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Abstract This paper presents a new integrated methodology
based on evolutionary algorithms (EAs) to model and optimize
the laser beam cutting process. The proposed study is divided
into two parts. Firstly, genetic programming (GP) approach is
used for empirical modelling of kerf width (Kw) and material
removal rate (MRR) which are the important performance
measures of the laser beam cutting process. GP, being an
extension of the more familiar genetic algorithms, recently
has evolved as a powerful optimization tool for nonlinear
modelling resulting in credible and accurate models. Design
of experiments is used to conduct the experiments. Four prom-
inent variables such as pulse frequency, pulse width, cutting
speed and pulse energy are taken into consideration. The de-
veloped models are used to study the effect of laser cutting
parameters on the chosen process performances. As the output
parameters Kw and MRR are mutually conflicting in nature, in
the second part of the study, they are simultaneously optimized
by using a multi-objective evolutionary algorithm called non-
dominated sorting genetic algorithm II. The Pareto optimal
solutions of parameter settings have been reported that provide
the decision maker an elaborate picture for making the optimal
decisions. The work presents a full-fledged evolutionary ap-
proach for optimization of the process.

Keywords Laser beam cutting . Modelling . Genetic
programming .Multi-objective optimization . NSGA-II

1 Introduction

Laser beam cutting belongs to the group of thermal cutting
processes wherein the output of high-power laser is directed
and focused to a small spot on the material to be cut. The
material then either melts or vaporizes. As the beam moves
relative to the material, a cut channel (the kerf) is formed,
having an edge with a high-quality surface finish. The
molten material is blown out of the developing kerf by using
a relatively high-pressure coaxial assist gas. The principle of
laser beam cutting is shown in Fig. 1. Of all the industrial
laser cutting applications, the vast majority of these are used
for the cutting of metal sheets worldwide and this applica-
tion has progressed dramatically in the past 5 years [1]. The
reasons for the widespread usage of lasers for cutting of
metallic sheets is: process is fast and noncontact, superior
edge quality, low surface roughness, small heat-affected
zones (HAZ), ability to create fine and intricate details [2].

The most important performance measures in laser cutting
are kerf width (Kw) andmaterial removal rate (MRR) [3]. Kerf
width indicates the degree of accuracy, whereas material re-
moval rate decides the production rate and economics of
machining. These performance measures are affected by input
cutting variables such as laser power, pulse frequency, pulse
duration, type of assist gas and gas pressure. Laser cutting is a
highly complicated process wherein a large number of param-
eters need to be precisely controlled in unison, hence experi-
mental optimization of the process is costly and time-
consuming.Moreover owing to the nonlinearity and the highly
complicated interactions between process parameters of the
laser process, the current analytical models cannot provide
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accurate process prediction for better quality control and higher
throughput. Therefore an efficient method is needed to deter-
mine the optimal parameters for best cutting performance. The
performance measures as stated earlier viz. kerf width and
material removal rate are conflicting in nature, as lower value
of kerf width and higher value of material removal rate are
preferred.

The overall objective of this research is to apply a new
process modelling and optimization methodology for the
highly nonlinear and complex manufacturing process of laser
cutting. With this aim, accurate prediction models to estimate
Kw and MRR were developed from the experimental data
using a potential evolutionary modelling algorithm called
genetic programming (GP). Subsequently, the developed
models were used for optimization of the process. As the
chosen objectives, Kw and MRR are opposite in nature, the
problem was formulated as a multi-objective optimization
problem. Later, a popular evolutionary algorithm, non-
dominated sorting genetic algorithm II (NSGA-II), was used
to retrieve the multiple optimal sets of input variables.

2 Literature review

Yousef et al. [4] have used artificial neural network (ANN) to
model and analyse the nonlinear laser micro-machining pro-
cess in an effort to predict the level of pulse energy needed to
create a dent or crater with the desired depth and diameter on
surface of a material foil. Li et al. [5] have employed Taguchi’s
experimental method for examining the laser cutting quality of
a quad flat non-lead (QFN) package used in semiconductor

packaging technology. From the study they could observe that
95.47 % of laser cutting quality is contributed from only three
control factors—laser frequency, cutting speed and driving
current. Experimental design and artificial neural networks
have been used by Jimin et al. [6] for optimizing the parameters
of 3D non-vertical laser cutting of 1-mm-thick mild steel.
Dhara et al. [7] have adopted the artificial neural networks
approach to optimize themachining parameter combination for
the responses of depth of groove and height of recast layer in
laser micro-machining of die steel. Dubey andYadava [8] have
performed the multi-response optimization of laser beam cut-
ting process of thin sheets (0.5 mm thick) of magnetic material
using hybrid Taguchi method and response surface method.
The same authors [9] have performed the multi-objective
optimization of kerf quality using two kerf qualities such as
kerf deviation and kerf width using Taguchi quality loss func-
tion for pulsed Nd:YAG laser cutting of thin sheet of alumin-
ium alloy. The multiple regression analysis and the artificial
neural network have been applied by Ming-Jong et al. [10] to
establish a predicting model for cutting 5×5 QFN packages by
using a diode-pumped solid-state laser system considering
current, frequency and the cutting speed as input variables
and six laser cutting qualities as output variables of the QFN
packages, respectively. The genetic algorithm has been finally
applied to find the optimal cutting parameters leading to less
HAZ width and fast cutting speed ensuing complete cutting.

Literature review infers considerable researchers conducted
distinctive investigations for improving the process perfor-
mance of laser cutting. In this direction empirical models
establishing the relationships between the inputs and outputs
were developed and these models were utilized as objective

Fig. 1 Laser beam cutting
process
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functions and were optimized to obtain the machining condi-
tions for the required responses. Literature review also reveals
that the dominant tools for modelling and optimization used to
date have been Taguchi-based regression analysis, multiple
regression method, response surface methodology and ANNs.

In multiple regression and response surface methodology, a
prediction model has to be determined in advance and a set of
coefficients has to be found. The prespecified size and shape
of the model imply that the model might not be able adequate
to capture a complex relation between the influencing varia-
bles and response parameters. Like the aforementioned
approaches, although ANNs have also been used extensively
in the literature for modelling, they have the drawback of not
being able to quantify explicitly the relationships between
inputs and outputs. Though many research papers have been
published on Taguchi method and ANNs as per the authors’
knowledge, very limited research work has been reported
pertaining to the literature on multi-objective optimization of
Kw and MRR of laser beam cutting of steels. Hence, an effort
has been made in this paper, which confers the application of
evolutionary method for multi-objective optimization of laser
cutting process.

3 Proposed methodology

In this paper, a novel approach is presented for modelling of
kerf width and material removal rate using GP. The distinc-
tive aspect of GP as compared to traditional approaches is
that it does not make any presumption about the formulation
to be made. Also the generated model helps directly to
obtain an interpretation of the parameters affecting the pro-
cess. More details of this methodology are discussed in

Section 4. The models developed by GP are subsequently
used for optimization.

In the current study, unlike the previous approaches, the
optimization problem of laser beam cutting process is ex-
plicitly formulated as a multi-objective optimization prob-
lem, as the determination of the optimal machining
conditions involves a conflict between maximizing MRR
and minimizing the kerf width. It can be noted that the
classical optimization methods (weighted sum methods,
goal programming, min–max methods, etc.) are not efficient
for handling multi-objective optimization problems because
they do not find multiple solutions in a single run, and
therefore, it is necessary for them to be applied as many
times as the number of desired Pareto optimal solutions [11].
The above-mentioned difficulty of classical optimization
methods is eliminated in evolutionary algorithms, as they
can find the multiple solutions in a single run. As a result, a
most commonly used evolutionary approach, the NSGA-II,
is proposed in this paper for multi-objective optimization of
laser beam cutting process. GA-based multi-objective opti-
mization methodologies have been widely used in the liter-
ature to find Pareto optimal solutions. In particular, NSGA-
II has proven its effectiveness and efficiency in finding well-
distributed and well-converged sets of near Pareto optimal
solutions [12]. The proposed methodology of integrating GP
and NSGA-II is depicted in Fig. 2.

4 Modelling using GP

GP [13] is an evolutionary optimization method that emu-
lates the concepts of natural selection and genetics and is a
variant of the more familiar genetic algorithm [14]. GP’s
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Fig. 2 Proposed methodology
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ability to generate ingenious and insightful solutions has
been applied actively in numerous academic and industrial
research areas. Successful results have been achieved in
varied problem domains such as industrial robotics [15],
fault detection [16], prediction of shear strength of beams
[17] and machining [18].

The first step in GP implementation is to randomly
generate the initial population for a given population size.
For initialization, the ramped half and half method is used
widely [19] as it generates parse trees of various sizes and
shapes. Also this method renders a good coverage of the
search space [13]. At each generation, new sets of models
are evolved by applying the genetic operators: selection,
crossover and mutation. These new models are known as
offspring, and they form the basis for the next generation.
With each passing generation, it is presumed that the fit-
ness of the best individual and that of the entire population
will show improvement than in preceding generations.
This process generally continues until an ideal individual
has been found or a stipulated number of generations have
been processed.

5 Optimization using NSGA-II

Among the various EAs, GAs have been the most popular
heuristic and global alternative approach to multi-objective
design and optimization problems [20]. These algorithms
have attracted significant attention from the research commu-
nity over the last two decades because of their inherent ad-
vantage in solving nonlinear objective functions. Of these, the
elitist NSGA-II has received the most attention because of its
lucidity and demonstrated excellence over other methods [21]
for seeking Pareto optimal objective function fronts.

The various steps in NSGA-II based on the main frame-
work of the algorithm [22] shown in Fig. 3 can be stated in
the following steps:

1. Set the initial run parameters for the algorithm, viz.
population size (N), maximum number of generations
(gmax), crossover probability (Pc), mutation probability
(Pm; generation, g00).

2. Randomly create an initial population Pg of size N with
a good coverage of the search space, and thereby have
a diverse gene pool with potential to explore as much
of the search space as possible.

3. Evaluate the objective values and rank the population
using the concept of domination. Each solution is
assigned a fitness (or rank) equal to its non-domination
level (1 is the best level, 2 is the next best level and so on).

4. Perform the crowding sort procedure and include the
most widely solutions by using crowding distance value.

5. The child populations Qg is produced from the parent
population Pg using binary selection, recombination
and mutation operators.

6. Then the two populations are combined together to
produce Rg (0Pg U Qg), which is of size 2N.

7. After this the population Rg undergoes non-dominated
sorting to achieve a global non-domination check.

8. The new population Pg+1 is filled based on the ranking
of the non-dominated fronts.

9. Since the combined population is twice the size of the
population size N, all the fronts are not allowed to be
used. Therefore a crowding distance sorting is performed
in descending order and the population is filled. Thus for
this new population Pg+1, the whole process is repeated.

10. Update the number of generations, g0g+1.
11. Repeat steps 3 to 10 until a stopping criterion is met.
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6 Experimental details

The experimentation was performed with an optical fibre
delivered pulsed Nd:YAG laser beam system (Model:
JK300D) manufactured by GSI Lumonics and delivering
maximum peak power of 16 kW. The laser beam was
transferred via a 300-μm diameter step-indexed optical fibre
to the cutting head, which was mounted over a six-axis
robot (Model: IRB1410) manufactured by ABB. The robot
is compact in design having a weight of 225 kg, has a
handling capacity of 5 kg at the wrist, has a large working
area and long reach (fifth axis—1.44 m). The cutting head
was fitted with an automatic standoff adjusting servomotor
and electrostatic sensor. This is necessary for adapting the
position and focusing the lens. The sensor is interfaced to
the robot control and can read the real position of the
workpiece. The robot consequently moves the lens so as to
always be correctly in focus. The schematic view of robotic
laser cutting system is shown in Fig. 4. The laser mode and
wavelength are TEM00 mode and 1,064 nm. The output
laser beam is focused by a BK7 plano-convex lens whose
focal distance is 116 mm.

The parameters that affect the performance of the laser
beam cutting process are identified based on the literature
survey and preliminary investigations. Through the above
exploration, four parameters which predominantly affect the
material removal rate and kerf width were selected. Pulse
frequency, pulse width, cutting speed and pulse energy are
considered as control variables. Oxygen gas with a purity of

99.99 % was employed as an assist gas. The gas pressure
was consistently maintained at 5 bar. The specimens were
laser cut from AISI304L sheets of 1.70 mm thickness. The
sheet material was supported firmly on a fixture to counter
vibration during cutting, and the robot was programmed to
traverse the cutting head in stated path. The two quality
characteristics analysed are kerf width and material removal
rate. The kerf width was measured with tool maker’s micro-
scope of ×10 magnification and least count of 1 μm. Kerf
width of each cut was measured at three different places for
accurate evaluation. The MRR is calculated by the weight
loss method. The weight of the component before and after
the cut was accurately measured using a digital balance
which can measure up to the accuracy of 1 mg (Model
XB320M, Make: Precisa).

The fixed conditions at which the experiments were con-
ducted are listed in Table 1. Table 2 shows the different
levels of the parameters used in the experimentation. The
levels were fixed based on detailed preliminary experi-
ments. The observations of the cutting process are based
on second-order central composite rotatable design. The
four control variables, viz. pulse frequency, pulse width,
cutting speed and pulse energy each at five levels, were
chosen. The results for 31 experiments after laser beam
cutting which were evaluated as stated earlier on two per-
formance measures are shown in Table 3. This table con-
stitutes the training dataset and was used to predict the
expression that best suits to the problem. Additional experi-
ments were performed to generate the validation data. The
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validation data are utilized to validate the developed model
and to ensure the generalization capability of the predicted
model for unseen cases. Table 4 shows the validation
dataset.

7 Implementation of GP

There are four major steps for applying genetic programming:

1. Elements of functional set and terminal set,
2. Fitness measure,
3. Parameters for controlling the run and
4. Termination criteria.

7.1 Function set and terminal set

The function set consists of standard arithmetic functions,
i.e. addition (+), subtraction (−), multiplication (×) and
division(/). Symbol “/” stands for protected division which
merely prevents numerical overflow by division with zero.
The terminal set includes the dependent variables of the
laser cutting process, together with numerical real constants
in the range (−100, 100).

7.2 Fitness measure

The most important concept of GP is the fitness function.
The success of a problem greatly depends on the way the

fitness function is designed. In this problem the fitness
function used for the evolution of the GP models is the
correlation coefficient R2.

7.3 Control parameters and termination criteria

The GP algorithm requires the specification of proper
set of parameters such as number of generations, popu-
lation size, crossover probability, mutation probability,
reproduction probability, selection method and depth of
tree. Several thumb rules are given in reference [13] for
parameter selection based on simulation experience for
standard GP. Similar recommendations are given in
Banzhaf et al. [23]. Exploration of parameters based on the
guidelines was performed, and the sensitivity to certain
parameters such as population size and number of generations
was investigated. The value of other parameters was simply
fixed reasonably. Table 5 lists the GP parameters common to
both the models. The termination criteria used were the num-
ber of generations.

The choice of population size is clearly dependent on the
problem being tackled, with some problems requiring
thousands of population members [24]. However in the
present study, population of different sizes, viz. 300, 400,
500 and 1,000, was tested upon. It was found that the use of
larger population size gave more accurate model prediction
but resulted in much complex models which are difficult to
interpret and comprehend. Thus a population size of 300
was decided upon. The number of generations was fixed to
50 as no significant improvement was observed beyond that
number. This initial randomized population is created using
ramped half and half tree generation strategy, which gener-
ates a set of random trees having a variety of sizes and
shapes. Half the trees are grow trees, in which each random-
ly generated node has an equal chance of being function
(internal node) or terminal (leaf), up to a maximum depth for
the tree. The other trees are full trees, where nodes are leaf
nodes only when the maximum depth of the tree has been
reached. Ramped tree generation proceeds until the popula-
tion is filled. Crossover is performed on 85 % of the popu-
lation. In addition, fitness proportionate reproduction is
performed on 10 % of the population on each generation.

Table 1 Cutting conditions

(a) Workpiece material: AISI304L

(b) Workpiece dimensions—10 mm L × 10 mm B × 1.7 mm T

(c) Length of cut—5 mm

(d) Angle of cut: vertical

(e) Mode of operation: pulsed

(f) Nozzle diameter—1.2 mm

(g) Nozzle standoff—0.5 mm

(h) Focal lens—120 mm

(i) Focal spot size—0.1 mm

(j) Gas pressure—5 bar

Table 2 LBC parameters and
their level used in
experimentation

Process parameter Notation Level 1 Level 2 Level 3 Level 4 Level 5

Pulse frequency (Hz) x1 51 113.25 175.5 237.75 300.27

Pulse width(ms) x2 0.20 0.40 0.60 0.80 1.0

Cutting speed (mm/min) x3 400 550 700 850 1,000

Pulse energy (J) x4 0.93 2.14 3.35 4.56 5.78
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Although Koza [13] did not use the mutation, it was thought
that their inclusion would be more beneficial in this study
due to the relatively small population sizes used.

GP is stochastic by nature, and hence, the results will
vary from one run to the next. It is standard practice for
the experimenter to perform multiple independent train-
ing runs of fixed number of generations each and then
report the results of the fittest individual evolved across
all runs. After 50 generations and of all runs, the final
selected model expression for kerf width and material
removal rate having best fitness (i.e. highest R2 value)
are given hereunder:

Kw ¼
28:07þ x4ð Þ � x3 0:09x4�x2þ29:38ð Þ

4:40þ242x3�x2x3ð Þ
� �

92� x4ð Þ þ 23 x2�x4ð Þ
8:95�x2

� �
� 0:38

x1x4

� � ð1Þ

MRR ¼ 3þ 0:239 x4 � x2ð Þ þ x4
x1

� �

� 0:01x3 � 39

x1

� �

� 5 19x2 þ 1604:17ð Þ
x3 � 95 x4 � x1ð Þð Þ 16þ x4ð Þ

� �
ð2Þ

It should be noted that the proposed models are valid
between the range of the input variables as given in
Table 2. The convergence curves showing the progress
of GP run for kerf width and MRR are given in Figs. 5
and 6. The algorithm evolves towards improving the R2

value of the model with each generation. The values of
the correlation coefficient at the end of the generation
for Kw and MRR are 0.999 and 0.998. This indicates

Table 3 Training dataset
Experiment number x1 (Hz) x2 (ms) x3 (mm/min) x4 (J) Kw (mm) MRR (g/min)

1 113.25 0.4 550 2.14 0.328 3.210

2 113.25 0.8 550 2.14 0.330 2.992

3 237.75 0.4 550 2.14 0.341 3.345

4 237.75 0.8 550 2.14 0.350 3.361

5 113.25 0.4 850 2.14 0.320 3.074

6 113.25 0.8 850 2.14 0.315 3.163

7 237.75 0.4 850 2.14 0.330 3.203

8 237.75 0.8 850 2.14 0.335 3.210

9 113.25 0.4 550 4.56 0.428 3.860

10 113.25 0.8 550 4.56 0.410 3.680

11 237.75 0.4 550 4.56 0.428 3.967

12 237.75 0.8 550 4.56 0.398 3.774

13 113.25 0.4 850 4.56 0.398 3.667

14 113.25 0.8 850 4.56 0.413 3.850

15 237.75 0.4 850 4.56 0.419 3.830

16 237.75 0.8 850 4.56 0.368 3.855

17 175.5 0.2 700 3.35 0.367 3.522

18 175.5 1.0 700 3.35 0.361 3.328

19 51 0.6 700 3.35 0.350 3.185

20 300 0.6 700 3.35 0.365 3.375

21 175.5 0.6 400 3.35 0.363 3.600

22 175.5 0.6 1,000 3.35 0.375 3.550

23 175.5 0.6 700 0.93 0.287 2.835

24 175.5 0.6 700 5.78 0.483 4.265

25 175.5 0.6 700 3.35 0.384 3.547

26 175.5 0.6 700 3.35 0.375 3.560

27 175.5 0.6 700 3.35 0.380 3.508

28 175.5 0.6 700 3.35 0.381 3.519

29 175.5 0.6 700 3.35 0.379 3.600

30 175.5 0.6 700 3.35 0.369 3.503

31 175.5 0.6 700 3.35 0.370 3.513
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that the GP model has been able to learn the complex
relationship between the input and output parameters
with a good accuracy.

The normal probability plot of residuals for Kw and
MRR are shown in Figs. 7 and 8. These plots reveal that
the residuals are established on a straight line clearly indi-
cating that the normal distribution of the errors and the
obtained models are reasonably acceptable. The perfor-
mance comparison of the trained GP model using the vali-
dation datasets for Kw and MRR are shown in Figs. 9 and
10. The high values of R2 obtained for both the outputs
indicate the models have acquired sufficient level of gener-
alization without overfitting.

In order to have an idea about the predictive power of GP
in comparison to response surface methodology (RSM),
regression analysis is carried out using the same experimen-
tal dataset as used for generating GP models. The following

second-order regression models were determined for kerf
width and material removal rate.

Kw ¼ 0:037þ 0:001x1 þ 0:21x2 þ 0:058x4

� 0:077x22 þ 0:001x24 � 0:024x2x4 ð3Þ

MRR ¼ 2:895þ 0:008x1 � 0:748x2 � 0:002x3

þ 0:229x4 � 0:502x22 þ 0:007x24 þ 0:001x2x3

� 0:015x2x4 ð4Þ
Table 6 shows the summarized error statistics for the two

modelling methods. From the table it can be observed that
GP has produced more accurate models than RSM.

7.4 Interpretation of developed models

The evolved equations indicate some distinct aspects of GP.
The final model form clearly indicates the relative contribu-
tion of each input to the output. Also the explicit relation
allows simple impromptu interpretation of the problem at
hand. For example, in Eq. (2) x1 term (pulse frequency)
appears only in the denominator part as linear term. This
suggests that pulse frequency has inverse effect or inferior
effect on MRR. x4 term (pulse energy) appears both in the
numerator and denominator part. This gives a hint that its
effect on MRR is both increasing and decreasing. Also, it
can be seen from Eq. (1) for Kw that interaction terms exist
in the model developed based on GP. Conclusions for other
parameters may be similarly drawn. It should be noted that
the algorithm is able to ascertain between the relevant and

Table 4 Validation dataset
Experiment number x1 (Hz) x2 (ms) x3 (mm/min) x4 (J) Kw (mm) MRR (g/min)

1 60 0.25 425 1.20 0.35 3.41

2 60 0.45 545 2.20 0.33 3.45

3 100 0.65 665 3.20 0.39 3.20

4 100 0.85 785 4.20 0.38 3.90

5 140 1.00 910 5.20 0.45 4.21

6 140 0.25 425 1.20 0.31 3.50

7 180 0.25 545 2.20 0.35 3.49

8 180 0.45 665 3.20 0.39 3.65

9 220 0.65 785 4.20 0.39 3.99

10 220 0.85 910 5.20 0.45 4.10

11 100 1.00 425 1.20 0.33 3.22

12 140 0.25 545 2.20 0.35 3.49

13 180 0.45 665 3.20 0.36 3.69

14 220 0.65 785 4.20 0.41 3.99

15 140 0.85 910 5.20 0.42 4.02

Table 5 GP control parameters

Terminal set {x1, x2, x3, x4}

Function set {+, –, ×, ÷}

Population size 300

Number of generations (maximum) 50

Number of independent runs 10

Crossover probability (%) 85

Mutation probability (%) 5

Reproduction probability (%) 10

Selection method Tournament

Fitness measure R2

Maximum depth of tree 6
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irrelevant input data, evolving parsimonious system repre-
sentation. The detailed direct effects and surface plots of
process parameters for both the outputs Kw and MRR are
discussed in the following sections.

7.5 Effect of process parameters on kerf width

7.5.1 Direct effects

As shown in Fig. 11a at low pulse frequency, there is
enough time between the pulses for the material to substan-
tially cool down. This helps extinguish the exothermic ox-
idation reaction thereby reducing the overall process
efficiency. Furthermore as the material cools down between
pulses at low pulse frequencies, there is greater likelihood of
forming dross. The resulting lower average temperature
increases the surface tension or viscosity of the molten

material making it more difficult to flow out of the reaction
zone, thus increasing the kerf. The kerf width varies from
lower to higher values as shown in Fig. 11b due to different
material removal mechanisms. At lower levels of pulse
width due to lower pulse-to-pulse overlap, individual laser
pulses affect the kerf. The average kef width generally
decreases with increasing the cutting speed as shown in
Fig. 11c. The faster the cutting, the smaller the energy
density supplied to the material and lesser time there is for
the heat to diffuse sideways and hence the narrower the kerf.
Due to small workpiece thickness, no significant variation in
kerf width is detected. Figure 11d shows that an increase of
energy input per unit length lead to an increase in kerf
width. The minimum value for the kerf width is obtained
for the lowest energy input per unit length, and exceeding
this value results in an increase in kerf width. An increase of
laser energy normally leads to reduction of cut quality,
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consequently higher kerf widths result. At higher range if
gas pressure is not increased, more molten material is
ejected towards the top of the interaction zone and is melting
additional material resulting in large kerf. The average cut
width increases as the laser cutting energy increases. Low
pulse energy leads to small thickness of recast layer and
additionally causes low kerf width.

7.5.2 Surface plots

Figure 12 shows the 3D surface plots for kerf width. In
Fig. 12a, the pulse width and cutting speed values are kept
constant at 0.60 ms and 700 mm/min. An increase in pulse
energy and pulse frequency results in higher kerf width.
However the effect of changing pulse energy on kerf width
is more dominant than pulse frequency. At high pulse ener-
gy and frequency, the intense melting, vaporization coupled

with exothermic reaction of reaction gas, produces a kerf
width of wide disorder. At low pulse frequency and pulse
energy, the cutting process is more consistent and results in
low kerf width. The effect of cutting speed and pulse width
on kerf width is shown in Fig. 12b. It is evident that for
lower pulse width, the kerf width gradually increases with
increase in cutting speed and then decreases with decrease in
cutting speed. At lower pulse width, the amount of energy
supplied is limited, thus less amount of metal is displaced
over the small area at low cutting speeds. Figure 12c shows
the effect of pulse width and pulse energy on kerf width.
Pulse width being the duration of laser pulse controls the
incidental heat input into the part. At low values of pulse
width and pulse energy, the variation in kerf width is min-
imal. At high value of pulse energy with subsequent in-
crease in pulse energy, the variation is more phenomenal
due to more material ejection. As the pulse width and pulse
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energy increase, they cause more metal removal which
increases the kerf width. Figure 12d shows the effects of
cutting speed and pulse energy on the kerf width, keeping
pulse frequency and pulse width at 175.5 Hz and 0.6 ms.
The plot reveals that cutting speed has nonlinear effect on
kerf width at different pulse energy values. At lower value
of cutting speed, the variation of kerf width with pulse
energy is less, but at higher values the variation is signifi-
cant. The kerf width varies almost linearly wrt pulse energy.
Initially when the cutting speed and pulse energy are low,
the melting and vaporization of work material are more
stable. At higher cutting speeds and low energy levels, there
is less time for heat diffusion and melting and hence low
kerf width. Low cutting speeds and high pulse energy make
the heat input to be concentrated for a longer period causing
a large area to be removed from the surface, and hence,
significant increase in kerf width is obtained.

7.6 Effect of process parameters on MRR

7.6.1 Direct effects

From Fig. 13a it is observed that as the laser repetition rate
increases from minimum to maximum, material removal rate
initially increases and then decreases. Each laser pulse acts in
two stages: a melting stage where the temperature of the
workpiece is raised to the vaporization temperature followed
by a material removal stage where the vaporization occurs in a
controlledmanner. At low frequencies pulse irradiance level is
high enough to reach vaporization temperature, hence material
removal increases, but at high pulse frequency pulse irradi-
ance is low and hence the vaporization temperature is not
reached, so there is no vaporization resulting in low MRR.
The effect is similar to pulse frequency as seen in Fig. 13b. At
higher speeds laser energy is not sufficiently transferred to the
interaction zone leading to low material interaction time and
hence low MRR is seen as in Fig. 13c. Moreover due to small
workpiece thickness, no significant variation in kerf width is
detected. Figure 13d reveals there is a noticeable increase in
MRR with an increase in pulse energy. As the pulse energy
increases, each pulse cuts through the entire material and large
portion of the material seems to be ejected at the bottom of the
interaction zone. Also at higher energy levels, the ignition
zone is expected to be wider because of the higher heat input
as well as the limited thermal conductivity of the material.

7.6.2 Surface plots

Figure 14 shows the 3D surface plots for MRR. Figure 14a
exhibits the variation of MRR with pulse frequency and
pulse energy, while pulse width and cutting speed are fixed
at 0.6 and 700. At low values of pulse frequency and pulse
energy, the thermal energy incident on material is of small
magnitude resulting in low MRR. Keeping frequency at low
level, the increase in pulse energy causes significant im-
provement of material removal. But at high pulse frequency,
as pulse energy of laser is lower, the amount of variation in
MRR due to increase in pulse energy is comparatively
lower. Increased pulse energy at low pulse frequency
increases the incident thermal energy resulting in substantial
material removal. Figure 14b shows the variation effect of
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Table 6 Comparison of modelling results

RSM GP

Standard
deviation

Mean
absolute
error

R2 Standard
deviation

Mean absolute
error

R2

Kw 0.042 0.061 0.950 0.033 0.017 0.999

MRR 0.392 0.165 0.976 0.287 0.068 0.998
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pulse width and cutting speed on MRR, keeping pulse
energy and pulse frequency constant at 3.355 and
175.5, respectively. The surface plot reflects the nonlin-
ear variation of MRR with both the pulse width as well
as cutting speed at different values. But MRR is highest
at low levels of pulse width and cutting speed. Because
of low pulse width and low cutting speed, the laser
beam heat input is totally utilized to melt the material

causing high MRR. Figure 14c shows the variation of
MRR with pulse width and pulse energy while keeping
the pulse frequency and cutting speed constant at
175.5 Hz and 700 mm/min, respectively. At low value
of pulse width, low input laser beam energy results in
small MRR. But at the same low range of pulse width,
the MRR increases rapidly with pulse energy as high
input energy of incident laser beam results in intense
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melting and vaporization along the complete thickness
of material. Figure 14d shows the effect of cutting
speed and pulse energy on MRR by holding the pulse
frequency and pulse width at 175.5 Hz and 0.6 ms. At
lower values of pulse energy, the MRR varies parabol-
ically wrt to increase in cutting speed. This may be
attributed to the less heat input into the material at
increasing speeds. The MRR holds a high value when

the pulse energy is high and cutting speed is at a mid-
value. High pulse energy generates high thermal energy
resulting in improved MRR.

It is evident from Figs. 11, 12, 13 and 14 that among
the chosen four control factors, pulse energy has pro-
found effect on both the responses, whereas the effects
of pulse width and cutting speed are found to be less
significant.
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8 Formulation of multi-objective optimization problem

The two objective functions of the present study are:

1. Minimization of kerf width and
2. Maximization of material removal rate.

These are given by Eqs. (1) and (2), respectively. The two
objective functions are optimized subject to the feasible
bounds of input variables. The optimization problem is
defined as follows:

Objective 1:Minimize

Kw ¼
28:07þ x4ð Þ � x3 0:09x4�x2þ29:38ð Þ

4:40þ242x3�x2x3ð Þ
� �

92� x4ð Þ þ 23 x2�x4ð Þ
8:95�x2

� �
� 0:38

x1x4

� � ð5Þ

Objective 2:Maximize

MRR ¼ 3þ 0:239 x4 � x2ð Þ þ x4
x1

� �

� 0:01x3 � 39

x1

� �

� 5 19x2 þ 1604:17ð Þ
x3 � 95 x4 � x1ð Þð Þ 16þ x4ð Þ

� �
ð6Þ

Subject to:

51 Hz � x1 � 300:27 Hz

0:20 ms � x2 � 1:0 ms

400mm=min � x3 � 1;000 mm=min

0:93 J � x4 � 5:78 J

9 Results and discussions

The objective functions were optimized in compliance with
the constraints given in Eqs. (5) and (6). As stated previous-
ly the NSGA-II algorithm was used for obtaining the Pareto

Table 7 Parameters for the NSGA-II algorithm

Population size (N) 50

Number of generations (Ngen) 100

Crossover probability (Pc) 0.90

Mutation probability (Pm) 0.10

Distribution index for crossover operator (Nc) 20

Distribution index for mutation operator (Nm) 20
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Fig. 15 Pareto optimal front

Table 8 Optimal values obtained through NSGA-II

S. no. x1 (Hz) x2 (ms) x3 (mm/min) x4 (J) Kw (mm) MRR
(g/min)

1 224.37 0.72 677.42 1.28 0.314 2.992

2 290.03 0.33 580.54 4.40 0.405 3.902

3 207.01 0.31 902.28 4.47 0.408 3.834

4 172.85 0.46 799.30 2.62 0.351 3.320

5 263.84 0.62 775.29 5.53 0.442 4.073

6 250.35 0.86 587.90 4.81 0.415 4.264

7 252.24 0.23 713.83 4.46 0.408 3.910

8 201.25 0.29 752.12 2.60 0.352 3.394

9 274.43 0.43 500.45 3.46 0.316 3.656

10 180.01 0.75 650.15 5.52 0.441 4.026

11 190.18 0.62 572.80 5.24 0.432 4.010

12 137.15 0.32 736.62 2.34 0.345 3.257

13 177.00 0.48 773.16 2.77 0.315 3.365

14 247.22 0.57 484.64 1.88 0.330 3.227

15 195.47 0.31 542.86 1.54 0.312 3.154

16 257.30 0.23 450.65 5.44 0.442 4.196

17 147.01 0.70 646.10 5.71 0.448 4.063

18 191.28 0.61 407.20 3.78 0.384 3.685

19 260.39 0.27 940.64 3.48 0.377 3.621

20 118.16 0.62 460.38 5.28 0.433 4.005

21 240.03 0.31 494.94 3.71 0.384 3.738

22 208.20 0.20 685.02 4.34 0.404 3.870

23 165.12 0.34 883.84 5.67 0.449 4.098

24 226.79 0.54 458.77 4.38 0.403 3.851

25 174.56 0.24 689.51 1.45 0.322 3.106

24 271.22 0.78 517.12 5.71 0.448 4.122

27 208.14 0.25 605.40 5.47 0.442 4.220

28 298.90 0.73 993.66 1.12 0.310 2.930

29 274.43 0.43 500.45 3.46 0.376 3.656

30 267.69 0.31 561.78 3.19 0.369 3.606
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optimal solutions. The source code for NSGA-II is imple-
mented in the VC++ programming language on Windows
XP platform. The optimization results are sensitive to algo-
rithm parameters, typical of heuristic techniques. Hence, it is
required to perform repeated simulations to find commen-
surate values for the parameters. The best parameters for the
NSGA-II, selected through 10 test simulation runs, are listed
in Table 7. A population size of 100 was chosen with
crossover probability of 0.90 and mutation probability of
0.10 along with other control parameters. NSGA-II gave
good diversity results and provided for a well-populated
Pareto front of the conflicting objective functions as shown
in Fig. 15.

Among the 100 non-dominated optimal solutions at the
end of 100 generations, 30 optimal input variables and their
corresponding objective function values are presented in
Table 8. By analysing the Pareto front, a decision maker
can exploit it in accomplishing specific decisions based on
the requirements of the process. For instance at point 1 in
Fig. 15, laser cutting may be performed at maximum MRR
but the Kw will be a higher value and hence poor edge
quality. On the other extreme of the front, i.e. point 2 low
Kw with good edge quality may be obtained but the MRR is
minimum. All the other points on the front are in between

cases. As can be observed from the graph, no solution in the
front is absolutely better than any other as they are non-
dominated solutions; hence, any one of them is an accept-
able solution. The choice of a particular solution has to be
made purely based on production requirements. For exam-
ple if the manufacturer chooses to cut a component with Kw
of 0.314 mm, the set of input variables may be selected from
the first row of Table 8. Accordingly the MRR of 2.99 g/min
would be achieved. In another instance from the experimen-
tal results of Table 3, 13th row, the set of input variables
leads to MRR of 3.66 and the corresponding Kw value is
0.3985 mm. After optimization, the Kw value is reduced to
0.316 mm (S. no. 9, Table 8) with almost the same value of
MRR.

The scanning electron microscopy (SEM) photo-
graphs of the samples that correspond to the best values
of Kw and MRR are shown in Fig. 16a–d. Those values
of Kw and MRR correspond to the extreme positions
(point 1 and point 2) of the Pareto optimal set shown in
Fig. 15. Both the top surfaces as well as the side view
of laser cut surface are shown. As can be observed from
the photographs, the variation of Kw and resultant stria-
tions is apparent with respect to the different optimal
sets of input variables.

(a) Top view of laser cut surface (b) Side view oflaser cut surface 

 (c) Top view of laser cut surface (d) Side view of laser cut surface 

Fig. 16 SEM photographs at
the optimal values of individual
output responses. a Top view of
laser cut surface. b Side view of
laser cut surface. c Top view of
laser cut surface. d Side view of
laser cut surface. x10
208.14 Hz, x200.25 ms, x30
605.40 mm/min, x405.47 J,
Kw00.442 mm, MRR0
4.220 m/min, x10195.47Hz,
x200.31 ms, x30 542.86mm/
min, x401.54J, Kw00.320mm,
MRR03.154gm/min
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10 Conclusions

The laser cutting process is an important and widely used
nontraditional manufacturing technology for rapid and pre-
cise cutting of metallic sheets with complex shapes yielding
excellent accuracy and quality. Being a complex process, it
is very difficult and costly to determine the optimal param-
eters based on trial and error or experience. The present
work implements unique approach for laser cutting process
based on the integration of two evolutionary approaches,
namely GP and NSGA-II. GP is a powerful evolutionary
modelling approach that can learn the complex underlying
relationship between the input and response parameters
effectively, whereas NSGA-II is reliable and widely estab-
lished tool for multi-objective optimization.

In this work, the most important performances of laser
cutting, namelyMRR and kerf width, are considered. Initially,
from the experimental training data, GP was used to model the
mathematical relations for the chosen performance measures.
Then, the models developed by GP were tested for their
accuracy and suitability using statistical methods. The indi-
vidual effects and the surface plots of the input variables on
the chosen output parameters were also presented. Later, the
validated mathematical models of GP were used by NSGA-II
to find the multiple sets of optimal solutions so as to enable a
manufacturing engineer to choose a particular optimal operat-
ing set of input variables according to the specific require-
ments. The selection of optimum values is essential for
process automation and implementation of a computer-
integrated manufacturing system.
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