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Abstract Scheduling is a major issue faced every day in
manufacturing systems as well as in the service industry, so
it is essential to develop effective and efficient advanced
manufacturing and scheduling technologies and approaches.
Also, it can be said that bi-criteria scheduling problems are
classified in two general categories respecting the approach
used to solve the problem. In one category, the aim is to
determine a schedule that minimizes a convex combination
of two objectives and in the other category is to find a good
approximation of the set of efficient solutions. The aim of
this paper is to determine a schedule for hybrid flowshop
problem that minimizes a convex combination of the make-
span and total tardiness. For the optimization problem, a
meta-heuristic procedure is proposed based on the simulated
annealing/local search (SA/LS) along with some basic im-
provement procedures. The performance of the proposed
algorithm, SA/LS, is compared with a genetic algorithm
which had been presented in the literature for hybrid flow-
shop with the objective of minimizing a convex combina-
tion of the makespan and the number of tardy jobs. Several
computational tests are used to evaluate the effectiveness

and efficiency of the proposed algorithm against the other
algorithm provided in the literature. From the results
obtained, it can be seen that the proposed algorithm in
comparison with the other algorithm is more effective and
efficient.
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1 Introduction

The single-objective scheduling problem has been widely
studied in the literature. However, the analysis of the per-
formance of a schedule often involves more than one aspect
and requires a multi-objective treatment, because often each
particular decision maker wants to minimize a given crite-
rion. For example, in a company, the commercial manager is
interested in satisfying his customers which can be achieved
by minimizing the tardiness. On the other hand, the produc-
tion manager wishes to optimize the use of the machines by
minimizing the maximum completion time (makespan or
Cmax) or the work in process by minimizing the maximum
flow time. Also it can be said from a general point of view
that these objectives are each valid. Since these objectives
are in conflict of interests, a solution may perform well for
one objective, but giving bad results for others. For this
reason, scheduling problems have often a multi-objective
nature. In the following, we briefly review the related re-
search on the area of multi-objective scheduling problem.

The bi-criteria problem has been considered for the
weighted sum of the makespan and the maximum tardiness
by Daniels and Chambers [1]. They present an algorithm
identifying the exact set of so-called efficient schedules for
special cases of two-machine flowshops. Ishibuchi and
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Murata [2] extend the multi-objective genetic algorithm by
incorporating a local search procedure to the offspring (after
the mutation operation). The local search tries to maximize
the weighted sum of objective functions with variable
weights. Sayin and Karabati [3] deal with the scheduling
problem in a two-machine flowshop environment by mini-
mizing makespan and sum of completion times simulta-
neously. For solving this problem, they developed a
branch-and-bound (B&B) procedure that iteratively solves
restricted single-objective scheduling problems until the set
of efficient solutions is completely enumerated. Chakravarthy
and Rajendran [4] propose a heuristic for the same
problem, which outperforms that of Daniels and Chambers
[1]. Allahverdi [5] addresses the two-machine flowshop
scheduling problem with all three criteria (tri-criteria)
where the objective is to minimize a weighted sum of
mean flow time, makespan, and maximum lateness. He
presents a B&B algorithm for the problem and also
develops several heuristics to solve large size problems.
Lee and Wu [6] develop a B&B procedure for minimiz-
ing the weighted sum of total completion time and the
total tardiness problem for the two-machine flowshop
and the problems with up to 18 jobs can be solved.
Chang et al. [7] propose a gradual priority weighting
(GPW) approach based on a genetic algorithm. The
main characteristic of GPW-based genetic algorithm
(GPWGA) is the searching process that starts along
the direction of the first selected objective axis (or
function coordinate), and the search process progresses
in the manner that, gradually, the weight for the first
objective function decreases, and the weight for the
second objective function increases. Toktas et al. [8]
consider a two-machine flowshop scheduling by mini-
mizing the makespan and maximizing the maximum
earliness simultaneously. They develop a B&B proce-
dure that generates all efficient solutions with respect to
the two criteria, and also a heuristic procedure that
generates the approximately efficient solutions.

Ponnambalam et al. [9] propose a TSPGA multi-
objective algorithm for flowshop scheduling in which a
weighted sum of multiple objectives (i.e., minimizing make-
span, mean flow time, and machine idle time) is used. The
weights are randomly generated for each generation to en-
able a multi-directional search. The proposed algorithm is
evaluated by applying it to the benchmark problems avail-
able in the OR-Library. Ravindran et al. [10] propose three
heuristic algorithms for solving the flowshop scheduling
problem by makespan and total flow. Loukil et al. [11]
propose multi-objective simulated annealing algorithm to
tackle the multi-objective production scheduling problems
(one machine, parallel machines, and permutation flow-
shops). They consider seven possible objective functions
(the mean weighted completion time, the mean weighted

tardiness, the mean weighted earliness, the maximum com-
pletion time, the maximum tardiness, the maximum earliness,
and the number of tardy jobs). They claim that the
proposed multi-objective simulated annealing algorithm
is able to solve any subset of seven possible objective
functions. A new multi-objective particle swarm is
designed by Rahimi-Vahed et al. [12] to search locally
Pareto-optimal frontier for the multi-objective mixed-
model assembly line-sequencing problem. Jungwattanakit
et al. [13] consider the bi-objective hybrid flowshop with
unrelated machines and setup times. They formulate the
problem by a 0–1 mixed integer programming and pro-
pose a genetic algorithm for the problem. This algorithm
is used to find a schedule that minimizes a convex
combination of makespan and the number of tardy jobs.

In this section, we are going to justify the necessity of
this particular study. The papers on bi-criteria scheduling
problems are classified in two general categories respecting
the approach used to solve the problem. In one category
“C1”, the approach is through a convex combination of two
objectives and, in the other category “C2” is through a set of
non-dominated solutions (efficient solutions or Pareto
front). As just reviewed, in many studies, the algorithms
are developed to search Pareto-optimal solutions for the
scheduling problems. These algorithms have not the capa-
bility to solve a convex combination of scheduling prob-
lems. Also, there are rather fewer studies that considered
this special kind of scheduling problems. Hence, our objec-
tive is to find a good quality schedule as a convex combi-
nation on bi-criteria scheduling problems.

The remainder of the paper is organized as follows. The
scheduling problem considered in this paper is described in
Section 2. The proposed algorithm is presented in Section 3.
The computational results and numerical comparisons are
reported in Section 4. Finally, conclusions and future study
are given in Section 5.

2 Problem definition

2.1 Hybrid flowshop scheduling problem

One of the most applied and recognized scheduling prob-
lems is the hybrid flowshop which has various applications
in real-world industries. The hybrid flowshop scheduling
problem involves the sequence of jobs in a flowshop which
at least one stage has to consist of several machines (more
than one machine).

In this section, we are going to describe the general and
particular features of this study. All data in this problem
(i.e., processing times of operations, setup times, due date,
number of stages, number of machines, and number of jobs)
are known and constant (and deterministic) when scheduling
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is undertaken. Machines are available at all times, with no
breakdowns or scheduled or unscheduled maintenance. All
jobs are available at zero time. Jobs are always processed
without error. Job processing cannot be interrupted (no pre-
emption is allowed) and jobs have no associated priority
values. There is no travel time between stages; an operation
of a job cannot be performed until its preceding operations are
completed. Each machine can process only one job at the
same time, a job cannot be processed on more than one
machine at the same time, there is no restriction on queue
length at any machine. Machines in parallel are identical in
capability and processing rate.

One of the most widely used assumptions in scheduling
configurations is the consideration of setup times. The setup
times considered in this problem are classified into two types:
(1) sequence-independent setup time and (2) sequence-
dependent setup times. A sequence-independent setup time

deals with the setup time that depends on the machine to
which a job is assigned. It is assumed to occur only
when a job is assigned to a machine at the first position
at some stage. The particular assumption of this study
points that the sequence-dependent setup times is re-
quired when switching occurs between two different
jobs. After the completing of one job and before the
beginning of the process for the next job, some sort of
setup has to be performed. The time required to do the
setup depends on both the prior and the current job to be
processed; which means the setup times are sequence
dependent. For further study on setup times literature in
scheduling problem you can refer to the complete survey
which is presented by Allahverdi et al. [14].

2.2 Scheduling objectives (objective functions)

The scheduling objective in such industries may vary.
Analysts consider the possible objectives such as: mean
weighted completion time, mean weighted tardiness, mean
weighted earliness, the makespan, the maximum tardiness,
the maximum earliness, number of tardy jobs, total com-
pletion time, total tardiness, total setup time, etc. Howev-
er, we have tried to work with two of the most common
objectives in industries. The maximum completion time
criterion has been used in many studies and also has been
chosen as one of the objectives in this paper. Decreasing
the completion times is an effective method in reducing job

Table 1 Factor levels
Factor Levels

Number of jobs 15; 20; 25; 30

Number of stages 5; 10

Number of machines Unif (1, 4);
Unif (1, 10)

Processing times Unif (50, 70);
Unif (20, 100)

Setup times Unif (12, 24)

Table 2 Design of test problems

Problem n×g Number of machine MinCmax;Cmax;MaxCmax

� � ðt;RÞ d ½d � Rd; d � ½d; d þ ðCmax � dÞR �

T1 15×5 {2-1-4-3-2} [1,394.28; 1,422.48; 1,450.68] (0.2, 0.2) 1,138 [910.5, 1,138] [1,138, 1,195.5]

T2 (0.2, 0.8) 1,138 [227.5, 1,138] [1,138, 1,365.5]

T3 (0.5, 0.5) 711 [355.5, 711] [711, 1,066.5]

T4 (0.8, 0.2) 284.5 [227.5, 284.5] [284.5, 512.5]

T5 (0.8, 0.8) 284.5 [57, 284.5] [284.5, 1,195]

T6 20×5 {4-1-2-3-2} [1,793.18; 1,825.16; 1,857.14] (0.2, 0.2) 1,460 [1,168, 1,460] [1,460, 1,533]

T7 (0.2, 0.8) 1,460 [292, 1,460] [1,460, 2,920]

T8 (0.5, 0.5) 912.5 [456, 912.5] [912.5, 1,368.5]

T9 (0.8, 0.2) 365 [292, 365] [365, 657]

T10 (0.8, 0.8) 365 [73, 365] [365, 1,533]

T11 25×10 {5-4-6-5-3-4-3-1-2-2} [2,530.34; 2,611.07; 2,691.80] (0.2, 0.2) 2,089 [1,671, 2,089] [2,089, 2,193]

T12 (0.2, 0.8) 2089 [418, 2,089] [2,089, 2,507]

T13 (0.5, 0.5) 1,305.5 [653, 1,305.5] [1,305.5, 1,958.5]

T14 (0.8, 0.2) 522 [417.5, 522] [522, 939.5]

T15 (0.8, 0.8) 522 [104.5, 522] [522, 2,193.5]

T16 30×10 {6-3-2-4-5-1-6-3-2-4} [2,844.8; 2,929.20; 3,013.60] (0.2, 0.2) 2,343 [1,874.5, 2,343] [2,343, 2,460.5]

T17 (0.2, 0.8) 2,343 [468.5, 2,343] [2,343, 2,811.5]

T18 (0.5, 0.5) 1,464.5 [732, 1,464.5] [1,464.5, 2,196.5]

T19 (0.8, 0.2) 586 [469, 586] [586, 1,055]

T20 (0.8, 0.8) 586 [117, 586] [586, 2,460.5]
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lateness and tardiness. Therefore, minimizing the makespan is
one of the most important criteria for manufacturing and
service organizations.

Nowadays, many companies are concerned with meeting
customers’ demand in terms of due dates; therefore, sched-
uling problems with due-date-related measures have more
practical meaning than before. Date-related criteria are im-
portant objectives in just-in-time environment. Therefore,
another criterion namely total tardiness is considered in this
problem.

2.3 Scheduling of jobs

In this scheduling, the objective is assigning jobs to the
machines at the corresponding stages and to determine
the processing sequences on them in order to minimize
a convex combination of makespan and the total tardi-
ness. Presented below, is explanatory example of a
hypothetical problem to demonstrate how (1) a job
sequence is represented as a single solution, (2) the jobs
are assigned to machines, and (3) to determine the
processing sequences on machines in order to calculate

the criteria. Parameters and variables are described as
follows:

Parameters:

n Number of jobs to be scheduled
g Number of serial stages
mt Number of parallel machines at stage t (t01, 2, 3,…, g)
stij Setup time between job j and job i at stage t if j is

immediately after i
st0j Independent setup time for job j is used when job j at

stage t is the first job for scheduling
ptj Processing time for job j at stage t
dj Due date of job j

Variables:

Ct
j Completion time of job j at stage t

Cmax The makespan
Tj Tardiness of job j
TT The sum of tardiness of each job
X t
ijk 1 if job j is scheduled immediately after job i on

machine k at stage t, and 0 otherwise
X t
0jk 1 if job j is sequenced as the first job on machine k at

stage t
X t
i0k 1 if job i is sequenced as the last job on machine k at

stage t

Suppose that hybrid flowshop scheduling problem
includes n05 jobs, g02 stages which there are m102 iden-
tical machines at stage 1 and m203 identical machines at
stage 2. Now, a job sequence is randomly determined
according to chromosome-coding scheme. In this kind of
representation, a single row array is formed with a size equal
to the number of the jobs which are going to be scheduled.
The numeric value of the first element from the array shows
which job has been firstly scheduled. Following the same
order, the second value shows the secondly scheduled job,
and so on. For example, one solution of a hypothetical
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problem with five jobs as [1–5] denotes that job 3 is process
first, and then job 1, job 2, job 5, and job 4 are processed
successively.

Now, the jobs are assigned to the machines at stage 1,
using the determined job sequence. Therefore, job 3 is
processed on machine 1 (X 1

031 ¼ 1) and job 1 is processed

on machine 2 at stage 1 (X 1
012 ¼ 1). Thence, job 2 is assigned

to the machine with the shortest completion time among the
machines at stage 1 (X 1

122 ¼ 1 or X 1
321 ¼ 1). This process

continues like this, until all jobs assign to the first stage
machines.

In progress, the jobs are delivered to stage 2 for the
completion of succeeding operations. The job sequence
for the next stage (from stage 2 to stage g) is deter-
mined according to their completion times at the pre-
vious stage. In second stage, the jobs in places 1 to 3
of the obtained sequence assign to the three machines
at stage two, because the machines in parallel are
identical in capability and processing rate. The job in
place 4 assigns to the machine that its completion time
is smaller of other machines; and so on. Finally, the

makespan and total tardiness time are computed as
follows:

1. Makespan (Cmax): the length of time required to finish
processing all jobs, i.e., Cmax ¼ Max Cg

1 ;C
g
2 ; :::;C

g
n

� �
.

2. Total tardiness (TT ¼ Pn
j¼1

Tj ): the sum of tardiness of

each job and the tardiness of each job (Tj) equals to

Max ðCg
j � djÞ; 0

n o
.

2.4 Total objective function

The first decision that has to be made when dealing with
a multi-objective optimization problem is on how to
combine the objectives. This decision is important, be-
cause it can affect on the success of the search. The most
straightforward approach to deal with multi-objective
problems is to combine them into a single scalar value.
The most common way of doing it is setting weights to
each criterion and adding those all together by using an
aggregating function.

Therefore, the total objective function is constituted of
the linear combination of objective functions. For a solution
x, the objective function in the study is represented as
follows:

f ðxÞ ¼ l1 � f1ðxÞ þ l2 � f2ðxÞ

f1(x)0 makespan ; f2(x)0 total tardiness ; l1+l201Where
li≥0 are the weighting coefficients representing the relative
importance of the k objective functions of our problem. It is

usually assumed that
Pk
i¼1

li ¼ 1 . The idea behind the l1

values is to balance both objectives. In this problem, for a
low value of l1, the total tardiness problem will dominate
the makespan problem, whereas for a large value of l1, the
makespan problem will dominate the total tardiness
problem.

The normalized objectives can be obtained by the relation:

f 01ðxÞ ¼ min f1
f1ðxÞ

f 02ðxÞ ¼
min f2
f2ðxÞ if min f2 > 0
1þmin f2
1þf2ðxÞ if min f2 ¼ 0

( )

Where “min f1” and “min f2” are the minimum of the make-
span and the total tardiness values, respectively. If the mini-
mum total tardiness of the jobs equals zero then one is added
to the denominator and numerator. In following, an example is
provided to clarify:

Suppose objectives of two sequences x1 and x2 (1)
f1(x1)010, f2(x1)020 (2) f1(x2)010, f2(x2)0100, and “min
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f2”00. The normalized objective by the relation “ min f2
f2ðxÞ ” is

equal to zero for both sequences. The result concludes that
the second objective has no effect on the total objective
function. In order to solve this problem the value “1” is
added to the denominator and numerator. Hence, the total
objective function changed into Eq. 1:

f ðxÞ ¼ l1 � f 01ðxÞ þ l2 � f 02ðxÞ½ ��1

Where l1 þ l2 ¼ 1
f 01ðxÞ ¼ min f1

f1ðxÞ

f 02ðxÞ ¼
min f2
f2ðxÞ if min f2 > 0
1þmin f2
1þf2ðxÞ if min f2 ¼ 0

( ) ð1Þ

For further study on the mathematical model (constraints
related to problem) can refer to Jungwattanakit et al. [13]
and Kurz and Askin [15].

3 The proposed simulated annealing/local search

3.1 Introduction to simulated annealing

Simulated annealing is so named because of its analogy
to the process of physical annealing with solids, in
which a crystalline solid is heated and then allowed to
cool very slowly until it achieves its most regular pos-
sible crystal lattice configuration (i.e., its minimum lat-
tice energy state), and thus is free of crystal defects. If
the cooling schedule is sufficiently slow, the final con-
figuration results in a solid with such superior structural
integrity. Simulated annealing establishes the connection
between this type of thermodynamic behavior and the
search for global minima for a discrete optimization
problem. Furthermore, it provides an algorithmic means
for exploiting such a connection. Simulated annealing is
introduced to combinational optimization by Kirkpatrick
[16] in 1982.

Table 3 Solutions obtained by SA/LS and genetic algorithm (GA) for problem T1 to T5 (table×103)

T1 T2 T3 T4 T5

Cmax T.T Cmax T.T Cmax T.T Cmax T.T Cmax T.T

1100.25

SA/LS 1.3737 0.3981 1.4261 0.0946 1.3829 0.8898 1.3668 6.7197 1.3644 6.0083

1.3828 0.4208 1.4193 0.0921 1.3706 0.9031 1.3542 6.7284 1.3747 6.0694

1.3749 0.4318 1.4193 0.0921 1.3802 0.8652 1.3715 6.6888 1.3685 6.0018

GA 1.3886 0.4511 1.4111 0.1141 1.3802 0.8652 1.3958 6.7852 1.3588 6.1509

1.3737 0.4368 1.4171 0.1142 1.3778 0.9116 1.3746 6.7014 1.3795 6.0796

1.3852 0.4385 1.4369 0.1188 1.3866 0.9805 1.3851 6.8629 1.3944 6.1372

1.3564a 0.3981b 1.3560a 0.0921b 1.3571a 0.8652b 1.3527a 6.6868b 1.3556a 5.9905b

1100.5

SA/LS 1.3718 0.4004 1.4343 0.1158 1.3676 0.9040 1.3546 6.7843 1.3524 6.1578

1.3569 0.4276 1.4193 0.0921 1.3877 0.9257 1.3522 6.7834 1.3700 6.1116

1.3675 0.4120 1.4193 0.0921 1.3944 0.9336 1.3592 6.6863 1.3676 6.0684

GA 1.3683 0.4402 1.4160 0.1973 1.3884 0.9994 1.3750 6.7302 1.3764 6.0973

1.3713 0.4231 1.4277 0.1233 1.3875 1.0387 1.3763 6.8552 1.3835 6.0990

1.3773 0.5116 1.4167 0.1197 1.3947 0.9824 1.3798 6.7542 1.3787 6.1062

1.3509a 0.4004b 1.3699a 0.0921b 1.3617a 0.9040b 1.3520a 6.6863b 1.3524a 6.0498b

1100.75

SA/LS 1.3667 0.4496 1.4343 0.1158 1.3706 0.9031 1.3563 6.7057 1.3591 6.1488

1.3792 0.4486 1.4050 0.1080 1.3801 0.9778 1.3617 6.9423 1.3583 6.0840

1.3711 0.4165 1.4277 0.0962 1.3737 0.8724 1.3504 6.8544 1.3622 6.2258

GA 1.3698 0.4591 1.4069 0.2299 1.3753 0.9655 1.3594 6.7560 1.3663 6.1901

1.3701 0.4919 1.4266 0.1342 1.3643 1.0221 1.3731 6.7592 1.3624 6.1870

1.3892 0.4539 1.4043 0.2615 1.3986 1.0640 1.3872 6.8626 1.3833 6.1830

1.3520a 0.4165b 1.3652a 0.0962b 1.3577a 0.8652b 1.3472a 6.6999b 1.3517a 6.0401b

a min Cmax

bmin T.T
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Simulated annealing is a neighborhood searching ap-
proach designed to obtain a global optimum solution for
combinatorial optimization problems. It starts with an initial
solution and iteratively moves towards the other existing
solutions, while remembering the best solution found so far.
In order to reduce the probability of getting trapped in local
optima, simulated annealing accepts the moves even toward
the inferior neighboring solutions under the control of ran-
domized scheme. More precisely, if a move from current
solution S to another inferior neighboring solution S*

results in a change ΔE ¼ f ðS�Þ � f ðSÞ in the objective

function value, the move is still accepted if R < exp
�ΔE
Tð Þ ,

where T is a control parameter, called temperature, and R is a
uniform random number between interval (0, 1). Initially, the
temperature T is high enough permitting many deteriorative
moves to be accepted, and then it is lowered at a low speed of
rate to the point which the inferior moves are approximately
rejected. This algorithm sequentially and slowly investigates

the possible neighbors in each temperature in order to find the
best solution.

3.2 Principles of the proposed algorithm

Although the proposed simulated annealing algorithm is
structurally similar to the original simulated annealing, there
are some differences made by authors. The first difference is
in objective function (i.e., step 2 of pseudo code). The
normalized objectives are computed by dividing the mini-
mum value of the objectives to the very value of the objec-
tives. The original concept of the objective function in
simulated annealing is the smaller the better. Hence, it con-
tradicts the original idea of objective function by consider-
ing the normalized objectives. A transformation should be
made to reverse the maximization to minimization. Thus,
the objective function of a solution is given by Eq. 1. Note
that the minimum value of each objective is updated at each

Table 4 Solutions obtained by SA/LS and genetic algorithm (GA) for problem T6 to T10 (table×103)

T6 T7 T8 T9 T10

Cmax T.T Cmax T.T Cmax T.T Cmax T.T Cmax T.T

1100.25

SA/LS 1.7744 0.6693 1.8155 0.5843 1.7860 2.2728 1.781 11.505 1.7788 8.2337

1.7661 0.6384 1.8129 0.5843 1.7863 2.2764 1.785 11.617 1.7869 8.4242

1.7798 0.6700 1.8172 0.5843 1.7917 2.2223 1.776 11.569 1.7630 8.3433

GA 1.7813 0.7341 1.8203 0.6322 1.7988 2.5592 1.791 11.570 1.8034 8.4707

1.7674 0.7175 1.8097 0.6246 1.7545 2.2987 1.789 11.513 1.7902 8.5691

1.7695 0.7550 1.8289 0.5843 1.7903 2.5248 1.804 11.639 1.7751 8.3356

1.7509a 0.6384b 1.7693a 0.5843b 1.7528a 2.2223b 1.737a 11.488b 1.7548a 8.2337b

1100.5

SA/LS 1.7605 0.6626 1.8214 0.5843 1.7845 2.3914 1.761 11.735 1.7669 8.2615

1.7819 0.6644 1.8101 0.5843 1.7983 2.3962 1.775 11.726 1.7835 8.3097

1.7717 0.7207 1.8099 0.5843 1.7777 2.2411 1.756 11.647 1.7766 8.3276

GA 1.7743 0.7778 1.7975 0.7030 1.8053 2.4182 1.779 11.765 1.7984 8.4528

1.7777 0.8144 1.7901 0.6094 1.7546 2.3801 1.784 11.711 1.8000 8.5514

1.7909 1.0335 1.8371 0.6322 1.8025 2.6337 1.782 11.770 1.7953 8.5459

1.7450a 0.6578b 1.7648a 0.5843b 1.7546a 2.2387b 1.739a 11.616b 1.7539a 8.2615b

1100.75

SA/LS 1.7565 0.7117 1.7788 0.6094 1.7547 2.3878 1.742 11.893 1.7666 8.6658

1.7673 0.6879 1.7810 0.6094 1.7809 2.2535 1.754 11.863 1.7552 8.4936

1.7590 0.7622 1.7824 0.6094 1.7691 2.3827 1.754 11.818 1.7829 8.5878

GA 1.7821 0.8871 1.8038 0.8285 1.7935 2.3820 1.787 11.726 1.8008 8.5984

1.7792 0.7360 1.8336 0.6729 1.7700 2.5197 1.788 11.755 1.7902 8.5589

1.7800 0.7504 1.7933 0.7595 1.8014 2.5225 1.788 11.657 1.7964 8.5025

1.7481a 0.6821b 1.7567a 0.5843b 1.7495a 2.2535b 1.741a 11.441b 1.7552a 8.3810b

a min Cmax

bmin T.T
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successive iteration procedure during the search. Therefore,
the final values of these minimums are obtained in the end
of run.

The second difference is in the step 4 of pseudo code.
Here, the obtained schedule of previous step (step 3) imports
into a neighborhood search mechanism to produce new
solutions from current solution with the aim of improving
a solution. One of key characteristics of proposed simulated
annealing is neighborhood search structure which is ran-
domly selected among several alternatives at each iteration
procedure. This feature provides a means in order to guide
the search to another promising region through various
moves. After applying the mentioned mechanism, objec-
tives are calculated for each neighborhood solution. Then
the solution which has the lowest value for fSA (Eq. 1) is
accepted among neighborhood solutions.

The last difference between two algorithms is in the end
of pseudo code. In this section of the algorithm, in order to
reinforce the performance, two simple forms of local search
are applied on the best solution of archive.

3.3 SA/LS pseudo code

Initialization

& The representation of a solution

We apply a scheme using integers which show the num-
ber of job(s).

& Draw a seed sequence x

The seed sequence is generated in a random way from the
search space.

& Evaluate f1(x) and f2(x)

Where f1(x) is the makespan, f2(x) is the total tardiness of
seed sequence which is generated.

& Input parameters

Initial temperature (T0); final temperature(Tf); number of
stages for reach of T0 to Tf (N); maximum number of

Table 5 Solutions obtained by SA/LS and genetic algorithm (GA) for problem T11 to T15 (table×103)

T11 T12 T13 T14 T15

Cmax T.T Cmax T.T Cmax T.T Cmax T.T Cmax T.T

11=0.25

SA/LS 2.4760 1.6761 2.5279 8.3255 2.525 10.398 2.436 20.971 2.5518 5.7175

2.4629 1.4872 2.5159 8.2181 2.536 10.147 2.436 20.971 2.5518 5.7175

2.4842 1.6824 2.5281 8.3017 2.536 10.147 2.436 20.971 2.5518 5.7175

GA 2.5510 1.7694 2.5818 9.2808 2.564 10.198 2.521 21.213 2.5856 5.7343

2.4969 1.6216 2.5940 8.6647 2.565 10.715 2.522 21.260 2.5918 5.9560

2.5627 1.7467 2.5320 9.0372 2.548 10.544 2.501 21.252 2.5956 6.1994

2.4343a 1.4840b 2.4674a 8.2181b 2.450a 10.147b 2.436a 20.923b 2.4648a 5.7175b

11=0.5

SA/LS 2.5185 1.7051 2.5280 8.3529 2.502 10.695 2.442 21.302 2.5041 5.7886

2.5185 1.7051 2.5280 8.3529 2.501 10.187 2.456 21.488 2.4876 5.5056

2.5185 1.7051 2.5280 8.3529 2.501 10.187 2.437 21.130 2.4876 5.5056

GA 2.5202 1.8303 2.5253 8.7814 2.525 10.465 2.487 21.287 2.5700 5.6643

2.4973 1.7275 2.5392 9.0126 2.537 10.601 2.492 21.116 2.5397 5.8925

2.5013 1.8858 2.5287 8.6221 2.568 10.600 2.540 21.301 2.5437 6.0939

2.4492a 1.7051b 2.4667a 8.2471b 2.467a 10.187b 2.436a 21.116b 2.4664 5.5056b

11=0.75

SA/LS 2.4630 1.7242 2.5212 8.7949 2.449 11.453 2.440 21.726 2.4866 5.8117

2.4630 1.7242 2.5212 8.7949 2.485 10.841 2.445 21.425 2.4475 6.4423

2.4630 1.7242 2.5212 8.7949 2.485 10.841 2.443 21.027 2.4537 5.7153

GA 2.5207 1.8302 2.5521 9.0378 2.528 10.952 2.469 21.305 2.4943 5.9981

2.4869 1.9609 2.5728 9.1551 2.518 10.791 2.477 21.325 2.4874 5.6878

2.4994 1.8301 2.5748 8.7834 2.547 10.873 2.475 21.484 2.5136 5.9263

2.4520a 1.7010b 2.4649a 8.7834b 2.449a 10.714b 2.437a 21.018b 2.4475a 5.6259b

a min Cmax

bmin T.T
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iterations in each temperature (max_it); the weighting coef-
ficients l 2 f0:25; 0:5; 0:75gð Þ
& Set

T ¼ T0; it ¼ 1; q ¼ 1; ArchiveðqÞ ¼ fxg;
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Local search: note that an archive is created, maintained
during successive iterations to preserve solution identified
during the search. The best solution in the archive (solution
corresponding with minimum fSA) is now subjected to two
local search schemes, namely, neighborhood swapping [17]
and RIPS [18]. Then, solution with minimum fSA is selected.

fSA ¼ l1 � f 01 þ l2 � f 02½ ��1

4 Performance analysis of the proposed algorithm

4.1 Generation of test problem

An experiment was conducted to test the performance of the
algorithm. One difficulty faced by researchers in scheduling
is to compare their methodologies with those of other
researchers. If the standard set of test problems is accessible,
the performances of different algorithms can be compared
on exactly the same set of test problems.

Data required for a problem consist of the range of
processing times, range of setup times, number of stages,
number of jobs, range in number of machines per stage, and
range of due date. Processing times are distributed uniform-
ly over two ranges with a mean of 60: [50–70] and [20–
100]. The setup times are uniformly distributed from 12 to
24 which are 20% to 40% of the mean of the processing
time. The performance of the meta-heuristics is compared
on a set of test problems with 15 jobs×5 stages, 20 jobs×5
stages, 25 jobs×10 stages, and 30 jobs×10 stages. Numbers
of machines are distributed uniformly over two ranges of
[1–4] and [1–10]. Level range design of each factor is
illustrated as shown in Table 1.

The initial test problems are designed based on the infor-
mation above (Table 1). After several trials on each problem
designed for hybrid flowshop, the minimum and maximum

values of Cmax can be obtained approximately. Cmax is
known as average of bound values. Table 2 shows the
obtained results from the experiments. The above results
allow producing final problems set including due dates.

Table 6 Solutions obtained by SA/LS and genetic algorithm (GA) for problem T16 to T20 (table×103)

T16 T17 T18 T19 T20

Cmax T.T Cmax T.T Cmax T.T Cmax T.T Cmax T.T

1100.25

SA/LS 2.9482 3.2668 2.9503 8.5884 2.9687 9.1137 2.853 27.698 2.9052 7.5764

3.0383 3.3664 2.9482 8.6408 2.9557 9.8490 2.947 28.447 2.9799 8.5628

2.9459 3.5751 2.9419 8.4290 2.9872 9.7147 2.929 28.508 2.9654 8.8081

GA 2.9573 3.3842 2.9098 9.5724 3.056 10.044 2.950 28.563 2.9242 9.0903

2.9463 3.8518 2.9451 9.0006 3.0533 9.7761 2.944 28.272 2.9831 8.6045

2.9814 3.6976 2.9664 9.4036 2.966 10.683 2.997 28.233 3.0300 8.8869

2.8670a 3.2582b 2.8713a 8.4290b 2.8632a 9.1137b 2.853a 27.607b 2.8895a 7.5576b

1100.5

SA/LS 2.9092 3.2417 2.9084 8.5277 2.9720 8.5640 2.919 28.305 2.9350 7.5024

2.9238 3.7224 2.9329 8.2318 2.9456 9.9449 2.919 28.709 2.9141 7.9450

2.9588 3.4787 2.9208 8.9974 2.8910 10.410 2.924 28.741 2.8928 8.3890

GA 2.9651 3.9248 2.9932 9.5431 2.986 10.061 3.041 29.607 2.9948 8.6901

3.0023 3.6114 2.9180 10.288 2.916 10.197 3.013 28.371 3.0064 8.2599

2.9416 3.3860 2.9708 9.1786 3.029 10.912 3.034 28.608 3.0359 9.1690

2.8624a 3.2386b 2.8648a 8.2318b 2.863a 8.564b 2.872a 28.285b 2.8782a 7.4030b

1100.75

SA/LS 2.9563 3.1270 2.8832 8.3245 2.881 10.680 2.854 30.749 2.9132 9.0324

2.8973 3.9292 2.8915 9.7114 2.885 10.653 2.853 28.863 2.9312 8.9634

2.9298 3.2077 2.9103 9.8877 2.892 9.6963 2.856 29.392 2.9056 8.3218

GA 2.9327 3.6519 2.9217 9.2354 2.956 10.162 2.978 28.982 2.9529 9.0169

3.0053 3.8788 3.003 10.457 3.038 11.320 2.976 28.467 3.0714 8.9795

2.9267 3.6704 2.9144 9.5001 2.953 11.031 2.996 28.706 3.0462 9.2298

2.8682a 3.1270b 2.8580a 8.2833b 2.863a 9.5635b 2.852a 28.340b 2.8761a 8.9275b

a min Cmax

bmin T.T
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Due dates can be generated from a composite uniform
distribution based on R and C; with probability C the due date
is uniformly distributed over the interval ½d � Rd; d � and
with probability (1−τ) over the interval ½d; d þ ðCmax � d ÞR�,
where C and R are two parameters called the tardiness
factor (t ¼ 1� d=Cmax) and the due date range (R ¼ ð
dmax � dminÞ=Cmax), respectively. Values of C close to 1,
indicate that the due dates are tight, and values close to
0 indicate that the due dates are loose. A high value of
R indicates a wide range of due dates, whereas a low
value indicates a narrow range of due dates [19]. The
values of C are taken as 0.2, 0.5, and 0.8 and the values
of R are taken as 0.2, 0.5, and 0.8. For each problem
structure, data based on five different C and R combi-
nations are used (see Table 2): (0.2, 0.2), (0.2, 0.8),
(0.5, 0.5), (0.8, 0.2), (0.8, 0.8).

Note that dmax, dmin, and d are respectively the
maximum, the minimum, and the average due date.
The average due date ( d ) with specific C can be obtained
by the relation t ¼ 1� d=Cmax . Following that, the bound
values of due dates can be obtained with a specific R by using
both the relations ðd � Rd Þ and ðd þ ðCmax � d ÞRÞ that the
results are shown in Table 2.

4.2 Parameter setting

Algorithm parameter values vary depending on different
problem types when applying algorithm to achieve effi-
cient solutions, so appropriate value selection has sig-
nificant impact on the efficiency of algorithm. In this
paper, the existing parameters of the proposed algorithm

(T0, Tf, and N) are determined through relation “ p ¼
exp

�ΔE
Tð Þ ¼ theprobabilityofacceptinganinferiorsolution ” .

These parameters are obtained after conducting several
trials on different instances. But, before setting the param-
eters’ values, it is better to indicate some concepts in order
to understand the method.

When ΔE has a negative value, algorithm achieved a
superior solution. The acceptance of it is not depending on
the temperature value. Consequently, where “ΔE” has a
positive value, algorithm has to deal with an inferior solu-
tion. It is known that if R<p (R 0 random (0,1)) then the
algorithm accepts an inferior solution. This means the prob-
ability of accepting non-improving solutions depends on a
temperature parameter, which is typically non-increasing
with each iteration of the algorithm. Thus, we know

Table 7 Results of metrics for
1100.25 (M2×10

3) Test
problem

Simulated annealing/local search Genetic algorithm

M1 M2 M3 M4 M1 M2 M3 M4

T1 0.5725 0.6420 44.6369 1.4233 0.5951 0.6710 47.2922 1.4932

T2 0.5751 0.4239 43.6934 1.4476 0.6267 0.4384 49.9702 1.6179

T3 0.5728 0.9940 44.5165 1.4263 0.5728 0.9940 44.5165 1.4263

T4 0.5726 5.3595 44.6132 1.4243 0.5733 5.3697 44.6024 1.4272

T5 0.5727 4.8435 44.7827 1.4223 0.5765 4.9046 44.9223 1.4372

AVE 0.57314 2.45258 1.42876 0.58888 2.47554 1.48036

T6 0.5721 0.9203 44.7524 1.4204 0.6006 0.9800 48.0717 1.5107

T7 0.5734 0.8915 44.3027 1.4317 0.5741 0.8955 44.0510 1.4382

T8 0.5732 2.1147 44.3712 1.4300 0.5798 2.1627 45.9404 1.4394

T9 0.5738 9.0740 44.3258 1.4333 0.5743 9.0820 44.2173 1.4371

T10 0.5725 6.6200 44.6109 1.4239 0.5754 6.6955 45.0229 1.4311

AVE 0.5730 3.9241 1.42786 0.58084 3.96314 1.4513

T11 0.5729 1.7311 44.7271 1.4241 0.5952 1.8404 46.8117 1.4987

T12 0.5730 6.7925 44.4424 1.4282 0.5885 7.1470 45.0826 1.4889

T13 0.5742 8.2443 44.0118 1.4392 0.5763 8.2895 43.8410 1.4510

T14 0.5720 16.3372 45.0656 1.4158 0.5776 16.5400 44.4118 1.4488

T15 0.5742 4.9261 44.0065 1.4394 0.5760 4.9471 43.7138 1.4513

AVE 0.57306 7.60624 1.42934 0.58272 7.7528 1.46774

T16 0.5743 3.1871 44.2755 1.4362 0.5833 3.2775 45.1986 1.4638

T17 0.5736 7.1789 44.2225 1.4338 0.5850 7.4867 45.6159 1.4664

T18 0.5743 7.5774 43.9636 1.4405 0.5940 8.0954 45.1684 1.5126

T19 0.5722 21.4867 45.0943 1.4165 0.5809 21.9240 44.2318 1.4661

T20 0.5725 6.4086 44.9159 1.4198 0.6057 7.1991 47.7988 1.5369

AVE 0.57338 9.16774 1.42936 0.58278 9.59654 1.48916
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that the probability in which algorithm accepts an infe-
rior solution in initial temperatures (i.e., inT0) is high
and in finishing temperatures (i.e., in Tf) is low. There-
fore, “p 0 the probability of accepting an inferior solu-
tion” has a higher value in the initial temperature (i.e.,
p00.95) and on the contrary it has a smaller value in
the final temperature (i.e., p00.05).

The maximum ΔE is selected among ΔE positive values
obtained through several trials on every designed problem
for hybrid flowshop (here, maximum ΔE00.1496). Then,
by accepting an inferior solution with the acceptance ratio
(p) of 0.95 (high probability), the initial temperature (T0) is
found through this equation:

T0 ¼ �ΔE

LnðpÞ here;T0 ¼ �0:1496

Lnð0:95Þ ¼ 2:916

� �

It means that the algorithm accepts the worst inferior solu-
tion in the initial temperature (T0) with the acceptance ratio
(p) of 0.95.

The temperature T is lowered so the inferior moves are
approximately rejected. Here, by accepting an inferior

solution, with the acceptance ratio (p) of 0.05 (low
probability), the final temperature (Tf) is found by this
equation:

Tf ¼ �ΔE

LnðpÞ here;Tf ¼ �0:1496

Lnð0:05Þ ¼ 0:05

� �

It means that the algorithm accepts the worst inferior
solution in the final temperature (Tf) with the acceptance
ratio (p) of 0.05.

The temperature is reduced after a predetermined number
of iterations at a given temperature, using the relationship
equation below:

Ti ¼ T0 � i� T0 � Tf
N

� �

The number of stages for reaching of T0 to Tf in a linear
schedule (N) is obtained as follows: Based on Fig. 1, (0, T0)
and (N, Tf) are two points of a straight line where N is
uncertain. It is known that sum of α and β is equal to 90°.
Angle of the slope for α will be appropriate if α is bigger
than 45 (α>45). Also, angle of the slope for β will be
appropriate if β is smaller than 45 (β<45) since at a lower

Table 8 Results of metrics for
1100.5 (M2×10

3) Test
problem

Simulated annealing/local search Genetic algorithm

M1 M2 M3 M4 M1 M2 M3 M4

T1 0.6701 0.8861 44.5602 1.4252 0.6823 0.8972 46.1501 1.4653

T2 0.6745 0.7557 43.9853 1.4399 0.7309 0.7682 51.4904 1.6609

T3 0.6676 1.1358 44.8761 1.4173 0.6905 1.1886 46.6956 1.4933

T4 0.6678 4.0228 44.8478 1.4180 0.6719 4.0526 44.7042 1.4309

T5 0.6698 3.7180 44.7678 1.4243 0.6723 3.7369 44.7201 1.4323

AVE 0.66996 2.10368 1.42494 0.68958 2.1287 1.49654

T6 0.6703 1.2115 44.9549 1.4257 0.7069 1.2761 49.3071 1.5595

T7 0.6723 1.1971 44.2772 1.4324 0.6792 1.1998 45.7971 1.4549

T8 0.6698 2.0094 44.6560 1.4243 0.6801 2.0674 46.7535 1.4596

T9 0.6694 6.7015 44.7977 1.4230 0.6742 6.7475 44.5015 1.4383

T10 0.6683 5.0142 44.7884 1.4195 0.6774 5.1256 44.9380 1.4485

AVE 0.67002 3.22674 1.42498 0.68356 3.28328 1.47216

T11 0.6728 2.1118 44.2008 1.4344 0.6739 2.1124 44.8167 1.4374

T12 0.6750 5.4405 44.6620 1.4409 0.6821 5.5754 45.5627 1.4642

T13 0.6697 6.3440 44.6079 1.4240 0.6779 6.4950 45.1056 1.4501

T14 0.6669 11.7835 45.0072 1.4150 0.6717 11.8040 44.3489 1.4306

T15 0.6686 3.9966 44.7548 1.4203 0.6822 4.1171 44.6354 1.4643

AVE 0.6706 5.93528 1.42346 0.67756 6.01998 1.44932

T16 0.6692 3.0755 44.7315 1.4222 0.6814 3.1638 45.6618 1.4618

T17 0.6700 5.7180 44.5673 1.4250 0.6912 6.0747 46.0661 1.4946

T18 0.6749 5.7680 43.9298 1.4414 0.7117 6.5235 48.4021 1.5710

T19 0.6704 15.6120 44.5552 1.4263 0.6779 15.6920 43.7144 1.4514

T20 0.6740 5.2187 44.8222 1.4377 0.7009 5.6332 46.8879 1.5284

AVE 0.6717 7.07844 1.43052 0.69262 7.41744 1.50144
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speed the temperature is dropping. Now, N for certain β (i.e.,
β03) will be obtained by equation below:

N ¼ ðTf � T0Þ
�tagðbÞ here;N ¼ ð0:05� 2:916Þ

�tagð3Þ ¼ 55

� �
4.3 Performance measures

In order to compare the obtaining solutions of each algorithm,
some of the quality measures are explained below. The use of
performance measures (or metrics) allows a researcher to
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Table 9 Results of metrics for
1100.75 (M2×10

3) Test problem Simulated annealing/local search Genetic algorithm

M1 M2 M3 M4 M1 M2 M3 M4

T1 0.8067 1.1325 44.5981 1.4242 0.8217 1.1421 47.4122 1.4972

T2 0.8216 1.0948 43.7180 1.4469 0.8719 1.1035 53.1638 1.7430

T3 0.8070 1.2484 44.9018 1.4284 0.8234 1.2729 47.7690 1.5071

T4 0.8034 2.6936 44.8319 1.4196 0.8057 2.7085 44.9806 1.4265

T5 0.8035 2.5397 45.0679 1.4228 0.8076 2.5686 45.4625 1.4371

AVE 0.80844 1.7418 1.42838 0.82606 1.75912 1.52218

T6 0.8066 1.4974 44.9296 1.4280 0.8206 1.5184 46.6726 1.4833

T7 0.8128 1.4864 45.8467 1.4536 0.8496 1.5348 51.8557 1.6528

T8 0.8086 1.8990 44.4904 1.4270 0.8209 1.9406 45.8770 1.4725

T9 0.8064 4.2797 46.0933 1.4428 0.8159 4.2553 44.7727 1.4467

T10 0.8021 3.4398 45.3823 1.4237 0.8135 3.4729 44.7476 1.4411

AVE 0.8073 2.52046 1.43502 0.8241 2.5444 1.49928

T11 0.8043 2.2783 45.2599 1.4270 0.8209 2.3321 46.5465 1.4821

T12 0.8111 4.0896 44.3906 1.4314 0.8210 4.1270 43.7508 1.4461

T13 0.8089 4.5740 44.9195 1.4330 0.8146 4.5862 44.4092 1.4393

T14 0.8012 7.0890 44.9418 1.4163 0.8085 7.1780 45.0148 1.4332

T15 0.8037 3.2691 45.3792 1.4273 0.8096 3.2875 44.8502 1.4335

AVE 0.80584 4.2600 1.4270 0.81472 4.30216 1.44684

T16 0.8146 2.9990 44.1334 1.4361 0.8350 3.1125 48.7971 1.5522

T17 0.8050 4.2435 44.8906 1.4240 0.8279 4.5001 47.4823 1.5127

T18 0.8071 4.5930 45.1055 1.4312 0.8253 4.7575 45.8231 1.4816

T19 0.8031 9.3555 45.5138 1.4276 0.8213 9.3487 43.9091 1.4484

T20 0.8081 4.4430 44.9675 1.4316 0.8143 4.4689 44.5305 1.4402

AVE 0.80758 5.1268 1.4301 0.82476 5.23754 1.48702
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assess the performance of their algorithms (in a quantitative
way). In this paper, four metrics are used to evaluate the
quality of solutions. The metrics applied in this paper are
described as follows:

The first and the second metrics allow us to measure the
performance of the algorithms by considering objective
functions that applied in each of two algorithms. These
metrics (objective functions) were applied to minimize a
convex combination of the makespan and the total tardiness.
So the metrics are given as follows:

M1 ¼ l1 � min f1
f1ðxÞ þ l2 � 1þmin f2

1þ f2ðxÞ
� 	�1

that l1 þ l2 ¼ 1

M2 ¼ l1 � f1ðxÞ þ l2 � f2ðxÞ½ � that l1 þ l2 ¼ 1

Where “M1” and “M2” are applied in SA/LS and genetic
algorithm proposed by Jungwattanakit et al. [13] as the
objective function (with and without normalizing), respec-
tively. It is well-known that lower values of “M1” and “M2”
represent better solution.

Generally, decision makers require schedules with re-
spect to the trade-off between the objectives. Therefore the

obtained solution should represent a trade-off between the
various objectives. If there is a solution just along an indi-
vidual axis (in one corner of the solution space), it will not
be appropriate, because this solution is proper from just one
objective view (similar to a single-objective problem).
Hence, the trade-off surface between two objectives is re-
quired which is defined as an angle (see Fig. 2). Thus, the
third metric measures the angle of slope in relation to the
origin. Angles between 30 and 60 (45±15) degrees are
acceptable. Angles between 30 and 40, 40 and 50, and 50
to 60° are acceptable when l1 ¼ 0:75; 0:5; and0:25, respec-
tively. The definition of this metric is as follows:

M3 ¼ Arctag
f2ðxÞ=min f2
f1ðxÞ=min f1

� �

The fourth metric measures the distance between the
obtained solutions and the origin, but before expressing this
performance measure, some concepts should be indicated.
First, we assume that the origin is (0, 0). Second, the
normalized objectives are computed by dividing the mini-
mum value of the objectives into the vary value of the
objectives. Third, if a solution converges toward the side
of an origin or ideal solution, we can claim that the perfor-
mance of the algorithm is proper (see Fig. 3). So, the M4 try
to determine the convergence of solutions by calculating the
distance between the obtained solutions and the origin/ideal
solution. Lower values of this metric represent a better
solution. The metric defines as follows:

M4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f1ðxÞ
min f1

� �2

þ f2ðxÞ
min f2

� �2
s
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Fig. 7 Performances of the SA/LS and genetic algorithm by consid-
ering M3 and M4 metrics simultaneously
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4.4 Results from comparisons of SA/LS and genetic
algorithm

This section of paper shows the performance of our algorithm
against the other algorithm provided in the literature. The
performance of the proposed SA/LS is compared with a
specific genetic algorithm proposed by Jungwattanakit et al.
[13]. The algorithms have been coded by Matlab7 which is a
special mathematical computation language and ran on a PC-
800 with 512 MB memory. It is notice that three replications
for each problem size have been performed since there are
some random conditions when applying the algorithm. Also, a
weight vector is needed to aggregate the k objectives into a
scalar function and different weights vectors (11) are used to

define different directions of search. Therefore, instances test-
ed with 11∊{0.25,0.5,0.75} in the objective functions.

The comparison between two algorithms is performed
based on CPU time, four performance measures (metrics),
convex combinations yielded from each algorithm after
several runs, archived solutions (an archive is created, main-
tained during successive iterations to preserve solution iden-
tified during the search), number of solutions processed by
each algorithm, and the effect of “max_it” on the time and
the improvement of the solutions.

Time cost is an important factor when comparing differ-
ent algorithms. Hence, Fig. 4 plots the computational times
of two algorithms as regards problem size of three runs. It is
presented in Fig. 4 that our method runs faster in the cases of
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15×5, 20×5, and 25×10, but in case of 30×10, the running
time of SA/LS is higher than the genetic algorithm’s one.

Tables 3, 4, 5 and 6 represent the convex combinations
yielded by each algorithm after three replications. In this
section, the algorithms are analyzed in terms of introduced
metrics, and then, the problem size effects (numbers of
stages and jobs), on the performance of them.

The comparison between the performance of the SA/LS
and the genetic algorithm in terms of introduced metrics is
given in Tables 7, 8, and 9.

Based on the results given in tables, the following obser-
vations can be made:

SA/LS algorithm is able to outperform the other algorithm
in all test problems by considering “M1”, “M2”, and “M4”
metrics. To clarify, we plot the obtained values from “M1” and
“M4” metrics in Figs. 5 and 6, respectively. These figures
clearly show that the “SA/LS” has a better performance than
the other algorithm, because the obtained values of metrics by

SA/LS are situated below the values obtained by the genetic
algorithm’s one for all the problem sizes and in each search
direction (λ1). It is note that smaller values of “M1”, “M2”, and
“M4”metrics indicate a better solution. The obtained values of
“M3” metric indicate that the solutions are generated in the
trade-off surface by both of algorithms.

Based on the results provided in the tables, comparison of
the SA/LS and the other algorithm through combination
of“M3” (angle) and “M4” (distance) metrics are presented
in Fig. 7. This figure shows the angle and the distance of
solutions generated by SA/LS and the genetic algorithm
simultaneously. It can be seen that “SA/LS” generates a
more efficient convex combination than the other algorithm.

To analyze the behavior of different algorithms in the differ-
ent situations, we plot the average of “M1”, “M2”, and “M4” for
the algorithms in different levels of the number of jobs and
stages based on 11∊{0.25,0.5,0.75} in Figs. 8, 9, and 10. These
figures show that in all cases, SA/LSworks better than the other
algorithm in comparison, since the average of metrics obtained
by SA/LS are situated below the obtained values of the genetic
algorithm for all problem sizes and each search direction. Thus,
SA/LS shows better performance even by increasing in number
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Fig. 11 The generated convex combinations by SA/LS and genetic
algorithm for T1 problem (1100.25)
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Fig. 12 The generated convex combinations by SA/LS and genetic
algorithm for T6 problem (1100.5)
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of jobs and stages. Also, figures show that changing in the value
of λ1 had no significant effect in the overall relative perfor-
mance of the algorithms.

In this section, the performances of SA/LS and genetic
algorithm are compared via diagrams: Figs. 11, 12, and 13.
These figures show several convex combinations generated
by SA/LS and the genetic algorithm through 20 runs. It can be
found from these figures that the proposed algorithm yields
the efficient solutions, in comparison with genetic algorithm.

By considering “M3” and “M4” metrics (see Fig. 7, and
compare with Figs. 11, 12, and 13) we conclude that generated
points in SA/LS are better than the solutions of the genetic
algorithm. Therefore, SA/LS is more effective in minimizing
the makespan and total tardiness for the hybrid flowshop
problem with sequence-dependent setup times than the genet-
ic algorithm proposed by Jungwattanakit et al.[13].

In this section, we are going to demonstrate a comparison
between the archived solutions of SA/LS and genetic algorithm.
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Fig. 14 Objective values of archived solutions on T1 problem (when max-it01,2,3 and 1100.25)
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Here the problem T1 is under consideration where 1100.25
(direction search).

In each experiment, the genetic algorithm processes on
“S1” solutions where “S1 0 (number of generation) × (popu-
lation size)” regardless of kind of problem. The values of these
parameters are: “population size0100” and “number of gen-
eration080”. Generally, to solve the problem “T1”, genetic

algorithm takes approximately about 8,000 solutions under
process in 54.1265 s time.

In each experiment, the SA/LS processes on “S2” solutions
where “ S2 ¼ ðn� 1Þ � ðmax itÞ � N ” that “number of
stages for reach of T0 to Tf (N)055” and (n−1) depends on
the problem size (n015 in the problem T1). This algorithm
also has another parameter defined as “maximum number of
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iterations in each temperature” which is denoted by “max_it”.
It is notice that the more the value of max_it the more the basic
improvement procedure—designed by authors—is performed.
Here the effect of max_it is shown on the performing time and
the improvement of the solutions. Therefore, it is assumed that
max_it is a variable in range [1–6].

The genetic algorithm and SA/LS (with max_it01 to 6) is
performed on problem T1 and the solutions are archived and
shown in Figs. 14 and 15. In Fig. 14, plots (“a” and “b”),
(“c” and “d”), and (“e” and “f”) are related to max_it01, 2,
and 3, respectively. Also in Fig. 15 plots (“a” and “b”), (“c”
and “d”), and (“e” and “f”) are related to max_it04, 5, and
6, respectively. It is notice that the plots “a”, “c”, and “e” in
both Figs. 14 and 15 is related to makespan and the plots
“b”, “d”, and “f” is related to total tardiness.

First, we consider plots “a” and “b” in Fig. 14 where
max_it01. SA/LS algorithm, to solve the problem “T1” (n0
15), takes approximately about 770 solutions under process in
8.4844 s time. It should be noticed that SA/LS algorithm
concludes the process in a shorter time through searching less
solutions. It can be seen that in plots “a” and “b” in Fig. 14, the
algorithm SA/LS has tried to provide the proper solutions but
it is not as strong as the genetic algorithm. Hence the results
obtained by genetic algorithm are more effective.

First, the plots “c” and “d” in Fig. 14 are considered where
max_it02. In this case, our proposed algorithm tried 1,540
solutions in 16.0938 s. It can be seen that our proposed algo-
rithm has found solutions that are almost near to the genetic
algorithm’s solutions but cannot compete with them, yet.

Plots “e” and “f” in Fig. 14 are considered where max_it0
3, result was 2,310 solutions in 22.1250 s. It is conceived that
the solutions provided by our algorithm is more near to
genetic algorithm’s solutions but not as perfect as them.

In following, the plots “a” and “b” in Fig. 15 are considered
where max_it is 4. Our algorithm tried 3,080 solutions in
28.9688 s. Based on the figure, it implies that the solutions provided
by our algorithm are as good as genetic algorithm solutions.

As a result, the figures are showing that our proposed
algorithm has produced solutions as effective as genetic algo-
rithm solutions but by considering the time factor, the SA/LS
algorithm is faster than genetic algorithm. Then by increasing
in “max_it”, it can be seen that our algorithm not only takes
shorter time but also produced better solutions. The given plots,
depict this claim: in plots “c” and “d” of Fig. 15 wheremax_it0
5, produced 3,850 solutions in 36.3594 s and in plots “e” and
“f” 4,620 solutions in 42.9531 s. Therefore, as max_it has been
grown, the performance of SA/LS has been improved.

5 Conclusion and future study

This paper is focused on the hybrid flowshop sequence-
dependent setup times scheduling problems which belongs

to NP-hard class. Our objective is to determine the schedule
that minimizes a convex combination of the makespan and
the total tardiness. The problem is configured as a bi-criteria
model which is a sub-class of the multi-criteria models. For
the optimization problem, simulated annealing is proposed.
In order to enhance the performance of the simulated
annealing, two simple forms of local search are applied on
the best solution of archive. Therefore, combination of the
simulated annealing and local search algorithms are used to
solve the multi-objective problems. The performance eval-
uation of the SA/LS under study is carried out by using
several test problems appropriately designed for this partic-
ular problem. The performance of SA/LS has been evaluat-
ed by comparing its solution with the obtained solution by
the proposed genetic algorithm in the literature. For deter-
mining the analogy results; four metrics are used to evaluate
the quality of the solutions. The first and the second metrics
measure the performances of the algorithms by the functions
applied in each algorithm. The third metric measures the
angle of slope in relation to the origin. The fourth metric
measures the distance of the obtained solutions and the
origin. Comparison shows that the “SA/LS” provides better
results than the proposed genetic algorithm in the literature
by considering the results of three metrics out of four. The
author’s future study includes development of the other bi-
objective algorithms of the simulated annealing by design-
ing as much as possible functions to combine the various
criteria into a single scalar value.
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