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Abstract Electrochemical machining (ECM) has become
one of the most potential and useful non-traditional machin-
ing processes because of its capability of machining com-
plex and intricate shapes in high-strength and heat-resistant
materials. For effective utilization of the ECM process, it is
often required to set its different machining parameters at
their optimal levels. Various mathematical techniques have
already been proposed by past researchers to determine the
optimal combinations of the different machining parameters
of the ECM process. In this paper, the machining parameters
of an ECM process and a wire electrochemical turning
process are optimized using the biogeography-based opti-
mization (BBO) algorithm. Both the single- and multi-
response optimization models are considered. The optimi-
zation performance of the BBO algorithm is also compared
with that of other population-based algorithms, e.g., genetic
algorithm and artificial bee colony algorithm. It is observed
that the BBO algorithm outperforms the others with respect
to the optimal values of different process responses and
computation time.
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1 Introduction

Electrochemical machining (ECM) was introduced in the
late 1950s and early 1960s in defense and aerospace

industries and has now been extended to many other
industries, such as automotive, forging dies, electrical and
surgical components [1–4], and, recently, in miniature man-
ufacturing [5]. Nowadays, ECM has become one of the most
useful and potential non-traditional machining processes
applied to a variety of machining operations, e.g., turning,
drilling, grinding, deburring, and cavity sinking. It also
provides an economical and effective method for machining
high-strength, heat-resistant materials into complex and in-
tricate shapes which are difficult to be machined using the
conventional metal machining techniques. The material re-
moval mechanism of the ECM process is based on electrol-
ysis where metals are liberated from the workpiece surface
atom by atom. In an electrolytic cell, controlled anodic
electrochemical dissolution takes place with the tool as the
cathode and the workpiece as the anode while applying a
voltage between the workpiece and the tool [4]. An electro-
lyte is pumped through the small gap which is maintained
between the tool and the workpiece. The chemical proper-
ties of the electrolyte are such that the constitution of the
work material goes into the solution by the electrolytic
process, but does not plate on the tool. With the continuation
of the dissolution process, the products of the machining
process are removed while circulating the electrolyte at a
high velocity through the gap between the electrodes. The
initial gap increases in size as metal ions remove from the
anode, which increases the electrical resistance across the
gap and, in turn, reduces the current flow. To maintain the
initial current flow and rate of metal removal, the gap
between the electrodes is maintained the same by advancing
the cathode toward the anode at the same rate at which the
metal is being dissolved. As the cathode tool advances
during the machining operation, the anode workpiece grad-
ually attains a shape that is almost a replica of the cathode.
The ECM process generates no burrs, no stress, and has a
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longer tool life, with damage-free machined surface,
high material removal rate, and surface quality [2]. In
recent years, the ECM process has also received much
attention in the fabrication of micro-parts and micro-
components [5].

Because of various complex physicochemical and hydro-
dynamic phenomena that occur in the machining gap during
the course of machining, it is often very difficult to deter-
mine the optimal operating parameters of the ECM process
for improved machining performance. It is observed that
different ECM process parameters, such as applied voltage,
machining current, electrolyte type, electrolyte concentra-
tion, electrolyte flow rate, inter-electrode gap, etc., generally
influence the performance measures (responses) of the ECM
process, e.g., metal removal rate, surface finish, and dimen-
sional and profile accuracy. As different machining param-
eters of the ECM process have numerous and diverse
ranges, suitable selection of those ECM process parameters
greatly depends on the operator’s technological knowledge
and experience. The values for different machining param-
eters provided by the manufacturers cannot meet the
operator’s requirements. But sometimes, for achieving max-
imum machining performance, the optimal machining con-
ditions are required for a particular industrial application.
Hence, there is always a tremendous need for determining
the optimal combination of various ECM process parame-
ters to fulfill the requirements of the operators and also to
have enhanced machining performance.

Hewidy and Fattouh [6] applied the response surface
methodology (RSM) technique to study the influence of
various machining parameters, such as feed rate, applied
voltage, electrolyte conductivity, and electrolyte flow rate,
on the width of cut, electrolyzing current, and volumetric
metal removal rate of electrochemical cutting process where
tubular cathodes were used. Bhattacharyya and Sorkhel [7]
observed the effects of different ECM process parameters,
like electrolyte concentration, electrolyte flow rate, applied
voltage, and inter-electrode gap, on two machining responses,
i.e., metal removal rate (MRR) and overcut (OC) phenom-
ena, using the RSM technique. The optimal combinations of
the process parameters were obtained for maximum MRR
and minimum OC. Ebeid et al. [8] considered applied volt-
age, feed rate, back pressure, and vibration amplitude as the
dominant process parameters to improve the machining
accuracy in ECM while hybridizing the process by low-
frequency vibrations. Using the RSM approach, the effects
of those ECM process parameters on overcut and conicity
were also studied to achieve high dimensional accuracy.
Munda et al. [9] determined the optimal combination of
pulse on/off ratio, machining voltage, electrolyte concentra-
tion, voltage frequency, and tool vibration frequency in an
electrochemical micromachining process to minimize micro-
spark and stray-current-affected zone in the machined

workpiece surface. Asokan et al. [10] considered current,
voltage, electrolyte flow rate, and inter-electrode gap as the
major ECM process parameters, and MRR and surface rough-
ness (SR) as the two machining responses. Applying grey
relational analysis, the grey grades were calculated for repre-
senting the multi-objective model. Then, multiple regression
and artificial neural network (ANN) models were developed
to map the relationship between the process parameters and
objectives in terms of grey grades. ANNwas considered as the
best prediction model having less percentage deviation, and
subsequently, the ECM process parameters were optimized.
Munda and Bhattacharyya [11] investigated the influences of
pulse on/off ratio, machining voltage, electrolyte concen-
tration, voltage frequency, and tool vibration frequency on
two predominant electrochemical micromachining (EMM)
responses, i.e., MRR and radial overcut (ROC) using the
RSM technique. The optimal parametric combination of those
EMM process variables was also obtained for higher machin-
ing rate with accuracy. Senthilkumar et al. [12] studied the
effects of applied voltage, electrolyte concentration, electro-
lyte flow rate, and tool feed rate on MRR and SR (i.e., Ra) for
the effective electrochemical machining of LM25 Al/10%SiC
composites and then optimized the process parameters using
the RSM technique. Munda et al. [13] investigated the inter-
active and high-order influences of the pulse on/off ratio,
machining voltage, electrolyte concentration, voltage pulse
frequency, and micro-tool vibration frequency on ROC in
the EMM process using the RSM approach. Senthilkumar et
al. [14] applied non-dominated sorting genetic algorithm
(NSGA-II) to optimize four ECM process parameters, e.g.,
electrolyte concentration, electrolyte flow rate, applied volt-
age, and tool feed rate, in order to maximize MRR and
minimize SR (i.e., Ra). El-Taweel and Gouda [15] measured
the performance of an electrochemical turning (WECT) pro-
cess through studying the effects of different machining
parameters, e.g., applied voltage, wire feed rate, wire diame-
ter, workpiece rotational speed, and overlap distance onMRR,
SR, and roundness error (RE). The RSM technique was then
employed to search out the optimal process parameter combi-
nations to maximize MRR and minimize SR and RE. Using
the RSM approach, Haridy et al. [16] integrated the design of
experiments and statistical process control to execute the
experimental procedures and investigate a reliable mathemat-
ical model for optimizing the WECT process. Multi-objective
optimization was performed for determining the optimal pro-
cess parameter values.

Past researchers have applied several mathematical tech-
niques, like Gauss–Jordan algorithm [7], grey relational
analysis and artificial neural network [10], desirability func-
tion [9, 12, 15, 16], and non-dominated sorting genetic
algorithm [14], to optimize the machining parameters of
the ECM processes, but in most of the cases, suboptimal
solutions have been obtained. In this paper, an attempt is
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made to employ an almost unexplored optimization tech-
nique, i.e., biogeography-based optimization (BBO) algo-
rithm, to search out the optimal combination of various
machining parameters to enhance the machining perfor-
mance of the ECM processes. Comparative results of its
optimization performance with respect to other population-
based non-conventional optimization algorithms, like genet-
ic algorithm (GA) and artificial bee colony (ABC) algo-
rithm, prove its universal applicability as a fast global
optimization tool.

2 Biogeography-based optimization algorithm

From the early 1960s, various mathematical models were
developed copying different phenomena of nature. The
mindset of the engineers is that they can learn from nature.
Engineers follow natural rules, such as genetic algorithm,
where the laws of genetics are transformed into a mathe-
matical model to be used as an optimization tool; in artificial
neural network, the study of neurons and their functionality
is involved. Similarly, the social behavior of ants and honey-
bees are the motivation for the emergence of ant colony
optimization and ABC algorithms, respectively. Likewise,
the BBO algorithm takes into consideration the mathematics
of the biological distribution of different species to solve
complex optimization problems [17]. As the BBO algorithm
has features in common with other biology-based optimiza-
tion methods, e.g., GA and ABC, it can also be applied to
the same types of problems that the other biology-based
optimization methods are used for, i.e., high-dimension
problems with multiple local optima [18]. However, the
BBO algorithm also has some features unique from the
other biology-based optimization methods.

The fundamental idea behind the BBO algorithm is how
species migrate from one island to another, how new species
arise, and how species become extinct [19]. The term “hab-
itat” is used to describe a geographical location that is
isolated from other locations. These geographical areas are
characterized by the “habitat suitability index” (HSI) and
“suitability index variable” (SIV). In the BBO algorithm,
each geographical location/island is considered as a “habi-
tat” with a HSI, which is similar to the fitness function of
other optimization algorithms. A good solution has a high
HSI; a poor solution has a low HSI. HSI defines whether the
habitat is suitable for residence or not. Habitats that are well
suited as residences for biological species are said to have a
high HSI. Features that correlate with HSI include factors
like rainfall, diversity of vegetation, diversity of topographic
features, land area, and temperature. The variables that
characterize habitability are called SIVs. SIVs can be con-
sidered as the independent variables of the habitat, while
HSI can be considered as the dependent variable.

Habitats with a high HSI have many species that emigrate
to nearby habitats, simply by virtue of the large number of
species that they host. Habitats with a high HSI have a low
species immigration rate because they are already nearly
saturated with species. Therefore, high-HSI habitats are
more static in their species distribution than low-HSI hab-
itats. In the same way, high-HSI habitats have a high emi-
gration rate; the large number of species on high-HSI islands
has many opportunities to emigrate to neighboring habitats.
Habitats with a low HSI have a high species immigration
rate because of their sparse populations. This immigration of
new species to low-HSI habitats may raise the HSI of the
habitat because the suitability of a habitat is proportional to
its biological diversity. However, if a habitat’s HSI remains
low, then the species that reside there will tend to go extinct,
which will further open the way for additional immigration.
Due to this, low-HSI habitats are more dynamic in their
species distribution than high-HSI habitats.

Biogeography is nature’s way of distributing species and
is analogous to general problem solutions. Suppose that there
is a problem with some candidate solutions. The problem can
be from any field of engineering and technology, provided
that there is quantifiable measure of suitability of the given
solution [18]. A good solution is analogous to a habitat with
a high HSI, and a poor solution represents a habitat having a
low HSI. High-HSI solutions resist change more than low-
HSI solutions. High-HSI solutions tend to share their fea-
tures with low-HSI solutions. Poor solutions accept a lot of
new features from good solutions. This addition of new
features to low-HSI solutions may raise the quality of the
solutions. This is the central theme of the BBO algorithm.

In this algorithm, each individual has its own immigra-
tion rate (l) and emigration rate (μ) which depend on the
number of species in that habitat. The immigration rate is a
monotonically non-increasing function of HSI and is pro-
portional to the likelihood that species from neighboring
habitats will migrate into a particular habitat (Hi). On the
other hand, the emigration rate is a monotonically non-
decreasing function of HSI and is proportional to the likeli-
hood that species from Hi habitat will migrate into the
neighboring habitats. Usually, it is assumed that both l
and μ are linear with the same maximum values. However,
these assumptions are made only for mathematical conve-
nience, and better performance might be attainable if these
assumptions are relaxed [20–23]. In the immigration curve
[19], the maximum possible immigration rate to the habitat
is I, which occurs when there are zero species in the habitat.
As the number of species increases, the habitat becomes
more crowded, fewer species are able to successfully sur-
vive immigration to the habitat, and the immigration rate
gradually decreases. The largest possible number of species
that the habitat can support is Smax, at which point the
immigration rate becomes zero. On the other hand, if there
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are no species in the habitat, then the emigration rate must
be zero. As the number of species increases, the habitat
becomes more crowded, more species are able to leave the
habitat to explore other possible residences, and the emigra-
tion rate increases. The maximum emigration rate is E,
which occurs when the habitat contains the largest number
of species that it can support. The equilibrium number of
species is S0, at which point the immigration and emigration
rates are equal. However, there may be occasional excur-
sions due to temporal effects. Positive excursions could be
due to a sudden spurt of immigration or a sudden burst of
speciation. Negative excursions could be due to disease, the
introduction of an especially ravenous predator, or some other
natural catastrophe. The emigration and immigration rates of
each solution are used to probabilistically share information
between habitats. With probability Pmod, each solution is
modified based on other solutions. If a given solution is
selected to be modified, then its immigration rate is used to
probabilistically decide whether or not to modify each SIV in
that solution. If a given SIV (Si) in a given solution is selected
to be modified, then the emigration rates of the other solutions
are used to probabilistically decide which of the solutions
should migrate a randomly selected SIV to solution Si.

The BBO algorithm is presented as below [19]:

1. Initialize the BBO parameters, like habitat modifica-
tion probability, mutation probability, maximum spe-
cies count (n), maximum migration rates E and I,
maximum mutation rate (mmax), elitism parameter,
and number of habitats (NP)

2. Initialize the generation counter (g00).
3. Create a random population, X

!
i;g (i01,2,…,NP).

4. Evaluate f ðX!i;gÞ:
5. for g01 to MAXGEN do
6. for i01 to NP do
7. Sort the population from the best fit to the least fit.
8. Map the HSI to the number of species.
9. Calculate the immigration rate (li) and the emigration

rate (μi).
10. Modify the non-elite members of population probabi-

listically with the migration operator.
11. end for
12. for i01 to NP do
13. Mutate the non-elite members of population probabi-

listically with the mutation operator.
14. end for
15. for i01 to NP do
16. Evaluate the new individuals in the population.
17. Replace the habitats with their new versions.
18. Replace the worst with the previous generation’s elites.
19. end for
20. g0g+1
21. end for

In this algorithm, mutation is used to enhance the diver-
sity of the population that helps decrease the chances of
getting the local minima [21]. For low-HSI solutions, mu-
tation gives them a chance of enhancing the quality of
solutions, and for high-HSI solutions, mutation is able to
improve them even more than they already have. On the
other hand, elitism (copying some of the fittest individuals
to the next generation) is applied to guarantee that the fitness
function increases monotonically with successive genera-
tions. This prevents the best solutions from being corrupted
by immigration. The migration operator is used to share
information between solutions.

3 Optimization of electrochemical machining processes

In order to validate the applicability and performance of the
BBO algorithm for parametric optimization, the experimen-
tal data and mathematical modeling of an ECM process [7]
and a WECT process [15] are considered here. For each of
the processes, both the single- and multi-objective optimi-
zations of the responses are performed. For parametric op-
timization of the ECM processes, the related computer code
for the BBO algorithm is developed in MATLAB 7.6
(R2008a) with the following control parameters [17].

Habitat modification probability 1

Mutation probability 0.005

Maximum species count 500

Maximum immigration rate 1

Maximum emigration rate 1

Maximum mutation rate 0

Elitism parameter 2

Generation count limit 50

Number of genes in each population member 20

3.1 Example 1

In a developed microprocessor-based auto-tool-feed ECM
setup, Bhattacharyya and Sorkhel [7] conducted experi-
ments on cylindrical workpieces (19 mm in diameter made

Table 1 Machining parameters with their levels for ECM process [7]

Parameters Levels

−2 −1 0 1 2

Electrolyte concentration (g/l) 15 30 45 60 75

Electrolyte flow rate (l/min) 10 11 12 13 14

Applied voltage (V) 10 15 20 25 30

Inter-electrode gap (mm) 0.4 0.6 0.8 1 1.2
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of EN-8 steel) using cylindrical solid brass tools (16 mm in
diameter). Sodium chloride (NaCl) salt solution was select-
ed as the electrolyte because of its high conductivity and
non-passive characteristics. Four machining parameters, i.e.,
electrolyte concentration, electrolyte flow rate, applied volt-
age, and inter-electrode gap, and two process performances
(responses), i.e., MRR (in gm/min) and OC (in millimeters)

were considered. MRR can be defined as the amount of
material removed from the workpiece surface in unit ma-
chining time, whereas OC is the difference between the size
of the electrode and the size of the cavity created during the
machining operation. Each of the four machining parameters
was set at five different levels, as shown in Table 1. A central
composite rotatable second-order experimentation plan was

Table 2 Single-objective optimization results for ECM process

Optimization method Response Value Electrolyte concentration
(g/l)

Electrolyte flow rate
(l/min)

Applied voltage
(V)

Inter-electrode gap
(mm)

Bhattacharyya and Sorkhel [7] MRR 0.8230 57.88 11.98 22.04 0.001

OC 0.2706 17.55 11.05 21.65 0.870

GA MRR 1.1603 64.56 10.40 29.48 0.778

OC 0.2369 28.65 12.40 13.56 0.530

ABC algorithm MRR 1.3077 60.28 13.65 24.77 0.424

OC 0.2067 26.85 13.66 11.75 0.602

BBO algorithm MRR 1.5069 67.60 13.80 26.90 0.440

OC 0.1320 15.85 10.25 12.45 0.500

Fig. 1 Variations of MRR with respect to ECM process parameters
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used with 31 experimental runs, and then the RSM tech-
nique was employed to develop two second-order poly-
nomial regression equations (including interaction
effects) for the responses. These RSM-based equations
are given as below.

Yu MRRð Þ ¼ 0:6244þ 0:1523x1 þ 0:0404x2 þ 0:1519x3
� 0:1169x4 þ 0:0016x21 þ 0:0227x22 þ 0:0176x23
� 0:0041x24 þ 0:0077x1x2 þ 0:0119x1x3
� 0:0203x1x4 þ 0:0103x2x3 � 0:0095x2x4
þ 0:0300x3x4

ð1Þ

Yu OCð Þ ¼ 0:3228þ 0:0214x1 � 0:0052x2 þ 0:0164x2
þ 0:0118x4 � 0:0041x21 � 0:0122x22 þ 0:00274x23
þ 0:0034x24 � 0:0059x1x2 � 0:0046x1x3
� 0:0059x1x4 þ 0:0021x2x3 � 0:0053x2x4
� 0:0078x3x4

ð2Þ
where x1 is the electrolyte concentration, x2 is the electrolyte
flow rate, x3 the applied voltage, and x4 the inter-electrode
gap.

3.1.1 Single-objective optimization

The BBO algorithm is now applied to optimize the two RSM-
based equations with respect to the constraints as imposed by
the chosen limiting values of the four ECM process parame-
ters, i.e., 15≤x1≤75, 10≤x2≤14, 10≤x3≤30, and 0.4≤x4≤1.2.
Here, the responses are separately optimized. Between these
two responses, MRR is to be maximized and OC is to be
minimized. For any machining process, it is always desirable

Fig. 2 Variations of OC with respect to ECM process parameters

Fig. 3 Convergence of GA and the BBO and ABC algorithms for MRR
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to remove as much material as possible from the workpiece
surface within a given machining time; on the other hand, as
OC is a dimensional deviation, it is preferred to minimize that
deviation in order to obtain an almost accurate machined
component. Bhattacharya and Sorkhel [7] also solved these
RSM-based equations using Gauss–Jordan algorithm and
obtained the optimal settings of the ECM process parameters,
as shown in Table 2. This table also exhibits the optimal ECM
process parameter settings and response values as achieved
using the BBO algorithm. The MRR is drastically increased
from 0.8230 to 1.5069 g/min and OC is significantly reduced
from 0.2706 to 0.1320 mm. The optimal ECM process set-
tings are also changed. The optimal results obtained from the
BBO algorithm are also compared with those derived by GA
and the ABC algorithm, as given in Table 2. It is revealed that
the BBO algorithm clearly outperforms the other two
population-based optimization algorithms.

Bhattacharya and Sorkhel [7] extensively studied the
effects of four ECM process parameters on MRR and OC
and observed that for maximum MRR, an increase in electro-
lyte concentration, an increase in electrolyte flow rate, an
increase in applied voltage, and a decrease in the inter-
electrode gap would be the requirements. On the other hand,
a decrease in electrolyte concentration, a decrease in the elec-
trolyte flow rate, a decrease in applied voltage, and a decrease
in the inter-electrode gap would give a minimum OC value.
These same findings are also observed in Figs. 1 and 2 where
the variations of MRR and OC are respectively shown with
respect to the considered ECM process parameters. Thus, a
combination of electrolyte concentration067.60 g/l, electro-
lyte flow rate013.80 l/min, applied voltage026.90 V, and
inter-electrode gap00.440 mm would maximize the MRR
(1.5069 g/min). On the other hand, the minimum value of
OC (0.1320 mm) would be obtained at a combination of

electrolyte concentration015.85 g/l, electrolyte flow rate0
10.25 l/min, applied voltage012.45 V, and inter-electrode
gap00.500 mm. It can be observed that for the two responses,
the optimal ECM process parameter settings are different,
which would be impossible to maintain when both the
responses are required to be simultaneously optimized.

The performance of the BBO algorithm with respect to
computation speed (convergence) is shown in Fig. 3 along
with GA and the ABC algorithm when all these optimization
algorithms are run in an Intel Core 2 DUO, 1.83-GHz, 0.99-
GB RAM CPU computer platform. For the GA, various con-
trol parameters are set as crossover type01, crossover proba-
bility00.95, initial mutation probability00.01, generation
count limit050, and maximum species count0500. On the
other hand, the control parameters for the ABC algorithm are
fixed as colony size010, maximum cycle number0500, limit
control parameter to abandon the food source0100, run time0
3, and maximum species count0500. Table 3 portrays a com-
parison between the computation (CPU) time requirements for
these three algorithms. It is worthwhile to note that for single-
objective optimization, the CPU times for these algorithms are
not at all widely different and that the BBO algorithm has
slight superiority over the others. As Bhattacharya and Sorkhel
[7] considered Gauss–Jordan algorithm (an iterative-based
optimization technique), its convergence performance cannot
be compared with that of the BBO algorithm.

3.1.2 Multi-objective optimization

In multi-objective optimization of the ECM process, instead
of treating the two responses separately, both are simulta-
neously optimized. For this, the following objective func-
tion is developed [24].

Min Z1ð Þ ¼ w1Yu OCð Þ=OCmin � w2Yu MRRð Þ=MRRmax ð3Þ
where Yu(OC) and Yu(MRR) are the second-order response
surface equations for OC and MRR, respectively; OCmin

and MRRmax are the minimum and maximum values of
OC and MRR, respectively; and w1 and w2 are the weight
values assigned to OC and MRR, respectively. The minimum
and maximum values of OC and MRR are obtained from the
single-objective optimization results. The weight values can

Table 4 Multi-objective optimization using the BBO algorithm

Case Response Value Z1 Electrolyte concentration
(g/l)

Electrolyte flow rate
(l/min)

Applied voltage
(V)

Inter-electrode gap
(mm)

Case 1 (w100.5, w200.5) MRR 1.3230 −0.5108 67.05 13.90 20.07 0.434
OC 0.2290

Case 2 (w100.9, w200.1) MRR 0.8186 0.1416 49.95 13.69 12.31 0.544
OC 0.1896

Case 3 (w100.1, w200.9) MRR 1.4489 −1.2335 72.15 13.93 27.10 0.706
OC 0.2346

Table 3 Computation
times for the three
algorithms

Optimization method Average CPU
time (s)

GA 21.5

ABC algorithm 22.0

BBO algorithm 20.5
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be anything provided that w1+w201, and it depends on the
priorities of the considered responses as set by the process
engineers. Here, equal weights for both the responses, i.e.,
w10w200.5 (case 1) are first considered; the results obtained
after solving this multi-objective optimization problem using
the BBO algorithm are given in Table 4. The MRR and OC
values are obtained as 1.3230 g/min and 0.2290 mm, respec-
tively, and the optimal solution (Z1) is −0.5108. Bhattacharya
and Sorkhel [7] did not consider the problem of multi-
objective optimization of the responses; hence, the results of
Table 4 cannot be compared here. However, these results are
far better than those obtained by Bhattacharya and Sorkhel [7]
while treating the responses separately. Table 4 also shows the
results of multi-response optimization when two other cases
having unequal weights to the responses are considered (case
2: w100.9, w200.1; case 3: w100.1, w200.9). In both these
cases, different optimal ECM process parameter settings are
observed. Depending upon the requirements, the process engi-
neers can select any of these weight schemes to the responses
and correspondingly choose the optimal process parameter
values to achieve the desired results.

3.2 Example 2

El-Taweel and Gouda [15] considered five controllable ma-
chining parameters, i.e., wire diameter, wire feed rate, applied
voltage, workpiece rotational speed, and overlap distance, and
three responses, i.e., MRR (in gm/min), SR (Ra, in

micrometers), and RE (in micrometers) while conducting
experiments in a WECT process. Each of the machining
parameters was set at five different levels, as exhibited in
Table 5. Experiments were performed according to a central
composite second-order rotatable design plan, and three RSM-
based second-order equations were subsequently developed for
the considered responses. In the RSM-based equations for SR
(Ra) and RE, as developed by El-Taweel and Gouda [15], one
unknown variable (V) was wrongly introduced, whichmight be
due to some typing mistake. Hence, using the experimental
plan and data of El-Taweel and Gouda [15], three RSM equa-
tions are again developed applying Design Expert (version
8.0.4) software. These three new equations are shown below:

MRR ¼ 0:21þ 0:051x1 þ 0:017x2 þ 6:167� 10�3x3
þ 4:667� 10�3x4 þ 0:011x5 � 5� 10�4x1x2
þ 4:375� 10�3x1x3 � 0:011x1x4 þ 4:375� 10�3x1x5
þ 0:014x2x3 þ 7:625� 10�3x2x4 þ 0:012x2x5
� 2� 10�3x3x4 þ 0:014x4x5 þ 2:068� 10�3x21
� 5:557� 10�3x22 � 0:21x23 � 4:057� 10�3x24
þ 4:068� 10�3x25

ð4Þ

Ra ¼ 1:68þ 0:17x1 þ 0:067x2 � 0:21x3 þ 0:12x4 � 0:14x5
þ 0:11x1x2 þ 0:024x1x3 þ 0:28x1x4 þ 0:033x1x5
þ 0:031x2x3 þ 0:086x2x4 � 0:011x2x5 þ 0:048x3x4
þ 0:15x3x5 þ 0:018x4x5 � 0:026x21 � 0:019x22 � 0:019x23
� 0:019x24 � 0:032x25

ð5Þ

Table 6 Single-objective optimization results for the WECT process

Optimization method Response Value Applied voltage Wire feed rate Wire diameter Overlap distance Workpiece rotational speed

GA MRR 0.2356 27.30 0.4390 1.3758 0.0223 892.50

Ra 0.7656 10.22 0.2500 1.4600 0.0450 825

RE 6.7153 31.35 0.4100 0.5600 0.0300 638.40

ABC algorithm MRR 0.3126 17.45 0.1380 1.7600 0.0346 898

Ra 0.4269 14.65 0.4390 0.3620 0.0330 892.50

RE 4.5165 34.30 0.4750 1.2670 0.0492 813

BBO algorithm MRR 0.4068 35.15 0.4730 1.0775 0.0571 886.75

Ra 0.1081 11.50 0.1230 1.7570 0.0539 512.76

RE 2.7764 21.35 0.4590 0.8930 0.0360 759

Table 5 Machining parameters
with their levels for the WECT
process [15]

Parameters Levels

−2 −1 0 1 2

Applied voltage, U (V) 10 17.5 25 32.5 40

Wire feed rate, f (mm/min) 0.1 0.2 0.3 0.4 0.5

Wire diameter, d (mm) 0.2 0.65 1.1 1.55 2

Overlap distance, h (mm) 0.02 0.03 0.04 0.05 0.06

Workpiece rotational speed, N (rpm) 300 450 600 750 900
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RE ¼ 7:21þ 1:99x1 � 1:31x2 þ 1:71x3 � 1:09x4 � 2:39x5
� 0:17x1x2 � 0:32x1x3 þ 0:033x1x4 � 1:18x1x5 � 0:41x2x3
þ 0:4x2x4 � 5� 10�3x2x5 � 0:068x3x4 � 0:62x3x5 þ 0:91x4x5
þ 0:5x21 þ 0:021x22 þ 0:19x23 þ 0:28x24 þ 0:56x25

ð6Þ
where x1 is the applied voltage, x2 the wire feed rate, x3 the
wire diameter, x4 the overlap distance, and x5 is the work-
piece rotational speed.

3.2.1 Single-objective optimization

In their research outcomes, El-Taweel and Gouda [15] did not
perform single-objective optimization of any of the considered
responses. Table 6 shows the results of the single-objective
optimization of the responses when the BBO algorithm is
employed to solve the three RSM-based equations, as given
in Eqs. 4, 5, and 6. The constraints for these optimization

Fig. 4 Variations of surface roughness with respect to WCET process parameters
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problems are set based on the range of the fiveWECT process
parameter values, as given in Table 5, i.e., 10≤x1≤40, 0.1≤
x2≤0.5, 0.2≤x3≤2, 0.02≤x4≤0.06, and 300≤x5≤900. Table 6
also compares the solutions when GA and the ABC algorithm
are applied for the same three single-objective optimization
problems. While solving these single-objective optimization
problems for the considered three responses, GA and the ABC
and BBO algorithms take average computation times of 25.33,
24.67, and 24.33 s, respectively. At the optimal WECT pro-
cess parameter combination, as derived using the BBO algo-
rithm, the MRR is drastically improved and the Ra and RE
values are significantly reduced. It proves the superiority of the
BBO algorithm over the other two optimization algorithms.

Figure 4 displays the variations of surface roughness with
respect to the five WECT process parameters. From this
figure, it is observed that with the increment of the applied
voltage and wire feed rate, the surface roughness increases. On
the other hand, an almost decreased value of surface roughness
is achieved when the wire diameter and overlap distance are
increased. In the case of workpiece rotational speed, with its
increased value, the surface roughness gradually decreases and
then, reaching its minimum, the surface roughness starts in-
creasing. These findings totally corroborate with those ob-
served by El-Taweel and Gouda [15]. It has been observed
that with the increase in applied voltage, there is an accumu-
lation of machining sludge in the inter-electrode gap which
increases the tendency of sparking. This entire process mech-
anism plays a vital role in enhancing the surface roughness. It

has also been found out that with increasing wire diameter, the
surface roughness is greatly improved. Increased wire diame-
ter leads to an increase in the workpiece surface area exposed
to machining, which, in turn, improves the surface roughness.
It has been noted that the surface roughness increases with
increasedwire feed rate, whichmay be due to the spiral path of
the wire along the workpiece in theWECT process. This spiral
path of the wire is generated because of the wire feed rate and
rotation of the workpiece. The pitch of the spiral path increases
while increasing the feed rate and thus produces a rough
surface. With the increase in workpiece rotational speed, the
surface roughness decreases initially, which is due to the
improvement of the electrolyte flow around the workpiece,
increased current density in the machining gap, and good
flushing of the machined products, resulting in a decrease in
the tendency of sparking. After reaching its minimum value,
the surface roughness increases with the increase in the work-
piece rotational speed, which may be due to the high turbu-
lence created in the machining zone.

The variations of the other two responses, i.e., MRR and
RE, with respect to the WECT process parameters are also
studied, and the observations are almost the same as those
obtained by El-Taweel and Gouda [15]. These are not shown
here due to lack of space. Figure 5 exhibits the convergence of
the GA and the BBO and ABC algorithms with respect to RE.

3.2.2 Multi-objective optimization

For multi-objective optimization of WECT process, El-Taweel
and Gouda [15] applied the desirability function approach and
obtained values ofMRR as 0.298029 g/min,Ra as 1.12941μm,
and RE as 5.54323 μm at the optimal parametric combination.
These results are shown in Table 7. Now, the BBO algorithm is
employed for this multi-objective optimization problem, con-
sidering equal weights for all the three responses. The objective
function for this multi-objective optimization is given below:

Min Z2ð Þ ¼ 0:3333� Ra=Ramin þ 0:3333� RE=REmin

� 0:3333�MRR=MRRmax ð7Þ
where Ra min, REmin, andMRRmax are the minimum,minimum,
and maximum values of Ra, RE, andMRR, respectively, which

Table 7 Results of multi-objective optimization for the WECT process

Optimization method Response Value Applied voltage Wire feed rate Wire diameter Overlap distance Workpiece rotational speed

El-Taweel and Gouda [15] MRR 0.298029 32.499 0.4 1.312 0.03 750
Ra 1.12941

RE 5.54323

BBO algorithm MRR 0.3545 36.43 0.438 1.25 0.0299 894
Ra 0.8303

RE 2.0456

Fig. 5 Convergence of GA and the BBO and ABC algorithms for RE
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are derived from the single-objective optimization results. It is
observed from the results of the BBO algorithm, as given
Table 7, that at the optimal settings of applied voltage0
36.43 V, wire feed rate00.438 mm/min, wire diameter0
1.25 mm, overlap distance00.0299 mm, and workpiece
rotational speed0894 rpm, the MRR is increased to
0.3545 g/min, Ra is reduced to 0.8303 μm, and RE is also
decreased to 2.0456 μm. The objective function value (Z2)
is calculated as 0.8283, and its positive value indicates that
the combined effect of Ra and RE is more than that of
MRR. These results prove that the BBO algorithm is far
better than the desirability function approach, as adopted by
El-Taweel and Gouda [15].

4 Conclusions

In this paper, the biogeography-based optimization algo-
rithm is applied to search out the best combinations of
operating parameters for electrochemical machining and
wire electrochemical turning processes for achieving better
machining performance. This algorithm is used to solve
both the single- and multi-objective optimization problems.
When compared with other population-based optimization
algorithms, it is observed that the BBO algorithm outper-
forms them in terms of solution accuracy and computation
speed. Thus, the BBO algorithm proves its applicability
and universal acceptability as a global optimization tool
for selection of the process parameter values. It can also
be successfully applied to optimize the operating param-
eters of other non-traditional machining processes, like
electric discharge machining, wire electric discharge ma-
chining, laser beam machining, ultrasonic machining, and
plasma arc machining processes. Not entirely depending
on the manufacturer’s data, the process engineers can
now set the optimal values of various operating parame-
ters for different processes to achieve the best machining
performance.
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