

2�M̂e − �Ge
) ˙̂qe

+
(

Ke − �2
(

Me + Ĝe
))

q̂e = f̂ e, (16)

where the skew-symmetric matrix M̂e that consists of
the translational and rotational parts is

M̂e = MeSe = (
Me

t + Me
r

)
Se = M̂e

t + 1

2
Ge (17)

and the symmetric matrix Ĝe is

Ĝe = GeSe = 2Me
rSeSe = −2Me

r . (18)

Thus, Eq. 16 can be reduced to

Me ¨̂qe + 2�M̂e
t
˙̂qe + (

Ke − �2
(
Me

t − Me
r

))
q̂e = f̂ e. (19)

Comparing Eqs. 9 and 19, the following main
differences can be stated:

– With respect to the inertial frame, the deduced
gyroscopic terms (−�Ge) result from the rotational
inertia of the beam element. With respect to the
rotating frame, they (2�M̂e

t ) result from the trans-
lational inertia.

– In the rotating frame, the terms −�2Me
t and �2Me

r
due to the translational and rotational inertia, re-
spectively, appear with opposite signs in the dis-
placement proportional matrices of Eq. 19.

Due to the presence of the gyroscopic terms, the nat-
ural frequencies of the system are split into backward
and forward ones (whirl speeds). The frequency values
calculated with respect to the rotating frame differ from
those with respect to the inertial frame. More precisely,
the differences result from the angular frequency of the
rotating shaft.

It should be mentioned that the torsion and
compression–tension effects are not included in the
beam model. For various designs, the mode due to
torsional deformation could have a lower natural fre-
quency compared to the higher bending modes [22, 23].

2.3 Assembled equations of motion

The system’s equations of motion can be derived by
assembling the equations of all elements considering
the clamping conditions at the STT interfaces. The
behavior of the STT joints is usually nonlinear and
anisotropic for various system designs [10]. It is chal-
lenging to accurately identify the contact properties
for each interface node of the FE model. Especially,
the actual contact mechanism at the tool holder–tool
joint is difficult to identify. Owing to the slots that
are fabricated in the collet, the positions of the con-
tact nodes are difficult to define. The stiffness and
damping properties at diverse contact positions and
directions could be different. In order to simplify the
modeling, it is assumed that the tool holder–tool joint
is approximated by single-node coupling at the built-
in point. The tool shank part that is connected to
the collet is rigidly coupled to the tool holder. The
spindle–tool holder joint is modeled with distributed
multinodes. The nodal displacements are constrained
through translational and rotational springs with linear
stiffness and damping. Since the spindle bearings (FAG
XCB7004-C-T-P4S) do not transmit torque, they are
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modeled as translational springs and dampers only.
Clearance effects are neglected.

To introduce a linear form of damping, one possibil-
ity is the application of Rayleigh damping. The stiffness
proportional part intensively damps the higher vibra-
tion modes, while the lower modes are mainly affected
by the mass proportional part. Another possibility is
the use of the damping ratios for individual modes.
The backward calculation from the modal space can be
expressed as

D = (
ϕT)−1

(2σ0�0) ϕ−1, (20)

where D is the spatial damping matrix, ϕ is the nor-
malized eigenvector matrix, σ0 is the diagonal damping
ratio matrix, and �0 is the diagonal natural frequency
matrix. It should be noted that this evaluation is valid
for proportional damping but not for general viscous
damping [29]. Using this symmetric damping matrix D,
the assembled dynamical equation with respect to the
inertial frame can be given by

Mq̈ + (D − �G) q̇ + Kq = f. (21)

Here, q denotes the generalized coordinates of the
assembly and f denotes the external loads. The matrices
M, G, and K can be obtained by arranging the element
matrices, respectively.

According to that, the linear equation with respect to
the rotating frame is given by

M ¨̂q+
(

D + 2�M̂t

) ˙̂q+
(

K − �2 (Mt − Mr)+�D̂
)

q̂ = f̂.

(22)

Here, q̂ and f̂ denote the displacements and forces with
respect to the rotating frame, respectively. Since the
symmetric damping matrix D is assumed with respect
to the inertial frame, a skew-symmetric matrix �D̂
arises with respect to the rotating frame. In case of
light damping, this matrix has no significant effect on
the system dynamics. It should be pointed out that
the restoring forces of the springs are assumed to be
parallel to the two mutual perpendicular axes of the
reference frame while assembling the dynamical equa-
tions, i.e., they are always centrally directed to the
origin of the reference frame.

2.4 Parameter estimation

The material properties of the cemented carbide micro-
end mills are given in [30] (Young’s modulus, 640 GPa;
density, 14,900 kg m−3; and Poisson’s ratio, 0.22). The
corresponding data of the spindle shaft and tool holder
are 210 GPa, 7,874 kg m−3, and 0.3.

Table 1 Translational stiffness of the spindle–tool holder–tool
interfaces and the bearings (SC 3062)

Translational stiffness Value (Nm−1)

kb (from FAG) 1.89 × 107

ksh
t (from Fischer Precise) 2.8 × 107

kht
t (single-node coupling) 3.36 × 106

The translational stiffness ksh
t at the spindle–

tool holder joint is estimated from the radial stiffness
at the top of the spindle. The stiffness of the ceramic
bearing balls kb

t is assumed to be isotropic. Their values
can be obtained based on the data sheet of FAG and
Fischer Precise. The translational stiffness kth

t between
the tool holder and tool can be identified by transfer
functions measured at the tool tip [31, 32] or the mode-
dependent chatter frequency [12]. The identified values
for a clamping torque of 12 Nm are given in Table 1. In
addition, it is difficult to measure the tool tip transfer
function in micro-cutting by conventional experimental
modal analysis. In the next section, a new method
using piezoelectric elements is presented. The transfer
behavior in the operating state can be identified.

The rotational stiffness values at the spindle–
tool holder (ksh

r ) and tool holder–tool (kth
r ), respec-

tively, are assumed to be the same as the corresponding
translational stiffness values. The rationality of this
assumption, i.e., the sensitivity of the rotational and
translational stiffness, is discussed later with numerical
results in Section 5.2. As stated in [10, 14], the damping
also depends on the clamping forces/torques and the
drawbar forces. Their estimation is much more difficult
in contrast to the stiffness estimation. In order to re-
duce the complexity, damping values of all interfaces
are adjusted to ensure the magnitudes of the transfer
functions in the reasonable range, especially for the
dominant modes.

3 Identification of transfer behavior using piezoelectric
elements

Usually, the conventional experimental modal analysis
cannot be applied to a rotating system. The small sizes
of the micro-cutting tools also enlarge the difficulty of
identification of transfer functions. Piezoelectric mate-
rials provide a possible and an efficient way. Using the
piezoceramic staple actuators, “smart pads” are man-
ufactured to study the squeal behavior of disk brakes
in the operating state [24–27]. By additional accelerom-
eter and/or laser vibrometer, the transfer functions of
the rotating system were identified. Furthermore, the
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squealing frequency was also successfully detected be-
fore the actual squeal occurred.

Similarly, a “smart workpiece” can be developed
by integrating the piezoelectric staple elements into
the chuck system, as shown in Fig. 3a. Two two-layer
piezoelements are clamped between the workpiece and
the chuck system. During the cutting operations, the
piezoelements are used as actuators, i.e., excited by
the external signals that should have a wide frequency
bandwidth. The velocity of the tool shank point is
measured by the laser vibrometer. Thus, the transfer
behavior of the micro-end mill in the operating (rotat-
ing) state can be identified.

Figure 3b depicts the result that is achieved using
random noise as external excitations (with the ampli-
tude of 100 V). The transfer function is described by
velocity/voltage at a spindle speed of 29,000 rpm and an
axial depth of cut of 55 μm. The striking peak with the
highest magnitude corresponds to the dominant mode
of the system. Due to the rotation of the two-edge
cutting tool, the spindle frequency, the cutting edge
engagement frequency, and their harmonics are also
detected, but they reveal quite low magnitudes. Other
frequencies in the resonance range are approximately
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Fig. 3 Identification of transfer functions using piezoelectric
actuators. a Experimental setup and b transfer function using
random noise as excitation on a micro-end mill with tool tip
diameter of dt = 1 mm (workpiece material: CuZn39Pb1)

equal to the combination of the dominant frequency
and the harmonics. It should be noted that slotting
operations are adopted here. For low radial immer-
sions, the detected dominant frequency may be equal to
half of the cutting frequency since the period doubling
instability can arise in that case.

4 Gyroscopic effect

4.1 Dynamics in the inertial and rotating frames

At the rotating state, the equations of motion can-
not be decoupled in two orthogonal directions of the
milling plane. Due to the gyroscopic terms, the natural
frequencies of the system are split into backward and
forward ones. The cross-transfer functions take effect
due to the angular velocity of the spindle. Since the
linear equations are derived in the inertial and rotating
frames, the rotational effects are studied for both cases.

With respect to the inertial frame (see Eq. 21), the
gyroscopic matrix results from the rotary inertia, i.e.,
−�G = −2�M̂r. Figure 4a shows the direct (FRFyy)
and the cross-transfer (FRFzy) functions with excitation
and response at the tool tip at a rotational speed of
60,000 rpm. The peak-splitting effect of the dominant
modes cannot be distinctly observed. With respect to
the rotating frame (see Eq. 22), the gyroscopic matrix
results from the translational inertia (2�M̂t). With the
same parameters as in the inertial frame, the peak-
splitting effect is distinctly observed from the dominant
modes of both direct and cross tool tip transfer func-
tions, as shown in Fig. 4b.

Figure 4c, d illustrates the change of backward and
forward frequencies of the first dominant mode with
spindle speeds in the two frames. It is clear that the
mode-splitting effect in the rotating frame is much more
significant. Table 2 gives the corresponding natural
frequencies of the first three dominant modes at the
nonrotating and rotating states in the inertial frame.
The frequencies of each mode at 60,000 rpm differ
from each other to such an extent that they cannot be
distinguished from the transfer functions.

Note that the corresponding whirl speeds in Fig. 4d
are computed within the frame that rotates with an
angular speed � relatively to the inertial frame. When
the whirl speeds are expressed with respect to the
inertial frame, i.e., adding or subtracting the rotational
frequency, respectively, to the backward one or from
the forward one, they should be identical to those
computed with respect to the inertial frame. To demon-
strate this, the first dominant mode is taken as an
example. The whirl speeds in the rotating frame are
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Fig. 4 Gyroscopic effect on the dynamics of direct (FRFyy) and
cross-transfer (FRFzy) functions at the tool tip in a the inertial
frame and b the rotating frame at a spindle speed of 60,000 rpm;

backward and forward frequencies of the first dominant mode in
c the inertial frame and d the rotating frame

6.206–8.201 kHz. Taking into account the rotational
frequency (1 kHz), the whirl speeds in the inertial frame
are 7.206 and 7.201 kHz, respectively, which equal the
values of the first dominant mode in Table 2.

If the gyroscopic terms due to the translational in-
ertia 2M̂t in Eq. 22 are omitted, the corresponding fre-
quencies of the first dominant mode at 60,000 rpm are
almost the same, i.e., 7.131 and 7.137 kHz, respectively.
Compared to the value (7.203 kHz) at the nonrorating
state, the decrease results from the terms −�2(Mt −
Mr). In addition, as a result of the relatively small
damping ratios, the skew-symmetric matrix −�D̂ has
no significant effect on the system dynamics.

The results above reveal that the gyroscopic effect on
the tool tip transfer functions calculated in the rotating

Table 2 The first three dominant natural frequencies of the
spindle system (SC 3062) at 0 and 60,000 rpm in the inertial frame

Dominant mode (rpm) 1 (kHz) 2 (kHz) 3 (kHz)

0 7.203 20.970 36.430
60,000 (backward) 7.201 20.953 36.410
60,000 (forward) 7.206 20.988 36.450

frame cannot be neglected. They also indicate that
in micro-milling, the contribution of the translational
inertia to the gyroscopic effect is much more important
than that of the rotary inertia. The radii of micro-end
mills lie in the ranges of millimeter (shank) and micro-
meter (tip). Compared to the translational inertia, the
rotational inertia of a finite element is proportional to
the square of the radius, which sharply reduces the cor-
responding values of the skew-symmetric matrix that is
proportional to the velocity.

4.2 Chatter stability in the inertial frame

The chatter behavior can be characterized by the chat-
ter frequencies that are usually experimentally detected
with respect to the inertial frame. Thus, the dynamical
equation (see Eq. 21) derived in the inertial frame
is used to compare the analytical and experimental
results. The cutting mechanism in micro-milling is more
complicated than that in conventional milling (e.g., the
minimum chip thickness effect [4–6]). Here, the feed
per tooth is chosen at 10 μm so that the shearing domi-
nates and the conventional milling force models (e.g.,
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according to Altintas [33]) can be applied [1, 11]. In
this case, Eq. 21 can be modified to the following delay
differential equation (DDE)

Mq̈(t) + (D − �G) q̇(t) + Kq(t)

= apKtA(t)
(
q(t) − q(t − T)

)
, (23)

where T is the cutting period, ap is the axial depth of
cut, Kt is the cutting force coefficient in the tangential
direction, and A(t) contains the directional force matrix
as well as the radial to tangential force ratio kco. The
frequencies involved in the periodic coefficient A(t)
depend on the entry and exit angles of the cutting
process, i.e., the ratio of the radial depth of cut to tool
tip diameter. The methods in the frequency domain
according to Altintas and Budak [33, 34] are employed
for chatter stability prediction.

Note that the dynamics of the workpiece system is
not included in this paper. In order to focus on the spin-
dle and micro-cutting tools, workpieces without thin
walls are used and stiffly clamped into the chuck system
so that their dynamics can be neglected compared to
the micro-end mill dynamics.

Figure 5 shows the analytical stability boundaries
and the experimental results that are determined by
the chatter frequencies of the acoustic signals. It can
be seen that the analytical boundaries with and without
gyroscopic effect are almost the same and in accordance
with the experimental results. This is not surprising
since the tool tip dynamics with respect to the inertial
frame is not strongly affected by the gyroscopic effect,
as stated in Section 4.1. The process stability depends
on the dominant modes which are mainly caused by
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Fig. 5 Analytical (with and without gyroscopic effect) and exper-
imental chatter charts

the deflections of the micro-end mill. Due to its small
rotary inertia, the gyroscopic effect is reduced in spite
of the high rotational velocity. Compared to conven-
tional high-speed machining, the mode-splitting effect
and the gyroscopic effect observed in the inertial frame
are negligible for chatter stability in micro-milling. The
discrepancies between the analytical and experimental
results could result from the variation of the force
coefficients that are not considered in the analytical
solutions. For a conservative chatter prediction, the
robust stability analysis can be employed [35].

5 Effects of mode interaction and joint flexibility

5.1 Dynamics in the inertial frame

According to the analysis in Section 4, the gyroscopic
effect can be neglected in the inertial frame. Hence,
the spindle system and subsystems are analyzed at
the nonrotating state (� = 0) to study the effects of
the mode interaction and joint flexibility. The transfer
functions of the micro-end mill under ideally clamped–
free boundary conditions (T), the spindle, the spindle–
tool holder by rigid coupling, and the entire system
(STT) are compared with each other. The top panel
of Fig. 6 illustrates transfer functions in y-direction
of the milling plane, which are calculated with both
excitation and response at the end node (tip point)
of the corresponding systems. It can be seen that the
magnitudes of the tip receptance of the cantilever tool
are much higher than that of the spindle. Owing to
nonrigid modeling of the spindle bearings, the first
two deformation shapes of the spindle arise from the
constraint modes, i.e., the rigid body motions. Coupling
the spindle with the tool holder rigidly, the receptance
at the end node of the tool holder is shifted, but no
significant change of the magnitudes can be observed.

After coupling the micro-end mill to the tool holder,
the tip dynamics of the spindle system is significantly
altered. The magnitudes of the receptance increase to a
large extent because of the more flexible tool. More-
over, the two dominant frequencies fT1 (13.831 kHz)
and fT2 (32.141 kHz) of the cantilever tool are greatly
shifted by elastic coupling to fSTT1 (20.970 kHz) and
fSTT2 (36.430 kHz). The modes of the spindle or
spindle–tool holder are depressed, which can be ex-
hibited from the small peaks of the system receptance.
Interestingly, a dominant frequency fSTT0 (7.203 kHz)
arises due to the interactions between the modes of the
spindle and the tool.

The middle and bottom panels in Fig. 6 show the cor-
responding normalized mode shapes that are calculated
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from the eigenvectors for the cantilever tool and the
spindle system. All deflection shapes reflect that the
micro-end mill, especially the tip section, is the most
flexible part. For the dominant mode STT0, the tool
exhibits a combination of rigid body motions and bend-
ing deflections, while the spindle and the tool holder
reveal almost no deformations at this mode. Due to the
design of the micro-end mills, the machine tool dynam-
ics in micro-milling is more significantly influenced by
the micro-end mill compared to conventional milling
setups.

This mode interaction effect is experimentally vali-
dated with the help of the scanning laser vibrometer.
The operational deflection shapes at the chatter fre-
quencies can be identified. Owing to the quite short
operating time, three points on the shank of the micro-
end mill are measured. The points on the taper and
tip sections cannot provide sufficient reflection signals.

The results are demonstrated in Fig. 7, where the corre-
sponding mode shapes of the FE model are computed
by the eigenvectors.

Figure 7a shows an operational deflection shape (for
a micro-end mill with tip diameter of dt = 0.5 mm)
identified by the scanning laser vibrometer in an in-
clined direction of the milling plane. Figure 7b depicts
the deflection shapes identified by experiments for dt =
0.5 mm and dt = 0.2 mm in the feed direction, while
Fig. 7c gives the corresponding mode shapes computed
by analytical models. It can be seen that the micro-
end mills in both cases cannot be treated as perfect
cantilever beam. This bending mode is primarily caused
by the tool shank. Since the difference of the shank
length for both cases is small (34.7 and 35.3 mm, respec-
tively), the computed results reveal almost the same
mode shapes. It can be seen that the chatter frequencies
are located in the resonance range and can differ from



Int J Adv Manuf Technol (2013) 65:895–907 905

deformedundeformed

undeformed deformed

0.
2 

µm
 ti

p 
di

am
et

er

tool holder
micro end mill

natural frequency
7.755 kHz

0.
5 

µm
 ti

p 
di

am
et

er

tool holder
micro end mill

natural frequency
8.168 kHz

)b()a( (c)

Fig. 7 Operational deflection shapes identified by the scanning laser vibrometer. a In inclined direction. b Feed direction of the milling
plane. c Computed mode shapes in feed direction

the natural frequency to some degree (e.g., the case of
dt = 0.5 mm). This should be caused by the different
damping properties.

It should be noted that chatter frequencies corre-
sponding to higher bending modes of the micro-end
mills are not observed in these milling tests. If they
could be detected, the identification of the operational
deflection shape would be very challenging. In this
case, points on the tool tip must be measured since
higher modes mainly result from the deflection of the
tip section.

5.2 Chatter stability in the inertial frame

The influences of the mode interaction and joint
flexibility on the chatter stability are studied by the
clamping conditions at the joints. At first, the first two
dominant natural frequencies of several variations with
respect to the translational and rotational stiffness at
the tool holder–tool interface (kht

t and kht
r ) as well as

at the spindle–tool holder interface (ksh
t and ksh

r ) in y-
direction are compared with each other. The results are
summarized in Table 3.

The first variation (corresponding to the decrease of
kht

t and ksh
t by 20%) and the second variation (corre-

sponding to the decrease of only kht
t by 20%) exhibit

the similar frequency values which are lower than the
reference ones. It is evident that the stiffness at the
tool holder–tool interface is significant for prediction of

the system dynamics. As shown in the third variation,
increasing kht

t by 20 % yields higher frequencies. Thus,
the variations of the clamping force or torque at the
tool holder–tool joint affect the system dynamics to a
large extent.

From the last two variations, it can be seen that
the natural frequencies are almost constant even if the
rotational stiffness kht

r is decreased or increased by a
factor of 10. This indicates that the rotational stiffness
in the FE model is less prominent than the translational
stiffness. Therefore, the assumption of the same values
for both, as suggested before, is reasonable respecting
the model accuracy and the simplified procedure for
parameter identification.

The experimental verification is performed by vary-
ing the clamping torque Mc at the tool holder. Cut-
ting tests are conducted using a micro-end mill with
dt = 1 mm on a brass (CuZn39Pb1) block workpiece.

Table 3 Influences of the interface stiffness on the first two
dominant natural frequencies in y-direction at the nonrotating
state

Stiffness variation Mode 1 (kHz) Mode 2 (kHz)

kht
t , kht

r , ksh
t , ksh

r (reference) 7.203 20.970
0.8kht

t , 0.8ksh
t (variation 1) 6.570 20.693

0.8kht
t (variation 2) 6.589 20.694

1.2kht
t (variation 3) 7.712 21.260

0.1kht
r (variation 4) 7.202 20.964

10kht
r (variation 5) 7.204 20.971
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Fig. 8 Stability lobes at different clamping torques Mc

Stability behavior is studied by evaluating the response
signal (the velocity of the tool shank) that is acquired
using a laser vibrometer. For two clamping torques (9
and 8 Nm), chatter frequencies (5.878 and 5.281 kHz,
respectively) can be detected at ns = 27, 000 rpm and
ap = 100 μm. For comparison the predicted stability
boundaries are computed without gyroscopic effect. As
shown in Fig. 8, the results are in agreement for the two
cases. Due to smaller clamping torques, the stiffness
values at the tool holder–tool interface become lower.
Hence, the dominant natural frequencies of the spindle
system become lower, which consequently affects the
chatter frequencies and the stability boundaries.

6 Conclusions

Finite element models of the spindle system and micro-
end mill are presented. The gyroscopic and mode inter-
action effects on the dynamics and chatter stability are
studied by the transfer functions and mode shapes of
the FE models. Experimental validations are given by
the stable as well as unstable cutting tests and the oper-
ational vibration modes. Using piezoelectric elements
as in-process excitation, the transfer function of the
micro-end mill in the operating state can be identified,
e.g., in the form of velocity/voltage.

The gyroscopic effect on the dominant mode of the
spindle system is studied in both inertial and rotating
frames. In the inertial frame, the velocity-dependent
skew-symmetric terms are primarily caused by the ro-
tary inertia of the micro-end mill. Due to its much
smaller mass and radius compared to the tools in
conventional high-speed machining, the mode-splitting
phenomenon resulting from the rotation is less sig-
nificant. Thus, the gyroscopic effect on the micro-end
mill dynamics and the chatter stability can be neglected.
In the rotating frame, by contrast, neglecting the gyro-

scopic terms leads to inaccurate prediction of the tool
tip dynamics.

The most flexible part in micro-milling is the micro-
end mill as long as nonthin-walled workpieces are ma-
chined. Depending on the clamping condition at the
interfaces of the spindle system, modeling of micro-
end mills under ideal cantilever conditions is not ap-
propriate for prediction of the tool tip dynamics. The
dominant modes are strongly affected by the joint prop-
erties, especially, the tool–tool holder interface. This
mode interaction effect is clearly revealed by the mode
shapes of the FE models and the operational deflection
shapes measured by the scanning laser vibrometer. It
significantly influences the micro-end mill dynamics
and the chatter stability.
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