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Abstract In this paper, the berth allocation problem with
stochastic vessel handling times is formulated as a bi-
objective problem. To solve the resulting problem, an evo-
lutionary algorithm-based heuristic and a simulation-based
Pareto front pruning algorithm is proposed. Computational
examples show that the proposed approach provides solu-
tions superior to the ones where the expected value of the
vessel handling times is used.
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1 Introduction

The Berth allocation problem (BAP) can be described as the
problem of allocating berth space for vessels at container
terminals and is a critical function of marine container
terminal operations. Vessels arrive over time and the termi-
nal operator needs to assign them to berths to be served
(loading and unloading containers) as soon as possible.
Ocean carriers, and therefore vessels, compete over the
available berths and different factors (discussed in detail
later) affect the berth and time assignment of each vessel.
Among models found in the literature [15], there are four
most frequently observed cases: (a) discrete vs. continuous
berthing space, (b) static vs. dynamic vessel arrivals, (c)
static vs. dynamic vessel handling times, and (d) variable
vessel arrivals. In the discrete problem, the quay is viewed
as a finite set of berths. In the continuous problem, vessels
can berth anywhere along the quay. The majority of the
published research considers the discrete case [9, 10, 11].
In the static arrival problem, at the time of scheduling, all
vessels are already at the port whereas in the dynamic arrival
problem, only a portion of the vessels to be scheduled are
present, with arrival times for vessels not present known in
advance. The majority of the published research in berth
scheduling considers the latter case. In the static handling
time problem, vessel handling times are considered as input,
whereas in the dynamic handling problem, vessel handling
is a variable; usually a function of the quay cranes that will
operate on the vessel and the distance of the vessels’ berth-
ing position from a location in the yard. Finally, in the last
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case, the vessel arrival times are considered as variables and
are optimized. Technical restrictions such as berthing draft
and intervessel and end-berth clearance distance are further
assumptions that have been adopted in some of the studies
dealing with the BAP, bringing the problem formulation
closer to real-world conditions. Introducing technical restric-
tions to existing berth allocation models is rather straightfor-
ward and is therefore not attempted here.

In this paper, we deal with the discrete space and dynamic
vessel arrival berth allocation problem (DDBAP), which can
be formulated as the machine scheduling problem [5, 16, 18].
The DDBAP continues to receive increased attention from the
research community as it is a problem that marine container
terminal operators deal with on a daily basis [13]. To our
knowledge, the majority of berth scheduling models have
not accounted for the stochastic nature of the vessel handling
times; a stochasticity that stems from the fact that quay cranes
(QCs) and internal transport vehicles (ITVs) serving the ves-
sels do not have a deterministic productivity (e.g., random
down time of QCs, unpredicted congestion in the yard, etc.).
To our knowledge, the only exceptions have been five sepa-
rate studies by Moorthy and Teo [12], Zhou et al. [20], Zhou
and Kang [19], Golias et al. [7], and Du et al. [4] accounting
for less than 10 % of the available berth allocation literature.
Unlike the model presented herein, Zhou et al. [20], Zhou and
Kang [19], and Du et al. [4] did not present a formal method-
ology to handle different handling time distributions. Golias et
al. [7] only focused on online conceptual formulations, while
Moorthy and Teo [12] proposed an approach (as stated by the
authors) relevant only when a substantial number of vessels
arrive periodically. We note that Zhou et al. [20] and Zhou and
Kang [19] formulations constrain the vessel waiting times and
may lead to: (a) infeasibility (i.e., strict waiting time limits) or
(b) low quality solutions (i.e., high waiting time limits); issues
that were not addressed or discussed by the authors.

In this paper, we propose a formulation for scheduling
vessels to the available berths where vessel handling times
are assumed as stochastic parameters with known probabil-
ity distributions. These distributions can be obtained from
historical data (i.e., berth assignment, number of QCs and
ITVs, breakdown rates of QCs, utilization of yard, vessel
handling volumes, etc.) using data mining algorithms, but,
in this paper, are assumed to be known for all the vessels at
all the berths. Based on these distributions, a given berth
schedule risk measure is proposed and minimized. The
proposed risk measure considers the variability of the vessel
service start and finish times. Incorporating this type of risk
requires the calculation of the probability distribution and
percent point functions for the service start and finish time
of the predecessor of each vessel. This can be a complex
task that depends on the distributions of the random varia-
bles involved. In this paper, we present a discussion on the
implications that different probability distributions may

have and how they can be addressed. To account for berth
productivity, we also introduce a second objective function
that minimizes the total service time for all the vessels. The
second objective is the most commonly considered in the
related literature [11] as it is a basic measure of berth produc-
tivity. For further discussion on other objectives for the berth
allocation problem, we refer to Meisel [11], Saharidis et al.
[14], and Theofanis et al. [15].

The two objectives introduced (i.e., minimization of the
risk and total service time) are conflicting and improvement in
one objective will cause the degradation of the quality of the
other [1]; thus, the terminal operator needs to select a schedule
that balances between the two objectives. Berth schedules
with a high berth throughput (i.e., small total service time
for all the vessels) have a greater degree of risk (i.e., risk of
matching the total service time when the stochastic vessel
handling times are realized). On the other hand, berth sched-
ules with a lesser degree of risk (decreased berth throughputs)
provide more confidence to the terminal operator that the
resulting assignment will be stable in terms of the handling
times for each vessel [3, 17] and thus deviations from the
initial schedule will be minimized in case rescheduling is
needed [13]. The proposed model formulation provides the
terminal operator with the berth schedule that balances be-
tween the two objectives. We choose to introduce the risk
measure in contrast to formulating a stochastic optimization
problem as the inherent combinatorial complexity of such a
model would make it impossible to construct a meaningful
heuristic that would efficiently search through the extremely
large set of vessel handling time scenarios.

Existing exact solution algorithms for bi-objective sched-
uling problems rely on iterative-type procedures. These
procedures employ exact algorithms and solve single-
objective problems, equivalents of the bi-objective formula-
tion. These algorithms cannot be efficiently applied to our
problem, as a single objective formulation of the bi-
objective problem formulation proposed herein is intracta-
ble. To tackle this issue, an evolutionary algorithm (EAs)-
based heuristic and a simulation-based Pareto front pruning
algorithm are proposed to solve the resulting problem.

The remainder of this paper is organized as follows: the
next section presents the model formulation, the third sec-
tion presents the solution algorithm, the fourth section
presents a number of computational examples and examines
the validity of the proposed approach, and the final section
concludes the paper and proposes future research areas.

2 Model formulation

In this section, we present the mathematical formulation of
the problem. The model is partially based on the formulation
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introduced by Golias et al. [8]. Before we present the moti-
vation behind the model, we define the following:

Sets

I set of berths
J set of vessels

Decision variables

xij; i 2 I ; j 2 J 01 if vessel j is served at berth i and zero
otherwise

yab; a; b 2 J 01 if vessel b is served as the immediate
successor of vessel a at the same berth and
zero otherwise

fj; j 2 J 01 if vessel j is the first vessel to be served
at its assigned berth and zero otherwise

lj; j 2 J 01 if vessel j is the last vessel to be served
at its assigned berth and zero otherwise

Auxiliary variables

stj; j 2 J service start time for vessel j (stochastic variable)
ftj; j 2 J service finish time for vessel j (stochastic

variable)

Parameters

cij; i 2 I ; j 2 J handling time of vessel j at berth i
(stochastic variable with a known
distribution)

Aj; j 2 J arrival time of vessel j
Ξ confidence level
M large positive number

Definition 1 Let Μ(Z), Σ(Z), and PPF(Z) be the mean, stan-
dard deviation, and the percent point function (respectively)
of a stochastic variable Z ¼Pk pk ; k 2 Π, where Π is a set
of stochastic variables with known and closed form proba-
bility distributions.

Definition 2 Let E(g) denote the expectation of the value of
a stochastic variable g.

Given a vessel to berth assignment, the probability that a
vessel’s service start and/or finish time will be delayed
depends on two factors: (a) that the proceeding vessels at
the same berth will be delayed (i.e., the combined distribu-
tion of their handling times will exceed the mean and thus
the vessel might wait more) and/or (b) the vessel’s handling
time will exceed its mean handling time (and thus the total
service finish time will exceed the expected service finish
time). To illustrate this, we present a simple example with
two vessels and one berth shown in Fig. 1. In this example,

vessel 1 is served first with an expected service finish time
of: E(c11) and vessel 2 s with an expected start time of: A2

(in this example we assume that A2>E(ft1)) and an expected
service finish time of: A2+E(c12). Vessels’ 1 service finish
time is a linear combination of its handling time. Therefore,
there is an ξ percent probability that vessels’ 1 service finish
time will be less than or equal to: PPF c11ð Þ xð Þ. Thus, vessels’
1 service finish time can be delayed (with an ξ percent
probability) by (at most): PPF c11ð Þ xð Þ � E f t1ð Þ. As vessel 1
is served first (and assuming that the vessel arrival times are
deterministic), the probability that its service start time will
be delayed is zero. Service start time of vessel 2 is a linear
combination of its arrival time and vessels’ 1 service finish
time while its service finish time a linear combination of its
service start and handling times. For vessel 2, its service
start time can be delayed up to: PPF c11ð Þ xð Þand its service

finish time up to: PPF st2þc12ð Þ xð Þ . Thus, vessels’ 2 service

start and finish times may exceed the expected by: max

0; PPF c11ð Þ xð Þ � A2

� �
and PPF st2þc12ð Þ xð Þ � E f t2ð Þ , respec-

tively. In this paper, we define the summation of these
possible delays for all the vessels as the risk of a berth
schedule.

To estimate the risk function, we need to be able to
estimate the values of the PPF for a given ξ for each vessel’s
service start and finish times. At each berth, given a
vessel-to-berth assignment, we can estimate these func-
tions assuming that the handling times of all vessels
follow a normal or a Poisson distribution. The service
start time of each vessel will be a linear combination of
the handling times of all the preceding vessels. The
service finish time will be a linear combination of its
service start and handling times. Using these linear
combinations, we can estimate the service start and
finish time probability distribution functions (PDFs)
and use a simple iterative numerical procedure to esti-
mate the PPF values with a specific probability ξ. We
will use a simple example (Fig. 2) to illustrate how we
estimate the risk of berth schedule with n+1 vessels.
Without loss of generality in the example shown in
Fig. 2, we assume that vessels are served at a single
berth in increasing order of their identification number.
For a random vessel (in this example vessel n+1), we
can expect three different cases. In the first case, the
vessel arrival time is smaller than its expected start time and
the service start and finish time risk values are set equal to:
PPF f tnð Þ xð Þ � E f tnð Þ andPPF ftnþ1ð Þ xð Þ � E f tnþ1ð Þ, respective-
ly (although by definition of the PPF the service start and
finish times are less than or equal to:PPF ftnð Þ xð Þand PPF ftnþ1ð Þ
xð Þ, respectively). In the second case, the n+1 vessels’ arrival
time is greater than:PPF ftnð Þ xð Þand we assume that there is zero

risk for its service start time (although there is a probability
of 1−ξ% that the arrival time might be less than: PPF ftnð Þ
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Fig. 2 Schematic illustration of the risk function calculation for the three possible vessel-to-berth assignments between the nth and nth+1 vessel
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xð Þ). In the second case, the same service finish time
risk as with the first case is considered. In the third
case, where n+1, vessels’ arrival time is greater than
the expected finish time of its immediate predecessor
but less than: PPF ftnð Þ xð Þ we set the service start and finish

time risk values of vessel n+1 equal to:PPF ftnð Þ xð Þ � Anþ1 and

PPF ftnþ1ð Þ xð Þ � E f tnþ1ð Þ, respectively.
The bi-objective model minimizing the vessel total ser-

vice time and risk (from now on referred to as RSBM) is
formulated as follows:

min f1ðxÞ ¼
X
j2J

E stj
� �þX

i2I

X
j2J

E cij
� �

xij

" #
ð1Þ

min f2ðxÞ ¼
X
j2J

Rstj þ Rftj

� �" #
ð2Þ

Subject to:

Decision variable constraints

X
i2I

xij ¼ 1; 8j 2 J ð3Þ

fb þ
X
a 6¼b2J

yab ¼ 1; 8b 2 J ð4Þ

la þ
X
b 6¼a

yab ¼ 1; 8a 2 J ð5Þ

fa þ fb � 3� xia � xib; 8i 2 I ; a; b 2 J ; a 6¼ b ð6Þ

la þ lb � 3� xia � xib; 8i 2 I ; a; b 2 J ; a 6¼ b ð7Þ

yab � 1 � xia � xib � 1� yab; 8i 2 I ; a; b 2 J ; a 6¼ b ð8Þ
Vessel-expected service start and finish time estimation

E stj
� � � Aj; 8j 2 J ð9Þ

E stj
� � � E stað Þ þ

X
i2I

E ciað Þxia �M 1� yaj
� �

; 8a; j

2 J ; a 6¼ j ð10Þ
E f tj
� � ¼ E stj

� �þX
i2I

E cij
� �

xij; 8j 2 J ð11Þ

Vessel service start and finish time upper bounds

stj ¼ max E stj
� �

; PPF staþciaxiayajð Þ xð Þyaj
� �

; 8a; j 2 J ; a

6¼ j ð12Þ

f tj ¼ PPF stjþcijxijð Þ xð Þ; 8j 2 J ð13Þ

Risk estimation

Rstj � stj � E stj
� �

; 8j 2 J ð14Þ

Rf tj � f tj � E f tj
� �

; 8j 2 J ð15Þ

Objective function (1) minimizes the expected total ser-
vice time for all the vessels. Objective function (2) mini-
mizes the service start and finish time risk for all the vessels.
Constraint set (3) ensures that each vessel will be served
once, while constraint set (4) ensures that each vessel will
either be served first or be preceded by another vessel. In a
similar manner, constraint set (5) ensures that each vessel

Fig. 3 Illustration of chromosome representation

Fig. 4 Schematic illustration of the mutation operations
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will either be last or will precede another vessel. Constraint
sets (6) and (7) ensure that only one vessel can be served
first and last at each berth. Constraint set (8) ensures that a
vessel can be served after another vessel only if both are
served at the same berth. Constraint set (9) ensures that the
vessel service start time will be greater than the vessel’s
arrival time. Constraint set (10) estimates the expected ser-
vice start time while constraint set (11) estimates the
expected finish service time of each vessel. Constraint sets
(12) and (13) calculate the upper bounds of the start and
finish time of vessel j. Constraint set (14) estimates the
service start time risk with ξ percent probability for each
vessel. Constraint set (15) estimates the vessels’ service
finish time risk.

3 Solution algorithm

One of the main complexities of the RSBM lies in the
definition of the PPFs. To the best of our knowledge, the
published literature that formulated the berth allocation
problem assuming deterministic or stochastic vessel han-
dling times did not present any discussion on the distribution
of the latter. For this reason, we turned our attention to pub-
lished literature that applied simulation in order to evaluate the

operations at marine container terminals (MCTs). For a de-
tailed review of simulation applications in MCTs, we refer to
Cartenì and de Luca [2]. In their research, it is reported that
very few papers show estimated parameter values for their
distribution functions and only a handful report values for
QCs or vessel turnaround times. We would like to note that
if a distribution function of the QC productivity is known,
then the handling time of a vessel can be replicated as a linear
combination of the QCs distributions. The distributions that
replicated the productivity of QCs, as found in the literature,
were Poisson, uniform, truncated normal, and gamma. For the
vessel operations, the Erlang distribution was the most prom-
inent; perhaps due to its direct relationship to the exponential
distribution [17]. We would like to note that the loading and
unloading process for the same vessel may follow different
probability distributions. In this case, and if they cannot be
approximated by a single probability function, the proposed
approach cannot be applied as is. We leave this aspect of the
problem as future research. Out of the reported distributions,
only the linear combinations of the normal and Poisson dis-
tributions produce PDFs with closed form expressions, which
are as follows:

Poisson If Xn~Poisson(λn) are n independent Poisson dis-

tributions, then (ΣXn)~Poisson(Σλn) and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiP
n ln

p
:

Normal If Xn~N(μn,σn) are n independent normal distribu-

tions, then
P

n Xn � N
P

n μn;
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

n σ
2
n

p� �
.

More complex distributions do not have closed form
expressions and approximations have to be used. Even with
the closed form expressions of linear combinations of the
normal and Poisson distributions (which we can use to
produce the PPFs), the RSBM still remains intractable (it
is nonlinear). In order to tackle this issue and solve the
RSBM within computationally reasonable times, we con-
structed an EAs-based heuristic [7], which is presented in
the following subsection.

Table 1 Computational examples parameter values

Parameter Value

Base problem instances 40

Berths 5

Planning horizon 1 week

Berth availability for the first time Uniform (0, 10) hours

Vessel inter-arrival 3 h

Expected vessel handling time Uniform (6, 42) hours

Vessel handling time standard deviation
(as % of the mean handling time)

σ0{.1, .2, .3, ………., .9,
1}

PPF confidence level ξ variations ξ0{.8, .85, .9, .95, .97,
.99}

Fig. 5 Average difference in
MSC values (percentage)
between the NPFS and the
PPFS
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3.1 Evolutionary heuristic

The RSBM is a bi-objective minimization problem and
this we adopt a multi-population EAs heuristic is adop-
ted. The EAs heuristic proposed to solve the resulting
problem consists of: (a) the chromosomal representation,
(b) the chromosomal mutation, (c) the fitness function
evaluation, and (d) the selection process. For scheduling
problems, integer chromosomal representation is more
adequate [5] and in this paper, we adopt an integer
chromosomal representation that allows us to exploit
the characteristics of the problem [6]. An illustration
of the chromosome structure is given in Fig. 3 for a small
instance of the problem with six vessels and two berths.
As seen in Fig. 3, chromosome has 12 cells. The first
six cells represent the six possible service orders at
berth 1 and the last six cells the six possible service
orders at berth 2. In the assignment illustrated in Fig. 3,
vessels 2, 4, and 5 are served at berth 1 as the first, second,
and third vessel, respectively, while vessels 1, 3, and 6 are
served at berth 2 as the first, second, and third vessel,
respectively.

The chromosomal mutation consisted of four different
mutation types (insert, swap, inversion, and scramble) ap-
plied to the chromosomes of each generation. Each of the
four types of mutation illustrated in Fig. 4 was based on the
small example shown in Fig. 3, and has its own character-
istics in terms of preserving the order and adjacency
information.

Definition 3 Let X be the feasible space of the RSBM
and x 2 X be a feasible solution. Solution a 2 X domi-
nates solution b 2 X if: f1ðaÞ � f1ðbÞ; f2ðaÞf2ðbÞf g or
f1ðaÞf1ðbÞ; f2ðaÞ � f2ðbÞf g . Any nondominated solutions

form the Pareto front (PF). The set of PF solutions is
denoted from now on as Ω.

The RSBM is a bi-objective minimization problem;
thus the smaller the values of each objective function,
the higher the fitness value will be. At each iteration,
out of all the available chromosomes, we select the ones
that belong to the PF (of that iteration). If the number
of chromosomes is less than the initial population we
increase the population by randomly copying from the
chromosomes in the current PF. The EAs heuristic can
be summarized as follows:

Step 1: Initialize population of chromosomes1 (i.e.,
parent chromosomes)
Step 2: Produce offspring chromosomes by mutating all
parent chromosomes
Step 3: Select nondominated chromosomes from the
offspring and parent chromosomes
Step 4: Replace parent chromosomes with the nondo-
minated chromosomes from step 3
Step 4: If the convergence criterion2 is met stop, else go
to step 2.

3.2 Post-Pareto simulation

The algorithm described in the previous subsections will
produce a number of nondominated solutions (i.e., berth
schedules belonging to the PF). The next step will be to
select one of these solutions as the schedule to be
implemented. This follow-up step is known as post-
Pareto analysis and can be quite a challenging task
since, in the absence of subjective or judgmental infor-
mation, none of the corresponding trade-offs can be said
to be better than the others [8]. In the problem studied
herein, we employ simulation as a means to select one
schedule from the PF that will be implemented. The
simulation entails the use of a simple Monte Carlo
procedure that generates random instances of the vessels
handling times and estimates an average of the total

1 In this paper, we set the initial population equal to 100. Each chro-
mosome is initialized based on the first come first served at the berth
with the minimum service start time policy

2 The EAs heuristic terminates if no new solutions enter the PF after
1,000 iterations or computational time exceeds 30 min

Fig. 6 Differences of MSC and
EC values (in percent) for the
PPFS
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service time over all the instances. The procedure can
be described as follows. Let L be the total number of
different handling time instances (i.e., realizations of the
vessel’s handling time) we wish to produce and CPFij �ð Þ
the cumulative distribution function of vessel j’s han-
dling time at berth i. The procedure used in this paper
to calculate the different vessel handling time instances
at the different berths is as follows:

Monte Carlo procedure (MCP)

For l01:L, i01:|I|, j01:|J|
Generate a number from the uniform distribution [0,1]:
u ¼ U 0; 1ð Þ and set cslij ¼ CPFijðuÞ,

where:

CPFij is the cumulative distribution function of vessel j at
berth i, and

cslij is the lth realization of vessel j’s handling time at
berth i

end

Definition 4 Let xpfn 2 Ω � X be the nth PF solution of the
RSBM.

For each one of the solutions in the PF, we estimate the
mean value of the total service time (from now on referred
to as the mean simulated cost or MSC) over all the L
realizations of the vessel handling times (obtained from

the MCP) as: MSC xpfn
� � ¼

PK
k¼1

f1 cslij;x
pf
nð Þ

L . The solutions with
the minimum MSC over all the schedules in the PF (from
now on referred to as the pruned PF solution or PPFS and
denoted by xppfs ) is selected as the schedule to be imple-
mented. The algorithm was coded and implemented in Mat-
lab 7.7.03 and the experiments were performed on an ASUS
desktop personal computer (E5300@2.60 GHz) with 6 GB
memory.

4 Computational examples

We developed 40 base problem instances, where vessels are
served with various handling volumes at a multi-user contain-
er terminal with five berths and a planning horizon of 1 week.
The range of variables and parameters considered herein were
chosen from Golias et al. [8] and we report them herein for
consistency purposes. Availability of berths for the first time
in the beginning of the planning horizon (i.e., parameter Si)
was calculated using a uniform probability with a minimum of
zero and a maximum of 10 h. Vessel inter-arrivals were
calculated based on an exponential distribution with a mean
of 3 h. Expected vessel handling times (loading and unload-
ing) ranged from 6 to 42 h based on a uniform distribution.We
assumed that over all the available berths one would be at the
preferred berth (i.e., minimum expected handling time). The
minimum expected handling time of a vessel at the other
berths is obtained by adding a time penalty based on the
distance of a particular berth from the preferred berth, with a
maximum time penalty increase of 50 %. Assuming a normal
distribution for the vessel handling times, we developed ten
different variations for the standard deviation σ (where σ
increases by 10 % from 10 to 100 % of the mean) and six
different variations for the confidence level ξ (where ξ is equal
to 80, 85, 90, 95, 97, and 99%) for each dataset. In total, 2,400
problem instances were developed (40 different instances with
the same handling times but different variations of the stan-
dard deviation σ and the probability for the confidence level ξ
for each one of the 40 base problem instances). These data is
shown in tabular form (Table 1) to assist the reader.

4.1 Evaluation of berth allocation policy

In this subsection, we evaluate the payoff of introducing the
second objective function. For each one of the 2,400 prob-
lem instances previously described, we obtained the PF
using the heuristic algorithm presented in Section 3. For
each schedule in the PF, we calculated the MSC over a
sample size of L05,000. As discussed in the previous3 www.mathworks.com

Fig. 7 Differences of MSC and
EC values (in percent) for the
NPFS
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section, the schedule to be implemented will be the one with
the minimum MSC. To evaluate the effectiveness of the
proposed policy we initially compared theMSC xppfs

� �
value

to the MSC value of the solution in the PF with the mini-
mum expected cost (EC) defined as: argmin

x2X
f1ðxÞ (i.e., the

solution we would obtain if we did not consider the risk
function) and from now on will be referred to as the Nadir
PF schedule or NPFS and denoted by xnpfs. To compare the
berth throughput of the PPFS and the NPFS (i.e., MSC

xppfs
� �

and MSC xnpfs
� �

values), we estimated the following:
MSC xnpfsð Þ�MSC xppfsð Þ

MSC xnpfsð Þ for each of the 2,400 problem instances.

Figure 5 shows the average values of the berth through-
put difference over the 40 different base problem instances
of each σ-ξ combination, answering the following question:
“On average, should we expect a gain in berth throughput if
we choose the PPFS over the NPFS and by how much?”.
Independent two-sample z tests performed on the simulated
values of the objective function of the two schedules
rejected the null hypothesis (that the samples have the
same mean) at the 99 % confidence interval. We ob-
serve that the PPFS always produced a smaller MSC
(i.e., positive percentages), thus a gain in berth through-
put should be expected if the PPFS is chosen (as
opposed to the NPFS). For example, for the first σ,

the average improvement in the berth throughput of
the PPFS as compared to the NPFS (over the 40 differ-
ent base problem instances) is between 19 and 25 %
(for the different ξ's). We further observe that the ben-
efit from using the PPFS remains significant throughout
the range of σ and ξ.

For each PPFS and NPFS of the 2,400 problem instances,
we further calculated the differences between the values of
their MSCs and ECs (i.e., the value of the first objective
function in the PF using the expected vessel handling times)
using the following formulas:

MSC xppfsð Þ�EC xppfsð Þ
EC xppfsð Þ ;where; EC xppfs

� � ¼ f1 E cij
� �

; xppfs
� �

and

MSC xppfs
� � ¼

PL
l¼1

f1 cslij;x
ppfsð Þ

L

ð17Þ

MSC xnpfsð Þ�EC xnpfsð Þ
EC xnpfsð Þ ;where; EC xnpfs

� � ¼ f1 E cij
� �

; xnpfs
� �

and

MSC xnpfs
� � ¼

PL
l¼1

f1 cslij;x
npfsð Þ

L

ð18Þ
The average values over the 40 base problem instan-

ces for each σ−ξ combination are reported in Figs. 6

Fig. 8 Nondominance of PPFS

Fig. 9 Nondominance of NPFS
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and 7 for the PPFS and the NPFS, respectively. The
percentages reported in this table answer the following ques-
tion: “On average, should we expect a gain in berth through-
put (either from the PPFS or the NPFS) as compared to their
ECs and by how much?” For example, for dataset 1, σ010 %
and ξ080, the MSC xppfs

� �
would be 34 % larger than the EC

xppfs
� �

. On the other hand, for the same dataset and σ−ξ
combination, the NPFS would result in the MSC xnpfs

� �
value being 73 % larger than the EC xnpfs

� �
. In general,

we observe that the PPFS produces more reliable sched-
ules (i.e., smaller differences to the expected values). As
expected, the difference between the EC (expected val-
ue) and the MSC (mean cost) increases (for both the
NPFS and PPFS) as variability of the handling times
(i.e., σ) increases but the PPFS shows a significantly
smaller change compared to the NPFS. On the other hand
these differences do not change significantly as we increase
the level of confidence ξ (for the same σ) which increases the
reliability of the PPFS.

4.2 PPFS and NPFS dominance

We further evaluated the dominance of the PPFS and NPFS
in the PF by calculating the number of times, out of the L

different vessel handling times realizations, where the PPFS
or the NPFS did not have the maximum berth throughput.
Average values over the 40 different base problem instances
for each σ−ξ combination are reported in Figs. 8 and 9 (for
the PPFS and the NPFS, respectively), answering the follow-
ing question: “How likely is it that the PPFS or the NPFS do
not provide the best berth throughput over all the solutions in
the PF when a random realization of the vessel handling times
is obtained?”.

Results reported in Figs. 8 and 9, show that the PPFS is
not always the best schedule over all the L different realiza-
tions of the vessel handling times. Furthermore, as σ and ξ
increase the probability that the PPFS will not be the best
schedule (given a random instance of the vessel handling
times) increases while the same probability for the NPFS
decreases. This observation contradicts the initial claim that
the PPFS should be selected as the schedule to be imple-
mented under conditions of high handling time variability
(i.e., high values of σ) as its dominance decreases with the
increase of the handling time variability (i.e., σ). For exam-
ple, given a random instance of the vessel handling times
and for the case of ξ080 % and σ0100 %, PPFS has a 72 %
probability that another schedule (from the PF) will have a
better throughput. For the same case, this probability for the
NPFS is only 28 %. As these results do not report the loss of

Fig. 10 Expected berth
throughput loss under the PPFS

Fig. 11 Expected berth
throughput loss under the NPFS
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berth throughput when the PPFS or the NPFS are dominated
an additional measure of performance was introduced: the
expected berth throughput loss. To calculate the latter mea-
sure assume that for a test instance, the PPFS or the NPFS is
not the best schedule K times out of the L different realiza-
tions of the vessel handling times. Then, the expected berth
throughput loss for the PPFS and the NPFS can be calcu-
lated by Eqs. 19 and 20, respectively:

X
k¼1;:::::K

max 0; f1 cskij; x
ppfs

� �
� min

xpfn 2Ω
f1 cskij; x

pf
n

� � ! !

f1 cskij; x
npfs

� � K=

ð19Þ

X
k¼1;:::::K

max 0; f1 cskij; x
npfs

� �
� min

xpfn 2Ω
f1 cskij; x

pf
n

� � ! !

f1 cskij; x
npfs

� � K=

ð20Þ
In Eqs. 19 and 20, xpfn is the solution from the PF with the

highest berth throughput for the nth vessel handling time
realization. Results of the expected berth throughput loss over
the 40 different base problem instances, and for each σ−ξ
combination, are reported in Figs. 10 and 11 (for the PPFS
and NPFS, respectively). These percentages answer the fol-
lowing question: “What is the expected loss in the total berth
throughput as compared to the optimal schedule given a
random realization of the vessel handling times?”. We observe
that, on average, we should expect a loss in the berth through-
put of less than 8 %, if for a given vessel handling time
realization the PPFS is not the optimal solution. On the other
hand, the same expected loss, for the NPFS, exceeds 20 %.
Thus, even though the PPFS is less dominate as σ increases
(Fig. 8) the loss in berth throughput is significantly lower than
the loss of the NPFS. These results increase confidence that the
PPFS will perform better (as compared to the NPFS) when a
random instance of the vessel handling times is realized.

5 Conclusions

In this paper, we formulated the discrete space and dynamic
vessel arrival berth allocation problem as a bi-objective
optimization problem with the objective to maximize the
berth throughput and minimize the risk of the berth sched-
ule, under the assumption that vessel handling times are
stochastic parameters with known probability distributions.
In order to maximize the reliability of the berth schedule, a
risk measure dependent on the vessel-to-berth assignment
was proposed. In order to solve the resulting problem, a

combination of an EA-based heuristic and a simulation-
based Pareto front-pruning heuristic were proposed. Based
on computational results, it was concluded that considering
the proposed risk can provide schedules with improved
berth throughput and higher reliability. The schedules from
the proposed approach were either the best schedule or
marginally deviated from the best schedule (a deviation
ranging from 1 to 8 %). The proposed model formulation
is limited to cases where the linear combination of the vessel
handling time distributions provide a new distribution with a
closed form expression (e.g., all the individual vessel han-
dling time distributions follow either a normal or Poisson
distribution). Future research can focus on expanding the
model and solution algorithm to incorporate more generic
handling time distributions.
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