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Abstract In this paper, a shape optimization technique is
presented for the cold and hot isostatic pressing of metal
powders based on the genetic algorithm (GA) approach. The
GA technique is used to obtain the desired optimal compacted
component by changing the boundaries of component and
verifying the prescribed constraints. The coupled thermome-
chanical analysis of hot isostatic pressing is employed for
metal powders during densification process. The numerical
modeling of hot powder compaction simulation is performed
based on the large deformation formulation, temperature-
dependent cap plasticity model, and frictional contact algo-
rithm. The modified cap plasticity takes the temperature
effects into the numerical simulation of highly nonlinear be-
havior of metal powder. Finally, numerical examples are an-
alyzed to demonstrate the feasibility of proposed optimization
algorithm for designing powder components in the cold- and
hot-forming processes of powder compaction.

Keywords Hot powder compaction . Shape optimization .

Genetic algorithm .Modified cap plasticity . Large
deformation

1 Introduction

Powder compaction is one of the most important processing
procedures in the manufacturing industry, which changes
the shape and characteristics of powder through the plastic

deformation without any removal of material during the
process. A major advance in powder metallurgy technology
has been the warm compaction process, which can utilize
traditional powder compaction equipment. This method is
applicable to most powder material systems but requires that
both the powder and the die assembly are heated up to a
temperature in the range of 0.6Tm, where Tm is the melting
temperature of the metal composing the powder. It is im-
portant to obtain the HIP products with near net shape
geometry in order to reduce costs for extra machining,
especially for less machine able materials. However, it is
well-known that the final geometry of the products differs
from that desired not only in the shape but also in scale. This
is due to container stiffness and temperature gradients dur-
ing the densification process. Hence, it is essential to be able
to forecast the behavior of the powder and container under
the HIP process in order to predict the final shape of the
product. The aim of this study is to develop an optimization
methodology through the finite element (FE) simulation of
hot powder compaction process.

In order to develop an optimization algorithm for hot pow-
der forming process, the genetic algorithm technique is
employed into the nonlinear large FE deformation. The goal
of the optimization is to eliminate the workpiece defects that
may arise during the powder compaction process. The genetic
algorithm is used since it is suitable for discrete or continuous
variables, the derivative information is not required, a wide
sampling of domain can be searched simultaneously, a list of
optimal parameters can be provided, and all kinds of data, such
as numerical data, experimental data, or analytical functions,
can be employed [1]. The objective function of the optimiza-
tion algorithm is associatedwith the quality of the final product.
The GA technique is used to increase the efficiency of the
search algorithm and to design the optimal preform design of
compacted component.
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In powder metallurgy, numerical modeling of cold com-
paction process of powder die pressing has been extensively
developed to control the properties of final product, including
the large deformations of powder compaction by Khoei and
Lewis [2], the powder plasticity behavior by Haggblad and
Oldenburg [3] and Brandt and Nilsson [4], and the contact
friction between the powder and tools by Keshavarz et al. [5].
In hot powder pressing, the densification behavior of powder
was studied by Jinka and Lewis [6] and Svoboda et al. [7]
based on the modification of plasticity theory of porous solids.
Various forming processes of hot working have been simulat-
ed by means of the finite element method during last decades;
however, most simulations have dealt with incompressible, or
slightly compressible material models which keep volume
constant during the plastic deformation [8]. In this study, the
nonlinear behavior of hot powder is described using a
temperature-dependent cap plasticity model. The modified
cap plasticity model is employed to capture the major features
of the response of initially loose metal powders to complex
deformation histories which are encountered in the hot com-
paction of powder component. In order to perform the numer-
ical modeling of hot powder compaction simulation, the
modified cap plasticity model together with the frictional
contact algorithm is employed into the thermomechanical
analysis of large FE deformation. Finally, in order to perform
the shape optimization of hot powder compaction process, the
optimal design algorithm recently proposed by Khoei et al. [9]
in the cold forming process is extended to the hot powder die
pressing based on the coupled thermomechanical FE simula-
tion in the framework of genetic algorithm technique.

The plan of the paper is as follows: In Section 2, an
overview of shape optimization technique is presented for
hot compaction of powder die pressing. The genetic algorithm
is described to obtain the desired optimal compacted compo-
nent by changing the boundaries of component and verifying
the prescribed constraints. In Section 3, the numerical model-
ing of thermomechanical FE simulation is presented in the
framework of a large deformation FE formulation and the heat
transfer analysis. In Section 4, the powder plasticity behavior is
described based on the temperature-dependent cap plasticity
model. In Section 5, the numerical simulation of the compli-
cated die geometry is presented to evaluate the capability of the
GA in shape optimization of hot powder compaction process.
Finally, some concluding remarks are given in Section 6.

2 Optimal design technique

The optimal designmethod consists of the essential ingredients,
including the shape generation and control, mesh generation,
nonlinear finite element analysis, sensitivity analysis, and de-
sign optimization. In order to make an optimal design, we need

to define the basic characteristics of the final product that need
to be optimized. These features may be the shape or topological
configuration. The optimization methods include mathematical
optimization, backward tracing, artificial intelligence, experi-
ment optimization, and automatic control algorithm [10]. There
are several optimization algorithms presented by Antonio and
Dourado [11] and Sousa et al. [12] for metal forming processes,
such as the simplex optimization algorithm, the genetic optimi-
zation algorithm, an inverse revolutionary search algorithm,
and the gradient-based optimization algorithm.

The optimization process can be divided into three main
tasks [13]. The first step is to define the geometric and analyt-
ical model. In geometric model, the design variables are easily
imposed, and it allows an explicit integration with other design
tools. The analytical model is used to obtain the structural
response of the system subjected to external actions. The next
step includes a sensitivity analysis to obtain a solution of the
problem. Finally, an appropriate optimization algorithm needs
to be performed to solve the problem in an effective and
reliable way. The search of a robust optimization algorithm is
necessary to survive in different environments. In this study,
the genetic algorithm is employed due to the fact that it is
theoretically and empirically proven to provide a robust search
in complex space.

2.1 Genetic algorithm technique

A genetic algorithm comprises four main operations: fitness
selection, crossover, elimination/substitution, and mutation
[14]. It starts from an initial population representing possible
solutions of the problem. From these operators, crossover and
mutation are applied to the population in improving the objec-
tive function value to form the new generation, in which the
members have higher quality. Each member in the population
corresponds to a solution in the solution space. The quality of a
member is represented by its fitness associated with the objec-
tive function value. The principle of survival of the fittest is
taken as a rule in the search process. Mutation models random
change in the genetic information of creatures and is inspired
by random change of genetic information in living organisms.
Crossover models the exchange of genetic information of
creatures and is inspired by exchange of genetic information
in living organisms. Fitness selection models reproductive
success of adapted organisms in their environment.

The first step in the implementation of genetic algorithm is
to generate an initial population. In genetic algorithm, each
member of population has a binary string, referred as a geno-
type, or a chromosome. In most cases, the initial population is
generated randomly. After creating an initial population, each
string is evaluated and assigned a fitness value. The notion of
evaluation and fitness are sometimes used interchangeably.
However, it is useful to distinguish between the evaluation
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function and the fitness function used by a genetic algorithm.
Here, the evaluation function, or objective function, provides
a measure of performance with respect to a particular set of
parameters. The fitness function transforms that measure of
performance into an allocation of reproductive opportunities.
The fitness can be assigned based on a string rank in the
population, or by sampling method, such as tournament se-
lection. It is helpful to view the execution of the genetic
algorithm as a two-stage process [15]. It starts with the current
population. Selection is applied to the current population to
create an intermediate population. The recombination and
mutation are then applied to the intermediate population to
create the next population. The process of going from the
current population to the next population constitutes one
generation in the execution of a genetic algorithm. In genetic
algorithm, the probability that strings in the current population
are duplicated and placed in the intermediate generation is
proportion to their fitness. The operators are applied in the
following sequence [16, 17]:

Initialization A random generation of initial population is
generated.

Selection This operator ranks the population according
to the solution fitness. The selection operator
is randomly made with an equal probability
distribution for each solution. The two selec-
tion processes are independent and the based-
fitness probability is considered to select each
one of the parents.

Crossover This operator generates the offspring population
using couples of parents chosen with the selec-
tion operator. The crossover transforms two
chromosomes (progenitors) into a new chromo-
some (offspring) having genes from both pro-
genitors. The crossover is applied with a
predefined probability to the genetic material
of the highest fitted chromosome.

Elimination/
substitution

This operator is applied to control the genetic
similarity between individuals of the popula-
tion created by the crossover. The enlarged
population is ranked according to their fitness
and elimination of solutions with similar ge-
netic properties and consequent substitution
by new randomly generated individuals.

Mutation The mutation operator is used to overcome the
problem induced by selection and crossover
operators where some generated solutions
have a large percentage of equal genetic ma-
terial. The mutation makes possible the explo-
ration of previously unmapped space design
regions and guarantees the diversity of the
generated population.

Stopping
criterion

The stopping criterion used in the convergence
analysis is based on the relative variation of the
mean fitness of a reference group during a fixed
number of generations and the feasibility of the
corresponding solutions. If the constraints of
the problem are not satisfied, then the evolu-
tionary process continues.

2.2 Implementation of GA technique

In hot forming of metal powder, we optimize the process in
different ways depending on various criteria, such as precise
shape, die filling, friction coefficient, punch forces, or uniform
distribution of mechanical properties. An optimal design cri-
terion frequently encountered in powder die pressing is the
shape optimization to achieve the precise forming of finished
component shape. Consider that we need to determine the
optimal shape of preform workpiece at final compaction pro-
cess, the geometry of the preform workpiece is considered as
unknown design variables. The optimization algorithm is
implemented to optimize the difference between the maxi-
mum and minimum values of stress on the final compacted
component with the objective function defined as

Minimize f ðxÞ ¼ σmax � σminj j ð1Þ

where x denotes the design variable vector and the constraints
ci(x)≥0, i01, 2,…,n are used to control the geometry of com-
ponent. After identifying the design variables and search do-
main that represents the population phenotype, different
solutions are represented by an appropriate code format called
the genotype. The establishment of a code format is the main
step of GA formulation. Here, a binary code is developed with
different number of bits for each design variable. The tech-
nique is performed by an initial population generated randomly
using strings based on the design variable vector x. The nu-
merical simulation is carried out for each string to calculate the
fitness and reproduction. The process of reproduction is ap-
plied according to the value of objective function obtained at
the end of compaction to copy the individual string. The
reproduction operator is implemented in the algorithmic form
based on a roulette wheel where each individual is represented
by a space that proportionally corresponds to its fitness.

The genetic algorithm described above generates a sequence
of parameters to be tested using the system model, objective
function, and the constraints. The genetic algorithm technique
is employed to search the unconstrained objective functions.
However, there are one or more constraints in powder compac-
tion problems that need to be satisfied. Constraints are gener-
ally classified into equality, or inequality relations. Since
equality constraints are subsumed into a systemmodel, we deal
with inequality constraints. We must evaluate the objective
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function and check if any constraints are violated. If not, the
parameter set is assigned the fitness value corresponding to the
objective function evaluation. If constraints are violated, the
solution is infeasible and thus has no fitness. As a result, we
obtain information out of infeasible solutions by degrading
their fitness ranking in relation to the degree of constraint
violation, which is called as the penalty method. In this proce-
dure, a constrained problem in optimization is transformed to
an unconstrained problem by associating a cost, or penalty with
all constraint violations. This cost is included in the objective
function evaluation (Eq. 1) and can be therefore transformed to
the unconstrained form as

Minimize f ðxÞ þ r
Xn
i¼1

f ciðxÞ½ � ð2Þ

where f and r are the penalty function and penalty coefficient,
in which a number of alternatives exists for the penalty function
f. It must be noted that the implementation of an integrated
genetic software into a highly nonlinear simulation, such as hot
compaction of powder die pressing, plays an important role,
since the nonlinear analysis cannot be restarted from the initial
boundary condition due to large deformations and highly non-
linear material behavior. Here, an integrated genetic software is
incorporated into a nonlinear FE code together with an auto-
matic mesh generator to make the process of optimal design
more efficient.

3 Nonlinear thermomechanical finite element modeling

3.1 Large deformation FE formulation

In nonlinear elastoplastic analyses, whether the displacements,
or strains, are large or small, it is imperative that the equilibri-
um conditions between the internal and external forces are
satisfied. A general description of strains was introduced by
Green and St. Venant, in which the nonlinear strain displace-
ment relationship can be defined in terms of the infinitesimal
and large displacement components. In order to develop a
finite element formulation, the FE Galerkin discretization can
be applied to the nonlinear elastoplastic equilibrium equation.
Following the standard finite element procedure, the initial
domainΩ is divided into elements. If the displacements within
an element are prescribed by a finite number of nodal values
with the independent approximations of u defined as u ¼ Nu,
the finite element formulation can be written as [18]ð
Ω
B
T
S dΩ � f ¼ 0 ð3Þ

where S is the second Piola–Kirchhoff stress and the matrix B
is the well-known strain matrix relating the increments of strain
and displacement, in which for large deformation it contains

the higher order displacement derivatives [18]. In order to

obtain the tangential stiffness matrix KT , the FE Galerkin
discretization formulation (Eq. 3) can be appropriately taken

variations with respect to du. The stiffness matrixKT consists
of two parts: The first part involves the derivative of stress dS,
which depends on the material response and leads to the
material tangent stiffness matrix Kmat, and the second part
involves the current state of stress S, which accounts for the
geometric effects of the deformation (including rotation and
stretching) and leads to the geometric stiffness matrixKgeo. To
derive the material tangent stiffness matrix Kmat, the constitu-
tive law can be implemented with respect to the incremental
second Piola–Kirchhoff stress, i.e., dS ¼ Dep

S dE, as

Kmat ¼
ð
Ω
B
T
Dep

S B dΩ ð4Þ

The geometric stiffness matrix Kgeo can be defined as

Kgeo ¼
ð
Ω
GTMSG dΩ ð5Þ

where Ms is a 4×4 matrix of the three PK2 stress compo-
nents. All the ingredients necessary for computing large
deformation problems are now available. For each itera-

tions, KT

� �
n is obtained. The Cauchy stress σ is calculated

based on the PK2 stress using σ0J −1F S FT, with J denot-
ing the determinant of F, i.e., J0det(F).

3.2 Heat transfer FE formulation

In order to derive the thermomechanical finite element formu-
lation, the Lagrangian finite element technique, presented in
previous section, is incorporated into the heat transfer formu-
lation. The governing equation of heat conduction is derived
for a continuous medium from the principle of conservation of
heat energy over an arbitrary fixed volume. Based on this
principle, the heat increase rate of the system is equal to the
summation of heat conduction rate and heat generation rate in
a fixed volume. In order to solve the heat conduction equation,
the standard finite element Galerkin discretization process is

used by approximating the temperature field T as T ¼ NT ,

where N is the shape function and T is the nodal temperature.
Applying the FE Galerkin discretization into the heat conduc-
tion equation, it results in

CT
� þHT ¼ G ð6Þ

where the capacity matrix C, the conductivity matrix H, and
the thermal loading vector G are defined as

C ¼ Ð
Ω NTρcNdΩ

H ¼ Ð
Ω BTkBdΩ þ Ð

Γa
NTaNdΓa

G ¼ Ð
Ω NTQdΩ � Ð

Γq
NTqdΓq þ

Ð
Γa

NTaTadΓa

ð7Þ
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where c is the specific heat capacity;Q the heat generation rate
of the system; k the thermal conductivity matrix; q and Γq are
the heat flux and the surface boundary of heat flux, respec-
tively; α and Γα are the convection heat transfer coefficient
and the surface boundary of heat transfer, respectively; and Ta
is the atmospheric temperature.

In order to discretize the FE equation of heat conduction
(Eq. 6) in time, the time stepping procedure is employed based
on the θ method, i.e., Tn+θ0θTn+1+(1−θ)Tn. In the basis of
heat conduction finite element equation, the distribution of
temperature can be achieved at each time interval. The thermal
expansion/contraction strainΔε due to changes of temperature
can then be obtained by using Δε0αTΔT, with αT denoting
the thermal coefficient. The value of thermal strain can be
calculated at each quadrature point and used as the external
forces in the nonlinear finite element analysis. Finally, the
stress and density distribution can be evaluated using the
nonlinear large deformation FE model.

3.3 Thermomechanical FE simulation

In order to perform the coupled thermomechanical simulation
of hot isostatic pressing of metal powder, Eq. (6) is integrated
with respect to time in a time intervalΔt, which can be linked
to the punch speed, or the increment of prescribed powder
displacement. Assuming that Tn is known at time tn, the tem-
perature Tn+1 must be evaluated at tn+1 while marching the
solution forward at time tn+10 tn+Δt. The nonlinearity in the
heat conduction FE equation arises from the matrixC, in which
the density of powder increases by time and the thermal con-
ductivity H is dependent on the density of powder. The tem-
perature evaluation in Eq. (6) is treated in a consecutive manner
where the mechanical equilibrium system is first fulfilled so
that the matrices C and H can be obtained at time tn where the
initial temperature is given at the first time step as T0. The total
computational process for the thermomechanical analysis pro-
ceeds with the following steps:

Step 1. Initializing the values of time, domain, and
temperature by t0, Ω0, and T0

Step 2. Mechanical analysis; considering the values of
displacement, volumetric strain, and relative den-
sity at time tn by un, (εv)n, and ρn, we obtain the
values of displacement, volumetric strain, and rel-
ative density at time tn+1 using the nonlinear me-
chanical analysis

Step 3. Thermal resolution; evaluate the matrices C and H
based on the values obtained from the mechanical
analysis, and obtain the value of temperature Tn+1
at tn+1 by solving Eq. (6)

Step 4. Updating the variables; determine the internal
variables at time steps tn+1, including the displace-
ment field unþ1 ¼ un þΔu , the vector of strain

en+10en+Δe, and the relative density as ρn+
10ρn/[1+(εv)n]

Step 5. Go to step 2; in order to perform the numerical
analysis at the next increment

4 Constitutive model for metal powder

4.1 Cap plasticity model

The mechanical behavior of powders involves several inter-
acting micromechanical processes. Firstly, at low pressure,
particle sliding occurs leading to particle re-arrangement.
The second stage involves both elastic and plastic deformation
of the particles via their contact areas leading to geometric
hardening (i.e., plastic deformation and void closure). Lastly,
at very high pressure, the flow resistance of the material
increases rapidly due to material strain hardening. Therefore,
it is necessary that the constitutive model of powder captures
various behaviors of the compaction process. A number of
constitutive models have been developed for the compaction
of powders over the last three decades, including the micro-
mechanical model by Ransing et al. [19] and Martin et al. [20]
and the macromechanical model by Khoei and Lewis [21] and
Gasik and Zhang [22]. It was experimentally demonstrated by
Gu et al. [23] that the constitutive modeling of granular and
frictional materials can be utilized to construct suitable phe-
nomenological constitutive models, which capture the major
features of the response of initially loose powders to the
complex deformation processing histories encountered in the
manufacture of engineering components by powder metallur-
gy techniques. It was illustrated by Lewis and Khoei [24] and
Chtourou et al. [25] that a two-mechanism model, such as
Drucker–Prager or Mohr–Coulomb and elliptical cap models,
which are widely used for geological materials and exhibit
pressure-dependent behavior can be applied for modeling the
behavior of powder materials. These models consist of two
yield surfaces: a “distortion surface” which controls the ulti-
mate shear strength of materials and a “cap” surface which
captures the hardening behavior of materials [26, 27].

In order to describe the powder behavior during the com-
paction process, an appropriate constitutive model is
employed based on the double-surface cap plasticity, as shown
in Fig. 1. The yield surface of this elastoplastic model has a
moving cap, intersecting the hydrostatic loading line, whose
position is a function of plastic volumetric strain. The main
features of the cap model include a failure surface and an
elliptical yield cap which closes the open space between the
failure surface and the hydrostatic axis. The cap surface
expands in the stress space according to a specified hardening
rule. The functional forms for these surfaces are as follows:

f1 ¼
ffiffiffiffiffiffiffi
J2D

p � θJ1 þ ge�bJ1 � a ¼ 0 ð8Þ
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f2 ¼ R2J2D þ J1 � Lð Þ2 � R2b2 ¼ 0 ð9Þ

f3 ¼ J1 � T ¼ 0 ð10Þ
where J1 and J2D are the first invariant of stress tensor and
second invariant of deviatoric stress tensor, respectively. α,
β, γ, and θ are the parameters of fixed yield surface f1, which
controls the deviatoric stress limits, and for the numerical
examples presented in Section 5 are given in Table 1. The
fixed yield surface f1 is defined by an exponential function
and in reality is consist of two different Drucker–Prager
yield surfaces. The cap yield surface f2 is an elliptical
function, with R denoting the ratio of two elliptical cap’s
diameters. The function f3 indicates the tension cutoff zone,
with T denoting the material’s tension limit.

The hardening rule for moving cap is related to the
volumetric plastic strain ɛv

p as

X kð Þ ¼ X "pv
� � ¼ �1

D
In

1� "pv
W

� �
þ X0 ð11Þ

where D and W are material parameters and X0 refers to the
position of initial cap surface. The plastic hardening/soften-
ing modulus H is zero for f1 and f3. Figure 1b shows how the
cap yield surface grows with densification due to increase of
the volumetric plastic strain.

4.2 Temperature-dependent cap plasticity model

In hot compaction of metal powder, it is of great importance
to use realistic equations since these equations mainly de-
termine the validity of simulation. Although the phenome-
nological approach based on experimental data has been
proved to be more efficient, the experimental tests per-
formed by industrial powders are often difficult to operate
due to the required conditions of pressure (about 100 MPa)
and temperature (up to 1,200°C). Thus, the relevant physi-
cally based models are necessary to describe the constitutive
behavior of metal powders in hot isostatic pressing condi-
tions. The final shape of HIPed component depends strongly

DJ 2
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(b)

Fig. 1 The double-surface cap plasticity: a definition of yield surfaces
and b the expansion of moving cap surface with increasing the volu-
metric plastic strain, or relative density

Table 1 The material parameters for the cap plasticity model

Fixed yield surface parameters Cap parameters Tension cutoff

α0225 MPa R01.75 T0−0.3 MPa
β00.002 MPa−1 D00.005 MPa

γ0200 MPa W00.34

θ00.008 X001 MPa

Table 2 The elastic properties for 304 stainless steel

Shear modulus at 300°K G008.1×10
4 MPa

Melting point, Tm (K) Tm01,810°K

Temperature dependence of modulus Tm
G0

dG
dT ¼ 0:85

Gm ¼ G0 1� T�300
G0

dG
dT

� �
; nm ¼ 0:27

Table 3 The variations of yield stress (MPa) with temperature (°K) for
304 stainless steel at various volumetric strains

Volumetric strain (εv) 293 K 673 K 1,073 K 1,273 K 1,473 K

0 314 162 120 45 25

0.022 150 60 25

0.05 278 25

0.064 178 25

0.1 353 195 78 25

0.2 729 437 227 86 25

0.3 906 241 87 25

0.4 1,039 534 25

0.45 1,077 25

0.5 1,099 257 83 25

0.6 583 25

0.7 266 78 25
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on the HIP schedule used, i.e., on the history (or time
variation) of the applied heat and pressure before their final
values are reached. In fact, the process can be divided into
three steps, in which during the first step a specified amount
of powder is compacted by increasing the temperature. The
compaction process starts at room temperature and usually
increases linearly in accompany with inserting pressure by
punch movements. At the end of this step, the powder mass
has achieved a density of 50–70 % of the fully dense metal.
During the second step, the component obtained from the
first step is compacted without increasing the temperature
where the temperature is kept fix; however, punch move-
ments and densification of the powder continue. Finally,
during the third step, the temperature usually decreases
linearly and the punch movements and densification of the
powder continue. At the end of this step, the final product
gains a complete filling of the die cavity, and these further
result in full densification of the part achieving relative
density equal to 0.9–1. The highest temperature required

for this process depends on the type of powder and its
application, but typical values stand the temperature ranging
from 500 to 1,300°C.

In order to implement the temperature effect into the cap
plasticity model described in preceding section, the hardening
rule (Eq. 11) is modified by taking the temperature and the
thermal stresses into the model, which has a major influence
on the strain rate. To model the powder behavior at high
temperature, an increasing power law is implemented in the
cap plasticity, in which the power-law breakdown regime is
associated with a transition from dislocation climb dominated
flow to the dislocation glide dominated flow. Various empir-
ical relationships have been proposed to accommodate both
the power law and the exponential dependence of strain rate
on stress. In order to obtain an optimum fit to experimental
results, a modified hyperbolic equation is employed for the
temperature-dependent hardening rule of moving cap as

X kð Þ ¼ X "pv ;T
� � ¼ AB

T

�1

D
In 1� "pv

W

� �
þ X0

	 

exp Q= RTð Þð Þ

ð12Þ
where A, B, and Q are material parameters, R is the universal
gas constant, and T is the absolute temperature. In above
hardening rule, parameters A and Q are pre-exponential tem-
perature factors and activation energy, respectively, and B is a
constant set to 7.0482×10−4 for metal powders. According to
the experiments performed on stainless steel [28], A is as-
sumed as the temperature-dependent function defined by

A ¼ C

Tm
þ D ð13Þ

where C, D, and m are the material constants and for metal
powders are given in Tables 2, 3, and 4. The temperature effect

Table 4 The thermal properties for 304 stainless steel

T (°K) k (W m−1 K) c (J kg−1 K)

293 15.9 551

473 17.6

477 591

700 586

811 598

922 576

973 22.3

1,255 637

Activation energy Q02.8×105 J mol−1 . Gas constant R08.31434 J
K−1 mol−1

(a) (b)  (c)  (d) 

Fig. 2 A conical-shaped charge liner: a geometry and boundary conditions, b initial FE mesh, c the half stage of compaction, and d the final stage
of compaction
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on the strain rate is essentially represented by an Arrhenius-
type expression. For absolute temperatures above T≈0.6Tm,
with Tm denoting the melting temperature of material, the
value of the activation energy Q does not vary with the
temperature and stress; however, at lower temperatures, it
becomes temperature sensitive.

5 Numerical simulation results

In order to illustrate the efficiency and applicability of
proposed computational algorithm, two practical examples
are presented numerically. The first example is the hot
compaction process of a shaped charge liner chosen to
demonstrate the capability of proposed temperature-
dependent cap plasticity in the large FE deformation of
thermomechanical simulation. The simulation is performed
using the nonlinear FE model combined with the heat

transfer analysis in a nonlinear finite element code. The
second example is the shape optimization of an automo-
tive component chosen to demonstrate the design optimi-
zation of an industrial automotive component in the cold
and warm compaction processes in the framework of the
GA technique.

Both numerical examples have been solved under the
displacement control condition by increasing the punch
movement and predicting the die-pressing forces at dif-
ferent displacements. The distribution of stress, relative
density, and temperature contours are presented at differ-
ent generations of optimization process. The experimental
data are gained from a set of compaction experiments on
an iron-based powder performed by Doremus et al. [29].
The material parameters of cap plasticity model are given
in Table 1 [30], and the thermal properties of iron
powder are summarized in Tables 2, 3, and 4 [28]. The
initial relative density is ρ0 ¼ 0:4. The variation of the
Young modulus with relative density for iron powder is
assumed as E ¼ 3640ρ3:9 , with ρ denoting the relative
density [31]. In the FE simulations, the tools are modeled
as rigid bodies, since the elastic deformation of the tools
has only an insignificant influence on the density distri-
bution in the green component.

5.1 A conical-shaped charge liner

The first example is of a shaped charge liner, which is
extensively used for civilian oil and steel sectors in geo-
physical prospecting, mining, and quarrying. Most liners
used in the civilian sector have a conical shape and are often
made from a mixture of different metallic powders. This
component was modeled by Gu et al. [23] and Khoei et al.
[32] using the cold compaction simulation. In the present

Fig. 3 The prescribed temperature and punch movement during the
compaction process
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Fig. 4 The distribution of
temperature for a shaped charge
liner at the end of a first stage
and b final stage
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Fig. 5 The distribution of
vertical powder movement for a
shaped charge liner at the end of
a first stage and b final stage
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Fig. 6 The stress σy contours at
the end of first and final stages
of process: a, b hot pressing and
c, d cold pressing
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study, the hot-forming simulation is presented based on the
large FE deformation of thermomechanical analysis. The
schematic of the process to form a conical-shaped charge
liner from iron powder along with the geometry, initial, and
deformed FE meshes of powder and punch is presented in
Fig. 2. The loading characteristics are achieved by the use of
prescribed nodal displacements for the top punch move-
ment. The simulation has been performed using the remain-
ing pressing distance of 10 mm from top.

The hot process of powder die pressing is performed
in three stages, as shown in Fig. 3. At the first stage,
the top punch movement is gradually applied while the
temperature between the powder and tools raises from
20 to 500°C, in which at the end of first stage the
temperature of boundaries of component is 500°C and
the punch movement is 10 mm. In the second stage, the
value of temperature is kept at 500°C and the top punch
position is fixed at 10 mm from the top. At the final stage,

the top punch is gradually removed from the component
and simultaneously the temperature of boundaries
decreases from 500 to 20°C, as shown in Fig. 3. In
Fig. 4, the contours of temperature distribution are
shown at the end of first and final stages of compaction
process. Also plotted in Fig. 5 are the contours of
vertical displacement at two stages. The distribution of
normal stress and relative density contours are shown in
Figs. 6 and 7 at the end of first and final stages of
compaction process, respectively. In these figures, the
contours of final stress and relative density distributions
obtained by the hot compaction process are compared
with those predicted by the cold compaction process.
The results of density contours demonstrate that the
uniform density distribution can be observed for both
the hot and cold compaction processes. However, the
mean value of stress in cold compaction process is
almost three times of hot compaction process.
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Fig. 7 The relative density
contours at the end of first and
final stages of process: a, b hot
pressing and c, d cold pressing
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5.2 An automotive component

The next example is of an axisymmetric automotive part
which is compacted from iron powder with a mechanical press
and a multi-platen die set. This practical example is chosen to
present the capability of proposed computational algorithm in
shape optimization of an automotive component in the cold
and warm compaction processes. The cold compaction pro-
cess of this component was investigated experimentally by
Shen et al. [33] and numerically by Khoei et al. [32]. The
shape of powder together with the die and punches in their
position before compaction are presented in Fig. 8. On the
virtue of symmetry, the automotive part is analyzed employ-
ing an axisymmetric FE mesh. The compaction is employed
by means of the action of two punches from the top and
bottom simultaneously. The simulation has been performed
using the remaining pressing distance of top punch
7.5 mm and bottom punch of 20 mm. The hot compaction
process is performed in three stages, as shown in Fig. 9.
At the first stage, the top and bottom punches move
simultaneously to 7.5 and 20 mm, respectively, and at
the same time, the temperature between the powder and

tools raises from 20 to 500°C. In the second stage, the
temperature is kept at 500°C and the top and bottom
punch positions are fixed at 7.5 and 20 mm, respectively.
At the final stage, the top and bottom punches are grad-
ually removed from the component and simultaneously the
temperature of boundaries decreases from 500 to 20°C.
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Fig. 8 a An automotive component, b the problem description, and c the geometry and boundary conditions (the FE mesh using 314 elements)

Fig. 9 The prescribed temperature and punch movement during the
compaction process
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Mesh (a)                        Mesh (b)                        Mesh (c)                       Mesh (d) 
321 elements                  324 elements                  347 elements                343 elements 
(463 nodes) (458 nodes) (468 nodes) (461 nodes)

Mesh (e) Mesh (f) Mesh (g) Mesh (h)
315 elements 326 elements 339 elements 343 elements
(456 nodes) (469 nodes) (464 nodes) (461 nodes)

Fig. 10 The deformed FE meshes of compacted component at four generations of optimization process: a–d hot compaction process and e–h cold
compaction process
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Fig. 11 The variations of the objective function with the number of
generation for the best and average generations in the hot compaction
process

Generation number

F
it

n
es

s 
va

lu
e

0 3 6 9 12 15

100

150

200

250

300

350

Best
Average

Fig. 12 The variations of the objective function with the number of
generation for the best and average generations in the cold compaction
process
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The objective of proposed die pressing is to design the
preform die shape so that, after the final compaction, the
required final product is obtained without defects. The
shape of the geometry of free surface of the preform
workpiece is considered as the unknown design variables
with three control points, as shown in Fig. 8. The opti-

mization scheme is used to optimize the difference be-
tween the maximum and minimum values of stress on the
final compacted component. The objective function for this
example is as follows:

Minimize f x1; x2; x3ð Þ ¼ σmax � σminj j ð14Þ
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Fig. 13 The variations of the objective function with the number of
generation for the mutation rate of 0.01 at various rates of crossover in
the hot compaction process
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Fig. 14 The variations of the objective function with the number of
generation for the mutation rate of 0.01 at various rates of crossover in
the cold compaction process
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Fig. 15 The variations of the objective function with the number of
generation for the crossover rate of 0.8 at various rates of mutation in
the hot compaction process
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Fig. 16 The variations of the objective function with the number of
generation for the crossover rate of 0.8 at various rates of mutation in
the cold compaction process
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with the constraints of 62.5≤x1≤67.5, 45.0≤x2≤50.0, 45.0≤
x3≤50.0, x2−x3≥0.0, and x2−1.875x3≤−35.2. The first three
constraints are applied to control the geometry of the top and
bottom punches and the last two constraints to control the
slope of bottom punch surfaces.

The optimization process for this example is performed
using the genetic algorithm technique, as described in
Section 2. The initial population is generated randomly
using 50-string based on three control points x1, x2, and
x3. To calculate the fitness and reproduction, the numerical
simulation is performed for each string by using the 2D
axisymmetric FE mesh of three-noded elements. For each
string, the value of objective function is calculated at the
end of compaction. The process of reproduction is applied
according to the fitness function to copy the individual
string. The reproduction operator is implemented in the
algorithmic form based on a roulette wheel where each

individual is represented by a space that proportionally
corresponds to its fitness. It has been observed that the
evolutionary process is converged after 15 generations.
The optimal design variables for three control points
corresponding to the hot compaction process is obtained
as X3

T0[67.5, 46, 45] and the cold compaction process as
X6

T0[67.5, 46, 45]. Obviously, the hot and cold compac-
tion processes result in similar design variables, as can be
observed in Fig. 10d, h.

In Fig. 10, the deformed FE meshes of compacted com-
ponent are presented at four generations of optimization
process using the hot and cold compaction processes. The
optimal preform shapes of final component obtained in
Fig. 10d, h are similar to that measured experimentally by
Shen et al. [33]. In Figs. 11 and 12, the variations of the
objective function are plotted with the number of generation
for the best and average generations using the hot and cold
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Fig. 17 The normal stress σy contours using the hot compaction process at four generations of optimization process
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Fig. 18 The normal stress σy contours using the cold compaction process at four generations of optimization process
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compaction processes. In order to evaluate the optimum
values of crossover and mutation, the optimization process
is performed for various rates of crossover in the range of
[0.5–0.9] and different rates of mutation in the range of
[0.005–0.02]. In Figs. 13 and 14, the variations of the
objective function with the number of generation are plotted
for the mutation rate of 0.01 at various rates of crossover,
i.e., 0.5, 0.6, 0.8, and 0.9 in the hot and cold compaction
processes. Obviously, the optimal design variables can be
obtained for the crossover rate of 0.8. In Figs. 15 and 16, the
variations of the objective function with the number of
generation are plotted for the crossover rate of 0.8 at various
rates of mutation, i.e., 0.005, 0.01, 0.015, and 0.02 in the hot
and cold compaction processes. Clearly, it can be observed
that the optimum value of mutation is equal to 0.01. Finally,
on the basis of optimum values of the crossover rate of 0.8
and the mutation rate of 0.01, the distribution of normal
stress σy contours are presented in Figs. 17 and 18 at four

generations of optimization process using the hot and cold
compaction processes, respectively. Also plotted in Figs. 19
and 20 are the predicted relative density distributions at four
generations of optimization process using the hot and cold
compaction processes. At the end of compaction, the rela-
tive density contour shows the highest density values at the
bottom punch surface and the top-right corner for the opti-
mal component.

6 Conclusion

In the present paper, an optimization algorithm was pre-
sented for the hot powder forming process based on the
genetic algorithm approach. The goal of optimization was
to eliminate the workpiece defects that may arise during the
powder compaction process. The genetic algorithm operator
was used to increase the efficiency of the search algorithm
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Fig. 19 The relative density distributions using the hot compaction process at four generations of optimization process
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Fig. 20 The relative density distributions using the cold compaction process at four generations of optimization process
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and to produce an optimal design. The coupled thermome-
chanical analysis of hot isostatic pressing was employed
based on the large deformation formulation, temperature-
dependent cap plasticity model, and frictional contact algo-
rithm. A modified cap plasticity model considering the
temperature effects was used in numerical simulation of
nonlinear behavior of metal powder. Finally, numerical
examples are analyzed to demonstrate the feasibility of
proposed optimization algorithm for designing powder com-
ponents in the hot-forming process of powder compaction.
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